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1. Introduction

Motivation: Imaging with X-rays permits nano-scale resolution owing to small wave-
lengths . 1 nm but suffers from weak absorption for microscopic light-element samples.

 Need for refraction-based imaging techniques phase contrast

Imaging Setup: A specimen is illuminated by coherent X-rays (e.g. from synchrotrons,
FELs), resulting diffraction patterns are recorded downstream at propagation distance d:

Physical Model:
• Sample characterized by spatially varying refractive index n = 1 − δ + iβ (δ, β ≥ 0)

• δ, β induce phase shifts + absorption to incident probe wave field P (ray approximation)

• Free-space propagation in z ∈ [0; d] encodes phase into detectable intensities I = |Ψd|
2

Forward Operator: (paraxial Helmholtz + ray optics in sample→ valid for X-rays [2])

Fimage(n) := I =
∣∣∣ D︸︷︷︸

Fresnel
propagator

(
P · exp(−ikn)

)︸             ︷︷             ︸
exit wave field Ψ0=P·O

∣∣∣2, n =
∫ 0
−L (δ − iβ)︸  ︷︷  ︸

Refraction
(+absorption)

dz (1)

Inverse Problem 1 (Propagation-based Phase Contrast Imaging) :
Reconstruct the object transmission function (OTF) O from intensity data I given by (1).

Phase Contrast Tomography: Illuminate the sample at different incident angles θ
⇒ resulting OTFs {Oθ} given by ensemble of rotated line integrals⇒ 2D Radon transform:

Ftomo(δ − iβ) := {Iθ} =
∣∣∣D (

P · exp
(
− ikR(δ − iβ)

)) ∣∣∣2 (2)

Inverse Problem 2 (Propagation-based Phase Contrast Tomography) :
From tomographic intensity data {Iθ} given by (2), reconstruct the sample structure δ− iβ.

2. Uniqueness Results

Phase Retrieval Problem: Solving IP1 and IP2 requires inversion of | · |2, i.e. phase
recovery, due to the physical restriction of detector measurements to wave intensities

 Can we uniquely reconstruct the phase + absorption image?

Theorem (Uniqueness of Phase Contrast Imaging and Tomography [6]) : Let P be a
known plane wave or Gaussian beam and let δ − iβ be compactly supported. Then

• IP1 is uniquely solvable from intensity data I|U on an arbitrary open set U ⊂ Rm

• IP2 is uniquely solvable from data {Iθ|U}θ∈V on U ⊂ Rm, θ ⊂ S1 open if kR(δ) ∈ [0; 2π)

Basic ideas: If δ j−iβ j compactly supported, so are the wave disturbances h j := P·(O j−1):

Fimage(O1) − Fimage(O2) = D(h1 − h2)︸       ︷︷       ︸
(A)

+D(h1 − h2)︸       ︷︷       ︸
(B)

+ |D(h1)|2 − |D(h2)|2︸                 ︷︷                 ︸
(C)

(case P = 1)

• D = γ exp(iξ2) · F (exp(ix2) · h j) related to the Fourier transform F

• exp(−iξ2) · D(h j) ∝ F (exp(ix2) · h j) entire function of exponential type by Paley-Wiener

• (A), (B), (C) grow superexponentially in disjoints subsets of Cm if h1 , h2⇒ h1 = h2

3. Reconstructions and Stability for 2D-Imaging

Numerical approach: Solve IP1 by iteratively regularized Gauss-Newton method:

nk+1 = argmin
n

∥∥∥Fimage(nk) + F′image[nk](n− nk) − I
∥∥∥2

L2 + αk

∥∥∥n− n0

∥∥∥2
Hs

• Non-absorbing samples (β = 0): Favorable robustness and improved accuracy compared
to commonly used (approximate) direct inversion formulas [4]

• General samples (δ, β , 0): Faithful reconstructions up to characteristic halo artifacts:

(a) Intensity data (GINIX/DESY [3]) (b) Reconstructed refraction
∫ 0
−L δ dz (c) Reconstructed absorption

∫ 0
−L β dz

Stability analysis: For P = 1 and h = O − 1 s.t. |h| � 1, supp(h) ⊂ Ω compact:

D
(
Fimage(n) − 1

)
= D2(h)︸︷︷︸
,0 a.e.

+ h︸︷︷︸
=0 in Rm\Ω

+
�
��

�
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�
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HHH
HHH

HH
O(|h|2)

D unitary
⇒ 1

2

∥∥∥Fimage(n) − 1
∥∥∥2

L2 ≥
∥∥∥D2(h)|Rm\Ω

∥∥∥2
L2 =

∥∥∥F (exp(ix2/2) · h)|Rm\Ω

∥∥∥2
L2 ≥ (1 − σ2

0)‖h‖2L2

• σ0 < 1: maximum singular value of FΩ : L2(Ω)→ L2(Ω); f 7→ F ( f )|Ω
• Worst-case-signals given by principal singular modes low-frequency halos

4. Newton-Kaczmarz Method for Phase Contrast Tomography

Standard method in phase contrast tomography:
1 Independent phase retrieval for all incident angles: Ftomo(δ − iβ) 7→ R(δ − iβ)

2 Subsequent tomographic reconstruction by Radon inversion: R(δ − iβ) 7→ δ − iβ

Simultaneous approach: All-at-once inversion of Ftomo by regularized Newton methods

• Benefit: Stabilization of reconstruction by exploitation of tomographic correlations [5]

• Drawback: Computationally expensive as F, F′[nk], F′[nk]∗ map large 3D data sets

• Remedy: Process small subsets of incident angles per iteration→ Newton-Kaczmarz [1]:

nk+1 = argmin
n

∥∥∥P k
(
Ftomo(nk) + F′tomo[nk](n − nk) − I

)︸                                           ︷︷                                           ︸
restriction to small wedges of incident angles

∥∥∥2
L2 + αk

∥∥∥n − n0

∥∥∥2
Xk︸         ︷︷         ︸

approximate Lp,
TV, positivity, . . .

+ α0

∥∥∥n − nk

∥∥∥2
L2︸         ︷︷         ︸

strong regularization
⇒ well-conditioned

 Efficient + accurate combination of phase retrieval and tomography
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