

Propagation-based phase contrast imaging with X-rays – from uniqueness theory to nano-scale reconstructions

Simon Maretzke

Motivation: Imaging with X-rays permits nano-scale resolution owing to small wavelengths ≤ 1 nm but suffers from weak absorption for microscopic light-element samples.

~> Need for *refraction*-based imaging techniques **~>** *phase contrast*

Imaging Setup: A specimen is illuminated by coherent X-rays (e.g. from synchrotrons, FELs), resulting diffraction patterns are recorded downstream at propagation distance *d*:

3. Reconstructions and Stability for 2D-Imaging

Numerical approach: Solve **IP1** by iteratively regularized Gauss-Newton method:

$$\boldsymbol{n}_{k+1} = \underset{\boldsymbol{n}}{\operatorname{argmin}} \left\| F_{\operatorname{image}}(\boldsymbol{n}_k) + F'_{\operatorname{image}}[\boldsymbol{n}_k](\boldsymbol{n} - \boldsymbol{n}_k) - I \right\|_{L^2}^2 + \alpha_k \left\| \boldsymbol{n} - \boldsymbol{n}_0 \right\|_{H^s}^2$$

- Non-absorbing samples ($\beta = 0$): Favorable robustness and improved accuracy compared to commonly used (approximate) direct inversion formulas [4]
- General samples ($\delta, \beta \neq 0$): Faithful reconstructions up to characteristic halo artifacts:

undulator

slits focussing mirrors

rrors focus

detector

Physical Model:

- Sample characterized by spatially varying refractive index $n = 1 \delta + i\beta \ (\delta, \beta \ge 0)$
- δ, β induce phase shifts + absorption to incident probe wave field P (ray approximation)
 Free-space propagation in z ∈ [0; d] encodes phase into detectable intensities I = |Ψ_d|²

Forward Operator: (paraxial Helmholtz + ray optics in sample \rightarrow valid for X-rays [2])

$$F_{\text{image}}(\boldsymbol{n}) := I = \left| \underbrace{\mathcal{D}}_{\text{Fresnel}} \underbrace{\left(P \cdot \exp(-ik\boldsymbol{n}) \right)}_{\text{exit wave field } \Psi_0 = P \cdot O} \right|^2, \quad \boldsymbol{n} = \int_{-L}^{0} \underbrace{\left(\delta - i\beta \right)}_{\substack{\text{Refraction} \\ (+\text{absorption})}} dz \quad (1)$$

Inverse Problem 1 (Propagation-based Phase Contrast Imaging):

- $\begin{aligned} & \left| \int_{\mathbb{R}^{m}} \left(GINIX/DESY \left[3 \right] \right) \right| & \left| \int_{\mathbb{R}^{m}} \left(GINIX/DESY \left[3 \right] \right) \right| \\ & \left(0 \right) \text{ Reconstructed retraction } \int_{L}^{0} \delta \, dz \right) \\ & \left(0 \right) \text{ Reconstructed retraction } \int_{L}^{0} \delta \, dz \right) \\ & \left(0 \right) \text{ Reconstructed absorption } \int_{L}^{0} \beta \, dz \right) \\ & \left(0 \right) \text{ Reconstructed retraction } \int_{L}^{0} \delta \, dz \right) \\ & \left(0 \right) \text{ Reconstructed absorption } \int_{L}^{0} \beta \, dz \right) \\ & \left(0 \right) \text{ Reconstructed absorption } \int_{L}^{0} \beta \, dz \right) \\ & \left(0 \right) \text{ Reconstructed absorption } \int_{L}^{0} \beta \, dz \right) \\ & \left(0 \right) \text{ Reconstructed absorption } \int_{L}^{0} \beta \, dz \right) \\ & \left(0 \right) \text{ Reconstructed absorption } \int_{L}^{0} \beta \, dz \right) \\ & \left(0 \right) \text{ Reconstructed absorption } \int_{L}^{0} \beta \, dz \right) \\ & \left(0 \right) \text{ Reconstructed absorption } \int_{L}^{0} \beta \, dz \right) \\ & \left(0 \right) \text{ Reconstructed absorption } \int_{L}^{0} \beta \, dz \right) \\ & \left(0 \right) \text{ Reconstructed absorption } \int_{L}^{0} \beta \, dz \right) \\ & \left(0 \right) \text{ Reconstructed absorption } \int_{L}^{0} \beta \, dz \right) \\ & \left(0 \right) \text{ Reconstructed absorption } \int_{L}^{0} \beta \, dz \right) \\ & \left(0 \right) \text{ Reconstructed absorption } \int_{L}^{0} \beta \, dz \right) \\ & \left(0 \right) \text{ Reconstructed absorption } \int_{L}^{0} \beta \, dz \right) \\ & \left(0 \right) \text{ Reconstructed absorption } \int_{L}^{0} \beta \, dz \right) \\ & \left(0 \right) \text{ Reconstructed absorption } \int_{L}^{0} \beta \, dz \right) \\ & \left(0 \right) \text{ Reconstructed absorption } \int_{L}^{0} \beta \, dz \right) \\ & \left(0 \right) \text{ Reconstructed absorption } \int_{L}^{0} \beta \, dz \right) \\ & \left(0 \right) \text{ Reconstructed absorption } \int_{L}^{0} \beta \, dz \right) \\ & \left(0 \right) \text{ Reconstructed absorption } \int_{L}^{0} \beta \, dz \right) \\ & \left(0 \right) \text{ Reconstructed absorption } \int_{L}^{0} \beta \, dz \right) \\ & \left(0 \right) \text{ Reconstructed absorption } \int_{L}^{0} \beta \, dz \right) \\ & \left(0 \right) \text{ Reconstructed absorption } \int_{L}^{0} \beta \, dz \right) \\ & \left(0 \right) \text{ Reconstructed absorption } \int_{L}^{0} \beta \, dz \right) \\ & \left(0 \right) \text{ Reconstructed absorption } \int_{L}^{0} \beta \, dz \right) \\ & \left(0 \right) \text{ Reconstructed absorption } \int_{L}^{0} \beta \, dz \right) \\ & \left(0 \right) \text{ Reconstructed absorption } \int_{L}^{0} \beta \, dz \right) \\ & \left(0 \right) \text{ Reconstructed absorption } \int_{L}^{0} \beta \, dz \right) \\ & \left(0 \right) \text{ Reconstructe$
- 2 *Subsequent* tomographic reconstruction by Radon inversion: $\mathcal{R}(\delta i\beta) \mapsto \delta i\beta$

Simultaneous approach: *All-at-once* inversion of F_{tomo} by regularized Newton methods

Reconstruct the object transmission function (OTF) O from intensity data I given by (1).

Phase Contrast Tomography: Illuminate the sample at different incident angles θ \Rightarrow resulting OTFs { O_{θ} } given by ensemble of rotated line integrals \Rightarrow 2D *Radon transform*:

$$F_{\text{tomo}}(\delta - i\beta) := \{I_{\theta}\} = \left| \mathcal{D} \left(P \cdot \exp\left(- ik\mathcal{R}(\delta - i\beta) \right) \right) \right|^2$$
(2)

Inverse Problem 2 (Propagation-based Phase Contrast Tomography): *From tomographic intensity data* $\{I_{\theta}\}$ *given by* (2), *reconstruct the sample structure* $\delta - i\beta$.

2. Uniqueness Results

Phase Retrieval Problem: Solving **IP1** and **IP2** requires inversion of $|\cdot|^2$, i.e. *phase recovery*, due to the physical restriction of detector measurements to wave *intensities*

~~ Can we uniquely reconstruct the phase + absorption image?

Theorem (Uniqueness of Phase Contrast Imaging and Tomography [6]) : *Let* P *be a known plane wave or Gaussian beam and let* δ – $i\beta$ *be compactly supported. Then* • **IP1** *is uniquely solvable from intensity data* $I_{|U}$ *on an arbitrary open set* $U \subset \mathbb{R}^m$ • **IP2** *is uniquely solvable from data* $\{I_{\theta|U}\}_{\theta \in V}$ *on* $U \subset \mathbb{R}^m, \theta \subset \mathbb{S}^1$ *open if* $k\mathcal{R}(\delta) \in [0; 2\pi)$

Basic ideas: If $\delta_j - i\beta_j$ compactly supported, so are the wave disturbances $h_j := P \cdot (O_j - 1)$:

- *Benefit:* Stabilization of reconstruction by exploitation of tomographic correlations [5]
- *Drawback:* Computationally expensive as $F, F'[n_k], F'[n_k]^*$ map large 3D data sets
- *Remedy:* Process small subsets of incident angles per iteration \rightarrow *Newton-Kaczmarz* [1]:

$$n_{k+1} = \underset{n}{\operatorname{argmin}} \left\| \underbrace{\mathcal{P}_{k} \left(F_{\text{tomo}}(n_{k}) + F'_{\text{tomo}}[n_{k}](n-n_{k}) - I \right)}_{\text{restriction to small wedges of incident angles}} \right\|_{L^{2}}^{2} + \underbrace{\alpha_{k} \left\| n - n_{0} \right\|_{X_{k}}^{2}}_{\text{approximate } L^{p},} + \underbrace{\alpha_{0} \left\| n - n_{k} \right\|_{L^{2}}^{2}}_{\text{strong regularization}} + \underbrace{\alpha_{0} \left\| n - n_{k} \right\|_{L^{$$

~> Efficient + accurate combination of phase retrieval and tomography

5. References

- [1] Burger M and Kaltenbacher B. Regularizing Newton–Kaczmarz methods for nonlinear ill-posed problems. *SIAM Journal on Numerical Analysis*, 44(1):153–182, 2006.
- [2] Jonas P and Louis A. Phase contrast tomography using holographic measurements. *Inverse Problems*, 20(1):75, 2004.
- [3] Kalbfleisch S, Neubauer H, Krüger S, Bartels M, Osterhoff M, Giewekemeyer K, Hartmann B, Sprung M, and Salditt T. The Göttingen holography endstation of beamline P10 at PETRA III/DESY. *AIP Conference Proceedings*, 1365(1):96–99, 2011.

$$F_{\text{image}}(O_1) - F_{\text{image}}(O_2) = \underbrace{\mathcal{D}(h_1 - h_2)}_{(A)} + \underbrace{\overline{\mathcal{D}(h_1 - h_2)}}_{(B)} + \underbrace{|\mathcal{D}(h_1)|^2 - |\mathcal{D}(h_2)|^2}_{(C)} \quad (\text{case } P = 1)$$

D = γ exp(iξ²) · F(exp(ix²) · h_j) related to the Fourier transform F
exp(-iξ²) · D(h_j) ∝ F(exp(ix²) · h_j) *entire function* of exponential type by Paley-Wiener
(A), (B), (C) grow *superexponentially* in disjoints subsets of C^m if h₁ ≠ h₂ ⇒ h₁ = h₂

- [4] Krenkel M, Töpperwien M, Bartels M, Lingor P, Schild D, and Salditt T. X-ray phase contrast tomography from whole organ down to single cells. *SPIE Proceedings*, (9210):92120R, 2014.
- [5] Maretzke S. Regularized Newton methods for simultaneous Radon inversion and phase retrieval in phase contrast tomography. *arXiv preprint*, page arXiv:1502.05073, 2015.
- [6] Maretzke S. A uniqueness result for propagation-based phase contrast imaging from a single measurement. *Inverse Problems*, 31:065003, 2015.

Acknowledgements: Support by the German Research Foundation DFG through the Collaborative Research Center 755 – Nanoscale Photonic Imaging is gratefully acknowledged.

Any questions? Just ask me:

Simon Maretzke

Institute for Numerical and Applied Mathematics / SFB 755 - Nanoscale Photonic Imaging University of Goettingen

E-mail: s.maretzke@math.uni-goettingen.de

joint work with: Thorsten Hohage

