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I Pure Random Search (PRS)

We consider the following optimization algorithm.

[Objective: minimize f : [−1, 1]n → R
Xt is the estimate of the optimum at iteration t
Input (Ut)t≥0 independent identically distributed each Ut ∼ U[−1,1]n (unif. distributed in [−1, 1]n) ]
1. Initialize t = 0, X0 = U0

2. while not terminate

3. t = t+ 1
4. If f(Ut) ≤ f(Xt−1)
5. Xt = Ut
6. Else
8. Xt = Xt−1

1. Show that for all t ≥ 0
f(Xt) = min{f(U0), . . . , f(Ut)}

2. We consider the simple case where f(x) = ‖x‖∞ (we remind that ‖x‖∞ := max(|x1|, . . . , |xn|)).
Show the convergence in probability of the PRS algorithm towards the optimum of f , that is prove
that for all ε > 0

lim
t→∞

Pr (‖Xt‖∞ ≥ ε) = 0

Hint: Prove and use the equality

{‖Xt‖∞ ≥ ε} = ∩tk=0{‖Uk‖∞ ≥ ε}

3. Let Tε = inf{t|Xt ∈ [−ε, ε]n} (with ε > 0) be the first hitting time of [−ε, ε]n.
Show that Tε follows a geometric distribution with a parameter p that we will determine.
Deduce the expected value of Tε, that is the expected hitting time of the PRS algorithm.

4. When we implement a DFO optimization algorithm, the cost of the algorithm is the number of calls
to the objective function. Write a pseudo-code of the PRS algorithm where at each iteration the
objective function f is called only once.



II Adaptive step-size algorithms

Below is an exercice for students who never experienced stochastic optimization algorithms
before.
They are asked to run some experiments in Matlab, make some observations and then
understand what they have observed.
Given that you all already experienced stochastic algorithms before, this exercice will be
used to refresh your mind ... and in particular you are asked to do the exercice WITHOUT
the computer, i.e. you have to read the question and think about the answer without the
help of the computer ...

We are going to test the convergence of several algorithms on some test functions, in particular on the
so-called sphere function

fsphere(x) =

n∑
i=1

x2
i

and the ellipsoid function

felli(x) =

n∑
i=1

(100
i−1
n−1 xi)

2 .

1. What is the condition number associated to the Hessian matrix of the functions above? Are the
functions ill-conditioned?

2. Use Matlab to implement the functions. We can create two functions fsphere.m and felli.m that
take as input a vector x and returns f(x).

(1+1)-ES with constant step-size

The (1 + 1)-ES algorithm is on of the simplest stochastic search method for numerical optimization. We
will start by implementing a (1 + 1)-ES with constant step-size. The pseudo-code of the algorithm is
given by

Initialize x ∈ Rn and σ > 0
while not terminate

x′ = x + σN (0, I)
if f(x′) ≤ f(x)

x = x′

where N (0, I) denotes a Gaussian vector with mean 0 and covariance matrix equal to the identity.

1. Implement the algorithm in Matlab. You can write a function that takes as input an initial vector
x, an initial step-size σ and a maximum number of function evaluations and returns a vector where
you have recorded at each iteration the best objective function value.

2. Use the algorithm to minimize the sphere function in dimension n = 5. We will take as initial search
point x0 = (1, . . . , 1) [x=ones(1,5)] and initial step-size σ = 10−3 [sigma=1e-3] and stopping
criterion a maximum number of function evaluations equal to 2× 104.

3. Plot the evolution of the function value of the best solution versus the number of iterations (or
function evaluations). We will use a log scale for the y-axis (semilogy).

4. Explain the three phases observed on the figure.
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(1+1)-ES with one-fifth success rule

To accelerate the convergence, we will implement a step-size adaptive algorithm, i.e. σ is not fixed
once for all. The method to adapt the step-size is called one-fifth success rule. The pseudo-code of
the (1 + 1)-ES with one-fifth success rule is given by:

Initialize x ∈ Rn and σ > 0
while not terminate

x′ = x + σN (0, I)
if f(x′) ≤ f(x)

x = x′

σ = 1.5σ
else

σ = (1.5)−1/4σ

5. Implement the (1+1)-ES with one-fifth success rule and test the algorithm on the sphere function
fsphere(x) in dimension 5 (n = 5) using x0 = (1, . . . , 1), σ0 = 10−3 and as stopping criterion a
maximum number of function evaluations equal to 6× 102. Plot the evolution of the square root of
the best function value at each iteration versus the number of iterations. Use a logarithmic scale for
the y-axis. Compare to the plot obtained on Question 3. Plot also on the same graph the evolution
of the step-size.

6. Use the algorithm to minimize the function felli in dimension n = 5. Plot the evolution of the
objective function value of the best solution versus the number of iterations. Why is the (1 + 1)-ES
with one-fifth success much slower on felli than on fsphere ?

7. Same question with the function

fRosenbrock(x) =

n−1∑
i=1

(100(x2i − xi+1)2 + (xi − 1)2) .

8. We now consider the functions, g(fsphere) and g(felli) where g : R → R, y 7→ y1/4. Modify your
implementation in Questions 5 and 6 so as to save at each iteration the distance between x and
the optimum. Plot the evolution of the distance to the optimum versus the number of function
evaluations on the functions fsphere and g(fsphere) as well as on the functions felli and g(felli). What
do you observe? Explain.

II On Linear Convergence

For a deterministic sequence xt the linear convergence towards a point x∗ is defined as:

The sequence (xt)t convergences linearly towards x∗ if there exists µ ∈ (0, 1) such that

lim
t→∞

‖xt+1 − x∗‖
‖xt − x∗‖

= µ (1)

The constant µ is then the convergence rate.

We consider a sequence (xt)t that converges linearly towards x∗.

1. Prove that (1) is equivalent to

lim
t→∞

ln
‖xt+1 − x∗‖
‖xt − x∗‖

= lnµ (2)

2. Prove that (2) implies

lim
t→∞

1

t

t−1∑
k=0

ln
‖xk+1 − x∗‖
‖xk − x∗‖

= lnµ (3)

HINT: Use Cesàro means
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3. Prove that (3) is equivalent

lim
t→∞

1

t
ln
‖xt − x∗‖
‖x0 − x∗‖

= lnµ (4)

For a sequence of random variables (xt)t. We define linear convergence by either considering
the expected log progress, that is the sequence converges linearly if

lim
t→∞

E

[
ln
‖xt+1 − x∗‖
‖xt − x∗‖

]
= lnµ ,

or, in order to consider the almost sure behavior (related to a single realization of an algo-
rithm) we introduce the definition of linear convergence of a sequence of random variable
as

lim
t→∞

1

t
ln
‖xt − x∗‖
‖x0 − x∗‖

= lnµ a.s. (5)

This will be illustrated as the log-distance to the optimum decreases to minus infinity as
lnµ×t, that is you observe asymptotically a line if you plot the convergence using a log-scale
for the y-axis.
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