
Advanced Optimization lecture

Université Paris-Saclay – M2 AIC

Exercise: Evolutionary Algorithms for the Traveling Salesperson Problem

Anne Auger, Dimo Brockhoff
firstname.lastname@inria.fr

http://researchers.lille.inria.fr/~brockhof/advancedOptSaclay/

Introduction

For discrete and combinatorial problems, evolutionary algorithms and other randomized search heuristics
are often less competitive than problem-specific algorithms (in terms of the quality of the solutions found
and the algorithm’s convergence speed towards the optimum). However, they are simple enough to imple-
ment them quickly. Compared to problem-specific algorithms which need a deep (and time consuming)
understanding of the problem characteristics, a simple evolutionary algorithm can already produce rea-
sonably performant solutions in short time (counting both the algorithm development/implementation
time and the actual optimization time). Once implemented, an evolutionary algorithm can then also be
adapted and enhanced easily with problem-specific components as soon as a further understanding of the
problem is available.

The goal of this exercise is to showcase how easy it is to implement an evolutionary algorithm from
scratch for the traveling salesperson problem (TSP) and understand its basic working principles and
their influence on the algorithm performance. The Traveling Salesperson Problem is thereby asking for
the shortest tour through a given set of n cities with their pairwise (symmetric) Euclidean distances.

Problem Formulation

? Each city is represented by a unique integer number between 1 and the total number of cities n.

? A map of n cities is an n × 2 matrix, indicating the coordinates (xi, yi) of each city i (1 ≤ i ≤ n)
as the two column entries:

map:


x1 y1
x2 y2
.
xn yn


For simplicity, we assume all coordinates to be integer.

? The distances between the n cities are represented by entries in a symmetric matrix D of size n×n
with 0s on the diagonal:

D(i, j) = distance between city i and city j

In the following, we will investigate (and implement) the different parts of an evolutionary algorithm
(EA) for the above TSP problem step-by-step.

Representation, Search Space, and Objective Function

1. One possible representation for the problem is to have a solution encoded as a permutation of length
n. Why are permutations a natural representation for the TSP?

2. How would you represent a permutation in Python, i.e., which data structure do you suggest for
storing a permutation in Python?

3. What is the size of the search space for a given set of n cities? In other words how many solutions
does an exhaustive search have to touch to find the optimal tour?

4. Write down (on paper / in textual form) the objective function for the TSP, given a specific
permutation and a distance matrix.

Creating Problem Instances

Before to start implementing any algorithmic aspect, we first create some (random) instances of the TSP.

5. Write a function in Python that takes as arguments the number n of cities and two integer numbers
xmax and ymax. This function, called placeCitiesRandomly, shall return the (integer) x and y
coordinates of n randomly placed cities in [0, xmax]× [0, ymax] as a two-dimensional array.

6. Write another function in Python that takes the above created random locations of n cities and
returns the distance matrix for the corresponding TSP instance, i.e., an n × n matrix D in which
entry (i, j) corresponds to the Euclidean distance between cities i and j in the given set.

Implementation of the Objective Function

A second important task to implement before the algorithm is the objective function.

7. Write a function that takes a permutation and a distance matrix as input and returns the length
of the represented tour as objective function value.

Graphical Interface

The last issue that needs to be solved before we can start to code the algorithm, is a way to display a
solution.

8. Write a function plotSolution that takes a permutation and a list of city locations (given by the
above placeCitiesRandomly) as arguments and which plots the solution, given by the permutation,
as a 2-dimensional map, indicating the cities with markers and the chosen path as straight lines.

Initialisation

The first part of the actual algorithm for solving the TSP, we will implement is the initialization of the
algorithm’s population. Typically, this is done uniformly at random in the search space. Hence, think
about how to sample µ permutations randomly from the set of all permutations.

One trick to achieve random permuations has to do with sorting random numbers.

9. Write a function that samples µ permutations uniformly at random from the set of all permutations,
given the parameters µ (number of samples) and n (dimension of the problem).

2

Variation Operators

To generate new solutions from already visited ones, an evolutionary algorithm performs crossover and
mutation.

Crossover

For recalling the ideas behind crossover operators,
see http://en.wikipedia.org/wiki/Crossover_(genetic_algorithm)

The main idea behind good crossover operators is to create a new solution from its parents by combining
different parts from the parents while keeping the good properties of them.

11. Propose possible crossover operators for the TSP.

Classical crossover operators that we have seen in the lecture like the 1-point crossover will not result in
feasible solutions for the representation of permutations for the TSP case. Hence, other operators such as
the Partially Mapped Crossover or the order 1 crossover have been developed to keep the order of cities
in part from each parent. We detail in the following the working principles of the latter.

Order crossover: The idea behind the order crossover is that we keep the orders of the cities from
either the first or the second parent: from one parent, we choose a (random) sub-path and copy it to the
child. The newly generated solution will then be filled up by adding the remaining cities in the order,
they appear in the other parent. In the following example, we generate two children at once from the
following parents:

Parent 1 [1 2 | 3 4 5 | 6 7 8]
Parent 2 [2 4 | 6 8 7 | 5 3 1]

We start by picking a random sub-path in both parents, here the middle three cities (3, 4, 5 from the
first parent, and 6, 8, 7 from the second parent:

Child 1 [? ? | 3 4 5 | ? ? ?]
Child 2 [? ? | 6 8 7 | ? ? ?]

And then we complete both children by adding the remaining cities in the order they appear in the other
parent after cities 5 and 7 respectively (without repeating cities of course):

Child 1 [8 7 | 3 4 5 | 1 2 6]
Child 2 [4 5 | 6 8 7 | 1 2 3]

Note again that both the start and end indices of the initial sub-paths are chosen uniformly at random.

12. Write a function for the order 1 crossover, taking as arguments the two parent solutions and
returning two children.

Mutation

13. Chose a small set of mutation operators, you think is well suited for the TSP, and implement them
in Python.

Overall Algorithm

We eventually need to combine all the above written parts to obtain our final evolutionary algorithm.
See below an example of an “elitist” algorithm with plus selection.

3

1. Initialize the population uniformly at random with µ solutions.

2. Successively create λ = 2 ∗ µ children by applying the following steps:

• choose uniformly at random (without replacement) two parent solutions from the population
and use crossover to create two new children solutions

• apply a mutation operator to both children with a probability of pm (choose the probability
not too high). Choose the mutation operator uniformly at random from your set of mutation
operators implemented.

• evaluate the solutions

? select the best µ solutions among the λ children and the µ parents. These µ best solutions become
the potential parents of the next iteration. Go to step 2).

13. Write a function in Python that runs your evolutionary algorithm. As parameters, it shall take
a (random) map of cities and the number of function evaluations (“budget”). The algorithm run
should return both the best solution found as well as its length (“objective function”).

For investigating how the algorithm’s best solution evolves over time, it might also be interesting
to keep track of the best ever achieved function value at each iteration.

14. Study the influence of the different parameters of your algorithm. In particular check how important
the crossover operator and your chosen mutation operators are on the algorithm performance..

4

