
Advanced Optimization
Lecture 1: Randomized Algorithms for Discrete Problems

Dimo Brockhoff
INRIA Saclay – Ile-de-France

November 22, 2016
Master AIC

Université Paris-Saclay, Orsay, France

Anne Auger
INRIA Saclay – Ile-de-France

Lecture 3: Randomized Algorithms for Continuous Problems

Problem Statement
Continuous Domain Search/Optimization

I Task: minimize an objective function (fitness function, loss

function) in continuous domain

f : X ✓ Rn ! R, x 7! f (x)

I Black Box scenario (direct search scenario)

f(x)x

I gradients are not available or not useful
I problem domain specific knowledge is used only within the

black box, e.g. within an appropriate encoding
I Search costs: number of function evaluations

What Makes a Function Difficult to Solve?
Why stochastic search?

I non-linear, non-quadratic, non-convex
on linear and quadratic functions

much better search policies are
available

I ruggedness
non-smooth, discontinuous,

multimodal, and/or noisy
function

I dimensionality (size of search space)
(considerably) larger than three

I non-separability
dependencies between the

objective variables
I ill-conditioning

−4 −3 −2 −1 0 1 2 3 4
0

10

20

30

40

50

60

70

80

90

100

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

gradient direction Newton direction

Curse of Dimensionality

The term Curse of dimensionality (Richard Bellman) refers to
problems caused by the rapid increase in volume associated with
adding extra dimensions to a (mathematical) space.

Example: Consider placing 100 points onto a real interval, say
[0, 1]. To get similar coverage, in terms of distance between
adjacent points, of the 10-dimensional space [0, 1]10 would require
10010 = 1020 points. A 100 points appear now as isolated points in
a vast empty space.

Consequence: a search policy (e.g. exhaustive search) that is
valuable in small dimensions might be useless in moderate or large
dimensional search spaces.

Separable Problems

Definition (Separable Problem)

A function f is separable if

arg min
(x

1

,...,xn)
f (x1, . . . , xn

) =

✓
arg min

x

1

f (x1, . . .), . . . , arg min
xn

f (. . . , x
n

)

◆

) it follows that f can be optimized in a
sequence of n independent 1-D optimization

processes

Example: Additively

decomposable functions

f (x1, . . . , xn

) =
nX

i=1

f

i

(x
i

)

Rastrigin function
f (x) = 10n+

Pn
i=1(x

2
i �10 cos(2⇡xi)) −3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

Non-Separable Problems
Building a non-separable problem from a separable one (1,2)

Rotating the coordinate system

I
f : x 7! f (x) separable

I
f : x 7! f (Rx) non-separable

R rotation matrix

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

R
�!

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

1Hansen, Ostermeier, Gawelczyk (1995). On the adaptation of arbitrary normal mutation
distributions in evolution strategies: The generating set adaptation. Sixth ICGA, pp. 57-64, Morgan
Kaufmann

2Salomon (1996). "Reevaluating Genetic Algorithm Performance under Coordinate Rotation of
Benchmark Functions; A survey of some theoretical and practical aspects of genetic algorithms."
BioSystems, 39(3):263-278

Ill-Conditioned Problems

I If f is convex quadratic, f : x 7! 1
2xTHx = 1

2
P

i hi,i x
2
i + 1

2
P

i 6=j hi,j xixj ,
with H positive, definite, symmetric matrix

H is the Hessian matrix of f

I ill-conditioned means a high condition number of Hessian Matrix H

cond(H) =
�max(H)
�min(H)

Example / exercice

The level-sets of a function are defined as

Lc = {x 2 Rn|f (x) = c}, c 2 R .

Consider the objective function f (x) = 1
2 (x

2
1 + 9x

2
2)

1. Plot the level sets of f .

2. Compute the condition number of the Hessian matrix of f , relate it to
the axis ratio of the level sets of f .

3. Generalize 1. and 2. to a general convex-quadratic function.

Ill-conditionned Problems

consider the curvature of the level sets of a function

ill-conditioned means “squeezed” lines of equal function value (high
curvatures)

gradient direction �f

0(x)T

Newton direction
�H�1

f

0(x)T

Condition number equals nine here. Condition numbers up to 1010

are not unusual in real world problems.

Stochastic Search

A black box search template to minimize f : Rn ! R
Initialize distribution parameters ✓, set population size � 2 N
While not terminate

1. Sample distribution P (x |✓)! x1, . . . , x� 2 Rn

2. Evaluate x1, . . . , x� on f

3. Update parameters ✓ F✓(✓, x1, . . . , x�, f (x1), . . . , f (x�))

Everything depends on the definition of P and F✓

In Evolutionary Algorithms the distribution P is often implicitly
defined via operators on a population, in particular, selection,
recombination and mutation

Natural template for Estimation of Distribution Algorithms

A Simple Example: The Pure Random Search
Also an Ineffective Example

The Pure Random Search

I Sample uniformly at random a solution
I Return the best solution ever found

Exercice

See the exercice on the document "Exercices - class 1".

Non-adaptive Algorithm

For the pure random search P (x |✓) is independent of ✓ (i.e. no ✓
to be adapted): the algorithm is "blind"

In this class: present algorithms that are "much
better" than that

Evolution Strategies

New search points are sampled normally

distributed

x i = m+� y i for i = 1, . . . , � with y i i.i.d. ⇠ N (0,C)

as perturbations of m, where x

i

,m 2 Rn, � 2 R+,
C 2 Rn⇥n

where
I the mean vector m 2 Rn represents the favorite solution
I the so-called step-size � 2 R+ controls the step length

I the covariance matrix C 2 Rn⇥n determines the shape
of the distribution ellipsoid

here, all new points are sampled with the same parameters

The question remains how to update m, C, and �.

Normal Distribution
1-D case

−4 −2 0 2 40

0.1

0.2

0.3

0.4
Standard Normal Distribution

pr
ob

ab
ilit

y
de

ns
ity

probability density of the 1-D standard normal
distribution N (0, 1)

(expected (mean) value, variance) = (0,1)

p(x) =
1p
2⇡

exp
✓
�x

2

2

◆

General case

I Normal distribution N
�
m,�2�

(expected value, variance) = (m,�2)
density: p

m,�(x) = 1p
2⇡�

exp
⇣
� (x�m)2

2�2

⌘

I A normal distribution is entirely determined by its mean value and
variance

I The family of normal distributions is closed under linear transformations:
if X is normally distributed then a linear transformation aX + b is also
normally distributed

I Exercice: Show that m + �N (0, 1) = N
�
m,�2�

Normal Distribution
General case

A random variable following a 1-D normal distribution is determined by its
mean value m and variance �2.

In the n-dimensional case it is determined by its mean vector and covariance
matrix

Covariance Matrix

If the entries in a vector X = (X1, . . . ,Xn)T are random variables, each with
finite variance, then the covariance matrix ⌃ is the matrix whose (i , j) entries
are the covariance of (Xi ,Xj)

⌃ij = cov(Xi ,Xj) = E

⇥
(Xi � µi)(Xj � µj)

⇤

where µi = E(Xi). Considering the expectation of a matrix as the expectation
of each entry, we have

⌃ = E[(X � µ)(X � µ)T]

⌃ is symmetric, positive definite

The Multi-Variate (n-Dimensional) Normal Distribution

Any multi-variate normal distribution N (m,C) is uniquely determined by its
mean value m 2 Rn and its symmetric positive definite n ⇥ n covariance matrix
C.

density: pN(m,C)(x) = 1
(2⇡)n/2|C|1/2

exp
⇣
� 1

2 (x � m)TC�1(x � m)
⌘
,

The mean value m

I determines the displacement (translation)
I value with the largest density (modal value)
I the distribution is symmetric about the

distribution mean
N (m,C) = m +N (0,C) −5

0
5

−5

0

5
0

0.1

0.2

0.3

0.4

2−D Normal Distribution

The covariance matrix C
I determines the shape
I geometrical interpretation: any covariance matrix can be uniquely

identified with the iso-density ellipsoid
{x 2 Rn | (x � m)TC�1(x � m) = 1}

. . . any covariance matrix can be uniquely identified with the iso-density
ellipsoid {x 2 Rn | (x � m)TC�1(x � m) = 1}

Lines of Equal Density

N
�
m,�2I

�
⇠ m + �N (0, I)

one degree of freedom �
components are
independent standard
normally distributed

N
�
m,D2�⇠ m + DN (0, I)
n degrees of freedom

components are
independent, scaled

N (m,C)⇠ m + C
1

2 N (0, I)
(n2 + n)/2 degrees of freedom

components are
correlated

where I is the identity matrix (isotropic case) and D is a diagonal matrix
(reasonable for separable problems) and A⇥N (0, I) ⇠ N

�
0,AAT

�
holds for all

A.

Adapting the mean …

Evolution Strategies (ES)
Simple Update for Mean Vector

Let µ: # parents, �: # offspring

Plus (elitist) and comma (non-elitist) selection

(µ + �)-ES: selection in {parents} [{offspring}
(µ, �)-ES: selection in {offspring}

ES algorithms emerged in the community of bio-inspired methods where a parallel between
optimization and evolution of species as described by Darwin served in the origin as inspiration

for the methods. Nowadays this parallel is mainly visible through the terminology used:
candidate solutions are parents or offspring, the objective function is a fitness function, ...

(1 + 1)-ES

Sample one offspring from parent m

x = m + � N (0,C)

If x better than m select

m x

The (µ/µ,�)-ES - Update of the mean vector
Non-elitist selection and intermediate (weighted) recombination

Given the i-th solution point x i = m + � y i|{z}
⇠N(0,C)

Let x i :� the i-th ranked solution point, such that
f (x1:�)  · · ·  f (x�:�).

Notation: we denote y i :� the vector such that x i :� = m + �y i :�

Exercice: realize that y i :� is generally not distributed as N (0,C)
The new mean reads

m
µX

i=1

wi x i :� = m + �
µX

i=1

wi y i :�

| {z }
=: yw

where
w1 � · · · � wµ > 0,

Pµ
i=1 wi = 1, 1Pµ

i=1 wi 2
=: µw ⇡ �

4

The best µ points are selected from the new solutions
(non-elitistic) and weighted intermediate recombination is applied.

Invariance Under Monotonically Increasing Functions

Rank-based algorithms

Update of all parameters uses only the ranks

f (x1:�)  f (x2:�)  ...  f (x�:�)

g(f (x1:�))  g(f (x2:�))  ...  g(f (x�:�)) 8g

g is strictly monotonically increasing
g preserves ranks

Adapting the step-size …

Why Step-Size Control?

0 0.5 1 1.5 2
x 104

10−9

10−6

10−3

100

function evaluations

fu
nc

tio
n

va
lu

e

 step−size too small |

| step−size too large

constant step−size

random search

optimal step−size
(scale invariant)

(1+1)-ES
(red & green)

f (x) =
nX

i=1

x

2
i

in [�2.2, 0.8]n

for n = 10

Methods for Step-Size Control
I 1/5-th success ruleab, often applied with “+”-selection

increase step-size if more than 20% of the new solutions are
successful, decrease otherwise

I �-self-adaptationc, applied with “,”-selection

mutation is applied to the step-size and the better one, according to
the objective function value, is selected

simplified “global” self-adaptation

I path length controld (Cumulative Step-size Adaptation, CSA)e, applied
with “,”-selection

aRechenberg 1973, Evolutionsstrategie, Optimierung technischer Systeme nach Prinzipien der
biologischen Evolution, Frommann-Holzboog

bSchumer and Steiglitz 1968. Adaptive step size random search. IEEE TAC
cSchwefel 1981, Numerical Optimization of Computer Models, Wiley
dHansen & Ostermeier 2001, Completely Derandomized Self-Adaptation in Evolution Strategies,

Evol. Comput. 9(2)
eOstermeier et al 1994, Step-size adaptation based on non-local use of selection information, PPSN

IV

One-fifth success rule

#
increase �

#
decrease �

One-fifth success rule

Probability of success (ps)

1/2 1/5

Probability of success (ps)

“too small”

One-fifth success rule

ps : # of successful offspring / # offspring (per iteration)

� � ⇥ exp
✓

1
3
⇥ ps � p

target

1� p

target

◆
Increase � if ps > p

target

Decrease � if ps < p

target

(1 + 1)-ES

ptarget = 1/5

IF offspring better parent

ps = 1, � � ⇥ exp(1/3)
ELSE

ps = 0, � �/ exp(1/3)1/4

Step-size adaptation
What is achieved

(1 + 1)-ES with one-fifth success rule (blue)

0 500 1000 150010−9

10−6

10−3

100

function evaluations

fu
nc

tio
n

va
lu

e

adaptive
step−size σ

optimal step−size
(scale invariant)

random search

constant σ

adaptive
step−size σ

optimal step−size
(scale invariant)

random search

constant σ

adaptive
step−size σ

optimal step−size
(scale invariant)

random search

constant σ

step−size σ

f (x) =
nX

i=1

x

2
i

in [�0.2, 0.8]n

for n = 10

Linear convergence

Why Step-Size Control?

0 0.5 1 1.5 2
x 104

10−9

10−6

10−3

100

function evaluations

fu
nc

tio
n

va
lu

e

 step−size too small |

| step−size too large

constant step−size

random search

optimal step−size
(scale invariant)

(1+1)-ES
(red & green)

f (x) =
nX

i=1

x

2
i

in [�2.2, 0.8]n

for n = 10

What do we achieve?

Adaptive versus Constant Step-size

constant step-size

adaptive step-size

Path Length Control (CSA)
The Concept of Cumulative Step-Size Adaptation

x i = m + � y i

m m + �yw

Measure the length of the evolution path

the pathway of the mean vector m in the iteration sequence

+
decrease �

+
increase �

Path Length Control (CSA)
The Equations

Sampling of solutions, notations as on slide “The (µ/µ, �)-ES - Update of
the mean vector” with C equal to the identity.

Initialize m 2 Rn, � 2 R+, evolution path p� = 0,
set c� ⇡ 4/n, d� ⇡ 1.

m m + �yw where yw =
Pµ

i=1 wi y i :� update mean

p� (1� c�) p� +
q

1� (1� c�)2
| {z }
accounts for 1�c�

p
µw| {z }

accounts for wi

yw

� � ⇥ exp
✓

c�

d�

✓ kp�k
EkN (0, I) k � 1

◆◆

| {z }
>1 () kp�k is greater than its expectation

update step-size

Step-size adaptation
What is achieved

(5/5, 10)-CSA-ES, default parameters
km

�
x⇤

k

f (x) =
nX

i=1

x

2
i

in [�0.2, 0.8]n

for n = 30

Why Step-Size Control?
(5/5w, 10)-ES

km
�

x⇤
k=

p
f
(x
)

f (x) =
nX

i=1

x

2
i

for n = 10
and
x0 2 [�0.2, 0.8]n

comparing optimal versus default damping parameter d�:
1700
1100 ⇡ 1.5

On linear convergence …

Hitting Time versus Convergence

T✏ = inf{t 2 N,Xt 2 B(x?, ✏)}

()

lim
t!1

Xt = x

?

Finite hitting time for all epsilon

translate that an algorithm approximates the
optimum with arbitrary precision

T✏ < 1 for all ✏ > 0

Convergence towards the optimum

34

�� > 0, �T� < � such that �Xt � x�� < � for all t � T�()

under some regularity conditions on
 the algorithm and the function

e.g.) (1+1)-ES on a spherical function

Hitting Time versus Convergence

✏

T✏T✏ T✏

two side of a coin, measuring

the hitting time T✏ given a fixed precision ✏
the precision kXt � x

?k (or ✏) given the iteration number t

kX
t
�
x

?
k

t

fixed precision

fix
ed

 c
os

t

35

On Convergence alone …

A theoretical convergence result is a “guarantee” that the algorithm
will approach the solution in infinite time

lim
t!1

Xt = x

?

But a convergence result alone is pretty meaningless in practice as it
does not tell how fast the algorithm converges

need to quantify how fast
the optimum is approached

often the first/only question investigated about an optimization algorithm

36

Quantifying How Fast the Optimum is Approached

For a fixed dimension

dependency in ✏ of T✏

find ✏ 7! ⌧(✏, n)

convergence speed of

Xt towards x
?

Scaling wrt the dimension

find n 7! ⌧(✏, n)
dependency of convergence

rate wrt n

Compromises to obtain such results:
 asymptotic in n, in epsilon / t

37

Linear Convergence
kX

t
�
x

?
k

t

� c

n

=
�y

�x

lim

t!1

1

t
log

kXt � x

?k
kX0 � x

?k = � c

n

log

kXt � x

?k
kX0 � x

?k ⇡ � c

n
t

kXt+1 � x

?k
kXt � x

?k ⇡ exp

⇣
� c

n

⌘

Different formal statements (not exactly equivalent)
almost surely

E [kXt+1 � x

?k]
E [kXt � x

?k] = exp

⇣
� c

n

⌘

E log

kXt+1 � x

?k
kXt � x

?k = � c

n

in expectation

Connection with Hitting Time formulation

T✏ ⇡
n

c
log

✏0
✏

log

kXt+1 � x

?k
kXt � x

?k ⇡ � c

n

Rate of convergence Hitting time
scaling

Pure Random Search

(1+1)-ES constant step-size

Linear Convergence (fixed n)
+

Linear dependence wrt n
n

c
log

✏0
✏

lim

t!1

1

t
log

kXt � x

?k
kX0 � x

?k = � c

n

E [kXt � x

?k] = exp

⇣
� c

n

⌘t
E [kX0 � x

?k]

39

1

t
log

�Xt � x��
�X0 � x�� � � 1

n

log(t)

t

� �0

�

�n

Convergence Rates - Hitting time -
Wrap up

