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Optimize 𝑓: Ω ⊂ ℝ𝑛 ↦ ℝ𝑘

derivatives not available or not useful

𝑥 ∈ ℝ𝑛 𝑓(𝑥) ∈ ℝ𝑘

Typical scenario in the continuous case:

Numerical Blackbox Optimization
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As in introductory lecture: always examples and small exercises to 

learn “on-the-fly” the concepts and fundamentals

Overall goals:

 give more details on a few important aspects of blackbox

optimization

 prepare you better for a potential Master's thesis (PhD thesis) on 

the topic

Hence, I will give later on some details on our available projects

Lecture Goals
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Date Topic

1 Tue, 22.11.2016 Dimo Randomized Algorithms for Discrete Problems

2 Tue, 29.11.2016 Dimo Exercise: The Travelling Salesperson Problem

3 Tue, 6.12.2016 Anne Continuous Optimization I

vacation

4 Tue, 3.1.2017 Anne Continuous Optimization II

5 Tue, 10.1.2017 Anne Continuous Optimization III

6 Tue, 17.1.2017 Dimo Evolutionary Multiobjective Optimization I

7 Tue, 31.1.2017 Dimo Evolutionary Multiobjective Optimization II

??? oral presentations (individual time slots)

Course Overview

all from 14:00 till 17:15 in PUIO - E213

Remark: new lecture, hence not all prepared yet 
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Since the idea is to prepare you for your Master's thesis:

 we don't have a written exam 

 but instead work towards research:

 each student is assigned a scientific paper (next week)

 which is to be read, understood, critically questioned, and 

finally presented

 summarize the paper in a short abstract in your own words

 oral presentations in the end of the course

(15min presentation + 15min oral "exam")

 more in next week's lecture

 also the exercises are (closer to) research questions than 

before

No Exam...
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In addition, we plan to offer an upgrade of your grade (by 1 point 

max.) if you happen to solve an issue from the COCO issue tracker!

https://github.com/numbbo/coco/issues/

Additional Offer: Solving COCO Issues
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 present open projects

 randomized search heuristics in the discrete domain

 exercise: Pure Random Search (PRS) and the (1+1)EA

Today's Lecture



Today's Lecture present open projects
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http://randopt.gforge.inria.fr/thesisprojects/

Potential Research Topics for Master's/PhD Theses
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More projects without the involvement of companies:

 stopping criteria in multiobjective optimization

 large-scale variants of CMA-ES

 algorithms for expensive optimization based on CMA-ES

all above: relatively flexible between theoretical (e.g. proofs of 

convergence) and practical projects

Coco-related:

 implementing and benchmarking algorithms for expensive opt.

 data mining performance results

Potential Research Topics for Master's/PhD Theses

not all subjects online yet:

please contact us if you are interested!



Today's Lecture randomized search heuristics in the 
discrete domain
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Context discrete optimization:

 discrete variables

 or optimization over discrete structures (e.g. graphs)

 search space often finite, but typically too large for enumeration

  need for smart algorithms

Algorithms for discrete problems:

 typically problem-specific

 but some general concepts are repeatedly used:

 greedy algorithms

 branch and bound

 dynamic programming

 randomized search heuristics

Reminder: Discrete Optimization

seen in introductory lecture

now
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Exact

 brute-force often too slow

 better strategies such as dynamic programming & branch 

and bound

 still: often exponential runtime

Approximation Algorithms

 guarantee of low run time

 guarantee of high quality solution

 obstacle: difficult to prove these guarantees

Heuristics

 intuitive algorithms

 guarantee to run in short time

 often no guarantees on solution quality

Remark: Coping with Difficult Problems
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 often, problem complicated and not much time available to 

develop a problem-specific algorithm

 search heuristics are a good choice:

 relatively easy to implement

 easy to adapt/change/improve

 e.g. when the problem formulation changes in an early 

product design phase

 or when slightly different problems need to be solved 

over time

 remember blackbox scenario

 search heuristics are also often "any-time", i.e. give a feasible 

solution early on which is then improved throughout the 

algorithm run  might be important in practice

Motivation General Search Heuristics
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Which algorithms will we touch?

 Randomized Local Search (RLS)

 Variable Neighborhood Search (VNS)

 Tabu Search (TS)

 Evolutionary Algorithms (EAs)

Lecture Outline Randomized Search Heuristics
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For most (stochastic) search heuristics, we need to define a 

neighborhood structure

 which search points are close to each other?

Example: k-bit flip / Hamming distance k neighborhood

 search space: bitstrings of length n (Ω={0,1}n)

 two search points are neighbors if their Hamming 

distance is k

 in other words: x and y are neighbors if we can flip 

exactly k bits in x to obtain y

 0001001101 is neighbor of

0001000101 for k=1

0101000101 for k=2

1101000101 for k=3

Neighborhoods
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Example: possible neighborhoods for the knapsack problem

 search space again bitstrings of length n (Ω={0,1}n)

 Hamming distance 1 neighborhood:

 add an item or remove it from the packing

 replacing 2 items neighborhood:

 replace one chosen item with an unchosen one

 makes only sense in combination with other 

neighborhoods because the number items stays 

constant

 Hamming distance 2 neighborhood on the contrary:

 allows to change 2 arbitrary items, e.g.

 add 2 new items

 remove 2 chosen items

 or replace one chosen item with an unchosen one

Neighborhoods II
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Idea behind (Randomized) Local Search:

 explore the local neighborhood of the current solution (randomly)

Pure Random Search:

 go to randomly chosen neighbor

First Improvement Local Search:

 go to first (randomly) chosen neighbor which is better

Best Improvement strategy:

 always go to the best neighbor

 not random anymore

 computationally expensive if neighborhood large

Randomized Local Search (RLS)
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Main Idea: [Mladenovic and P. Hansen, 1997]

 change the neighborhood from time to time

 local optima are not the same for different neighborhood 

operators

 but often close to each other

 global optimum is local optimum for all neighborhoods

 rather a framework than a concrete algorithm

 e.g. deterministic and stochastic neighborhood changes

 typically combined with (i) first improvement, (ii) a random 

order in which the neighbors are visited and (iii) restarts 

N. Mladenovic and P. Hansen (1997). "Variable neighborhood search". Computers 

and Operations Research 24 (11): 1097–1100.

Variable Neighborhood Search
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Disadvantages of local searches (with or without varying 

neighborhoods)

 they get stuck in local optima

 have problems to traverse large plateaus of equal objective 

function value (“random walk”)

Tabu search addresses these by

 allowing worsening moves if all neighbors are explored

 introducing a tabu list of temporarily not allowed moves

 those restricted moves are

 problem-specific and

 can be specific solutions or not permitted “search 

directions” such as “don’t include this edge anymore” or 

“do not flip this specific bit”

 the tabu list is typically restricted in size and after a while, 

restricted moves are permitted again

Tabu Search
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One class of (bio-inspired) stochastic optimization algorithms: 

Evolutionary Algorithms (EAs)

 Class of optimization algorithms

originally inspired by the idea of

biological evolution

 selection, mutation, recombination

Stochastic Optimization Algorithms

1859
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Classical Optimization Evolutionary Computation

variables or parameters variables or chromosomes

candidate solution

vector of decision variables /      

design variables / object 

variables

individual, offspring, parent

set of candidate solutions population

objective function

loss function

cost function

error function

fitness function

iteration generation

Metaphors
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Important:

representation (search space)

initialization

evaluation

evaluation

potential

parents

offspring

parents

crossover/

mutation

mating

selection

environmental

selection

stop?

best individual

stochastic operators

“Darwinism”

stopping criteria



25TC2: Advanced Optimization, U. Paris-Saclay, Nov. 22, 2016© Anne Auger and Dimo Brockhoff, Inria 25

Mastertitelformat bearbeiten

Genetic Algorithms (GA)

J. Holland 1975 and D. Goldberg (USA)

Evolution Strategies (ES)

I. Rechenberg and H.P. Schwefel, 1965 (Berlin)

Evolutionary Programming (EP)

L.J. Fogel 1966 (USA)

Genetic Programming (GP)

J. Koza 1990 (USA)

nowadays one umbrella term: evolutionary algorithms

The Historic Roots of EAs
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The genotype – phenotype mapping

 related to the question: how to come up with a fitness of 

each individual from the representation?

 related to DNA vs. actual animal (which then has a fitness)

fitness of an individual not always = f(x)

 include constraints

 include diversity

 others

 but needed: always a total order on the solutions

Genotype – Phenotype mapping
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Several possible ways to handle constraints, e.g.:

 resampling until a new feasible point is found (“often bad idea”)

 penalty function approach: add constraint violation term 

(potentially scaled)

 repair approach: after generation of a new point, repair it (e.g. 

with a heuristic) to become feasible again if infeasible

 continue to use repaired solution in the population or

 use repaired solution only for the evaluation?

 multiobjective approach: keep objective function and constraint 

functions separate and try to optimize all of them in parallel

 many more...

Handling Constraints
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Examples for some EA parts
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Selection is the major determinant for specifying the trade-off 

between exploitation and exploration

Selection is either

stochastic                                  or                     deterministic

e.g. fitness proportional

e.g. via a tournament

Mating selection (selection for variation): usually stochastic

Environmental selection (selection for survival): often deterministic

Selection

Disadvantage:

depends on

scaling of f

e.g. (µ+λ), (µ,λ)

best µ from 

offspring and

parents

best µ from 

offspring only
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Variation aims at generating new individuals on the basis of those 

individuals selected for mating

Variation = Mutation and Recombination/Crossover

mutation: mut:

recombination: recomb:        where and 

 choice always depends on the problem and the chosen 

representation

 however, there are some operators that are applicable to a wide 

range of problems and tailored to standard representations such 

as vectors, permutations, trees, etc.

Variation Operators
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Two desirable properties for mutation operators:

 every solution can be generation from every other with a 

probability greater than 0 (“exhaustiveness”)



(“locality”)

Desirable property of recombination operators (“in-between-ness”):

Variation Operators: Guidelines
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Swap:

Scramble:

Invert:

Insert:

Examples of Mutation Operators on Permutations
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1-point crossover

n-point crossover

uniform crossover

Examples of Recombination Operators: {0,1}n

choose each bit

independently from

one parent or another
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 binary search space, maximization

 uniform initialization

 generational cycle: of the population

 evaluation of solutions

 mating selection (e.g. roulette wheel)

 crossover (e.g. 1-point)

 environmental selection (e.g. plus-selection)

A Canonical Genetic Algorithm
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 EAs are generic algorithms (randomized search heuristics, 

meta-heuristics, ...) for black box optimization

no or almost no assumptions on the objective function

 They are typically less efficient than problem-specific 

(exact) algorithms (in terms of #funevals)

not the case in the continuous case (we will see later)

 Allow for an easy and rapid implementation and therefore 

to find good solutions fast

easy to incorporate (and recommended!) to incorporate 

problem-specific knowledge to improve the algorithm

Conclusions



Today's Lecture exercise: Pure Random Search (PRS)
and the (1+1)EA
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Exercise:

Pure Random Search

and the (1+1)EA

http://researchers.lille.inria.fr/

~brockhof/advancedOptSaclay/2016/
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I hope it became clear...

...that heuristics is what we typically can afford in practice (no 

guarantees and no proofs)

...what are the main ideas behind evolutionary algorithms

...and that evolutionary algorithms and genetic algorithms are no 

synonyms

Conclusions


