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1. Introduction

Motivation: Imaging with X-rays permits nano-scale resolution owing to small wave-
lengths < 1 nm but suffers from weak absorption for microscopic light-element samples.

~~ Need for refraction-based imaging techniques ~~ phase contrast

Imaging Setup: A specimen is illuminated by coherent X-rays (e.g. from synchrotrons,

FELs), resulting diffraction patterns are recorded downstream at propagation distance d:
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Physical Model:
e Sample characterized by spatially varying refractive indexn =1 -0 +18 (6,8 > 0)
e ¢, 5 induce phase shifts + absorption to incident probe wave field P (ray approximation)

e Free-space propagation in z € [0; d] encodes phase into detectable intensities I = [¥4|?

Z

Forward Operator: (paraxial Helmholtz + ray optics in sample — valid for X-rays [2])
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Inverse Problem 1 (Propagation-based Phase Contrast Imaging) :
Reconstruct the object transmission function (OTF) O from intensity data I given by (1).

Phase Contrast Tomography: Illuminate the sample at different incident angles 6
= resulting OTFs {Oy} given by ensemble of rotated line integrals = 2D Radon transform:

Fiomo® = iB) = {Ig} = |D (P - exp (~ ikR(& - i) | 2)

Inverse Problem 2 (Propagation-based Phase Contrast Tomography) :
From tomographic intensity data {1y} given by (2), reconstruct the sample structure 6 —10.

2. Uniqueness Results

Phase Retrieval Problem: Solving IP1 and IP2 requires inversion of | - |*, i.e. phase
recovery, due to the physical restriction of detector measurements to wave intensities

~~ Can we uniquely reconstruct the phase + absorption image?

Theorem (Uniqueness of Phase Contrast Imaging and Tomography [6]): Let P be a
known plane wave or Gaussian beam and let 6 — 18 be compactly supported. Then

o IP1 is uniquely solvable from intensity data I,y on an arbitrary open set U C R™
o IP2 is uniquely solvable from data {Igy}gey on U C R™, 6 C S! open if kR(5) € [0;2r)

Basicideas: If §;—18; compactly supported, so are the wave disturbances /; := P-(O;—1):

Fimage(01) = Fimage(02) = D(hy — hy) + Dy — ) + [D(hy)E — |D(h)> (case P = 1)
(A) (B) (©)

o D =vyexp(i&?) - F(exp(ix?) - h ;) related to the Fourier transform ¥
o exp(—i&?) - D(h i) o< F(exp(ix?) - h;) entire function of exponential type by Paley-Wiener
e (A), (B), (C) grow superexponentially in disjoints subsets of C" if hy # h, = h; = hy

3. Reconstructions and Stability for 2D-Imaging

Numerical approach: Solve IP1 by iteratively regularized Gauss-Newton method:
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e Non-absorbing samples (8 = 0): Favorable robustness and improved accuracy compared
to commonly used (approximate) direct inversion formulas [4]

e General samples (0,8 # 0): Faithful reconstructions up to characteristic halo artifacts:

(¢) Reconstructed absorption f_ OL B dz

(a) Intensity data (GINIX/DESY [3]) (b) Reconstructed refraction f_ OL 0 dz

Stability analysis:
. — : 2 1
D(Fimage(n) — 1) = D*(h)  + + OghP)

\/_/ .
+0 a.e. =0 in R™\Q

ForP=1and h =0 — 1s.t. |h| < 1, supp(h) C 2 compact:

S L Finaeem) = 1] > [ D2 mal ., = [F@xpx/2) - hygmaly, > (1 = o,

e 0 < 1: maximum singular value of Fq : L*(Q) — L*(Q); f = F (i

e Worst-case-signals given by principal singular modes ~~ low-frequency halos

4. Newton-Kaczmarz Method for Phase Contrast Tomography

Standard method in phase contrast tomography:
1 Independent phase retrieval for all incident angles: Fiomo(0 —18) —= R(6 — 15)

2 Subsequent tomographic reconstruction by Radon inversion: R(6 —18) — 6 — 18

Simultaneous approach: All-at-once inversion of Fy, by regularized Newton methods
e Benefit: Stabilization of reconstruction by exploitation of tomographic correlations [5]
e Drawback: Computationally expensive as F, F'[n], F'[n;]" map large 3D data sets

e Remedy: Process small subsets of incident angles per iteration — Newton-Kaczmarz [1]:
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strong regularization
= well-conditioned

restriction to small wedges of incident angles approximate L?,

TV, positivity, ...

~» Eflicient + accurate combination of phase retrieval and tomography
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