Advanced Optimization

Master AIC - Paris Saclay University
Exercices - Stochastic Continuous Optimization

Anne Auger and Dimo Brockhoff
anne.auger@inria.fr

I Adaptation of the Covariance Matrix: Rank-one Update

In this first exercice we want to understand the so-called rank-one update mechanism to update the covariance matrix in the CMA-ES algorithm. We consider thus the following algorithm implementing solely the rank-one update (while the full CMA-ES algorithm combines other updates for the covariance matrix and step-size adaptation)
[Objective: minimize $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$]

```
Initialize \(\mathbf{C}_{0}=I_{d}, \mathbf{m}_{0} \in \mathbb{R}^{n}, t=0\)
set \(w_{1} \geq w_{2} \geq \ldots w_{\mu} \geq 0\) with \(\sum w_{i}=1 ; \mu_{\mathrm{eff}}=1 / \sum w_{i}^{2}, 0<c_{\mathrm{cov}}<1\left(\right.\) typically \(\left.c_{\mathrm{cov}} \approx 2 / n^{2}\right)\)
while not terminate
    Sample \(\lambda\) independent candidate solutions:
                    \(\mathbf{X}_{t+1}^{i}=\mathbf{m}_{t}+\mathbf{y}_{t+1}^{i}\) for \(i=1 \ldots \lambda\)
                    with \(\left(\mathbf{y}_{t+1}^{i}\right)_{1 \leq i \leq \lambda}\) i.i.d. following \(\mathcal{N}\left(\mathbf{0}, \mathbf{C}_{t}\right)\)
            Evaluate and rank solutions:
                    \(f\left(\mathbf{X}_{t+1}^{1: \lambda}\right) \leq \ldots \leq f\left(\mathbf{X}_{t+1}^{\lambda: \lambda}\right)\)
    Update the mean vector:
                \(\mathbf{m}_{t+1}=\mathbf{m}_{t}+\underbrace{\sum_{i=1}^{\mu} w_{i} \mathbf{y}_{t+1}^{i: \lambda}}_{\mathbf{y}_{t+1}^{w}}\)
11. Update the covariance matrix using the rank-one update:
12. \(\quad \mathbf{C}_{t+1}=\left(1-c_{\mathrm{cov}}\right) \mathbf{C}_{t}+c_{\mathrm{cov}} \mu_{\mathrm{eff}} \mathbf{y}_{t+1}^{w}\left(\mathbf{y}_{t+1}^{w}\right)^{T}\)
13. \(t=t+1\)
```

1. Why is the update in line 12 called the rank-one update?
2. Plot the lines of equal density of the initial sampling distribution $\mathcal{N}\left(\mathbf{m}_{0}, \mathbf{C}_{0}\right)$ (with \mathbf{C}_{0} being equal to the identity)

In order to understand geometrically the effect of adding the matrix $c_{\text {cov }} \mu_{\mathrm{eff}} \mathbf{y}_{t+1}^{w}\left(\mathbf{y}_{t+1}^{w}\right)^{T}$ to the matrix $\left(1-c_{\mathrm{cov}}\right) \mathbf{C}_{t}$ (line 12 of the algorithm), we consider $t=0$ and want to plot the lines of equal density associated to the multivariate normal distribution with mean vector \mathbf{m}_{1} and covariance matrix \mathbf{C}_{1}. In order to simplify we assume that $\mu_{\text {eff }}=1$.
3. Compute the eigenvalues of the matrix $A=c_{\operatorname{cov}} \mathbf{y}_{1}^{w}\left(\mathbf{y}_{1}^{w}\right)^{T}$. Hint: you can in particular show that the matrix has a rank of 1, deduce how many non-zero eigenvalues the matrix has. You can also show that \mathbf{y}_{1}^{w} is an eigenvector of the matrix and compute its associated eigenvalue.
4. We remind that for a symmetric matrix A of \mathbb{R}^{n} we have $\mathbb{R}^{n}=\operatorname{Ker}(A) \stackrel{\perp}{\oplus} \operatorname{Im}(A)$. Show that there exists an orthogonal basis of normalized eigenvectors of A of the form $\left(\mathbf{y}_{1}^{w} /\left\|\mathbf{y}_{1}^{w}\right\|, u_{2}, \ldots, u_{n}\right)$.
4. Show that the basis $\left(\mathbf{y}_{1}^{w} /\left\|\mathbf{y}_{1}^{w}\right\|, u_{2}, \ldots, u_{n}\right)$ is also a basis composed of eigenvectors of the matrix $\mathbf{C}_{1}=\left(1-c_{\mathrm{cov}}\right) I_{d}+c_{\mathrm{cov}} \mathbf{y}_{1}^{w}\left(\mathbf{y}_{1}^{w}\right)^{T}$. Compute the associated eigenvalues.
5. Assume $n=2$, using the previous question plot the lines of equal density of $\mathcal{N}\left(\mathbf{m}_{1}, \mathbf{C}_{1}\right)$.
6. Deduce that the rank-one update increases the probability of successful steps ${ }^{1}$ to appear again.

[^0]
[^0]: ${ }^{1}$ The terminology "step" refers to what is added to the mean to create a new solution. For instance in Line 5 . of the algorithm, the first sampled solution equals $\mathbf{X}_{t+1}^{1}=\mathbf{m}_{t}+\mathbf{y}_{t+1}^{1}$. We call \mathbf{y}_{t+1}^{1} the step that created the solution \mathbf{X}_{t+1}^{1}.

