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Problem Statement

Continuous Domain Search/Optimization

» Task: minimize an objective function (fitness function, loss
function) in continuous domain

f: X CR" — R, x — f(x)

» Black Box scenario (direct search scenario)

X m

» gradients are not available or not useful
» problem domain specific knowledge is used only within the
black box, e.g. within an appropriate encoding

» Search costs: number of function evaluations



What Makes a Function Difficult to Solve?

Why stochastic search?

» non-linear, non-quadratic, non-convex
on linear and quadratic functions
much better search policies are
available

» ruggedness

non-smooth, discontinuous,
multimodal, and/or noisy
function

» dimensionality (size of search space)

(considerably) larger than three

» non-separability
dependencies between the

objective variables
» ill-conditioning

gradient direction Newton directic



Curse of Dimensionality

The term Curse of dimensionality (Richard Bellman) refers to
problems caused by the rapid increase in volume associated with
adding extra dimensions to a (mathematical) space.

Example: Consider placing 100 points onto a real interval, say
[0,1]. To get similar coverage, in terms of distance between
adjacent points, of the 10-dimensional space [0, 1]'° would require
1009 = 10%Y points. A 100 points appear now as isolated points in
a vast empty space.

Consequence: a search policy (e.g. exhaustive search) that is
valuable in small dimensions might be useless in moderate or large
dimensional search spaces.



Separable Problems

Definition (Separable Problem)

A function f is separable if

arg min  f(xqy,...,Xx,) = (argminf(xl,...),...,argminf(...,xn))

(Xl ye X,-,)

= it follows that f can be optimized in a
sequence of n independent 1-D optimization
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Non-Separable Problems

Building a non-separable problem from a separable one (1:2)
Rotating the coordinate system
» f : x — f(x) separable
» f : x — f(Rx) non-separable
R rotation matrix
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Hansen, Ostermeier, Gawelczyk (1995). On the adaptation of arbitrary normal mutation
distributions in evolution strategies: The generating set adaptation. Sixth ICGA, pp. 57-64, Morgan
Kaufmann

2Salomon (1996). "Reevaluating Genetic Algorithm Performance under Coordinate Rotation of
Benchmark Functions; A survey of some theoretical and practical aspects of genetic algorithms."
BioSystems, 39(3):263-278



lll-Conditioned Problems

» If f is convex quadr:_:utic, f:x— %XTHX = % > h,-,,-x,-2 + % Zi#j h; ; xix;,
with H positive, definite, symmetric matrix

» ill-conditioned means a high condition number of Hessian Matrix H

N —

Example / exercice
The level-sets of a function are defined as

Lc.={x€eR"f(x)=c}, ceR.

Consider the objective function f(x) = 1(x{ + 9x3)
1. Plot the level sets of f.

2. Compute the condition number of the Hessian matrix of f, relate it to
the axis ratio of the level sets of f.

3. Generalize 1. and 2. to a general convex-quadratic function.



lll-conditionned Problems

consider the curvature of the level sets of a function

ill-conditioned means “squeezed” lines of equal function value (high
curvatures)

A

Condition number equals nine here. Condition numbers up to 1
are not unusual in real world problems.

gradient direction —f'(x)!

010



Stochastic Search

A black box search template to minimize f : R" — R

Initialize distribution parameters 6, set population size A € N
While not terminate

1. Sample distribution P (x|0) — x1,...,x) € R”
2. Evaluate x1,...,x),on f

3. Update parameters 0 < Fy(0,x1,...,xx, f(x1),...,f(x)))

Everything depends on the definition of P and Fy

In Evolutionary Algorithms the distribution P is often implicitly
defined via operators on a population, in particular, selection,
recombination and mutation

Natural template for Estimation of Distribution Algorithms



A Simple Example: The Pure Random Search

Also an Ineffective Example

The Pure Random Search

» Sample uniformly at random a solution

» Return the best solution ever found

Exercice
See the exercice on the document "Exercices - class 1".

Non-adaptive Algorithm

For the pure random search P (x|0) is independent of 6 (i.e. no 6
to be adapted): the algorithm is "blind"



Evolution Strategies

New search points are sampled normally

distributed R
Xi=m+oy; fori=1,..., A with y; i.i.d. ~ A (0,C)"
as perturbations of m, where x;, m € R", 0 € R, | '
C E Ran
where

» the vector m € R" represents the favorite solution

» the so-called o € R, controls the step length

> the C € R"™" determines the shape

of the distribution ellipsoid

here, all new points are sampled with the same parameters

The question remains how to update m, C, and o.



Normal Distribution

1-D case

Standard Normal Distribution

probability density

General case

probability density of the 1-D standard normal
distribution A/(0, 1)

p(x) = \/12—7T exp (—X;)

> Normal distribution A/ (m, o%)

m

» A normal distribution is entirely determined by its mean value and

variance

» The family of normal distributions is closed under linear transformations:
if X is normally distributed then a linear transformation aX + b is also

normally distributed

> Exercice: Show that m+ oA (0,1) = N (m, o?)



Normal Distribution

General case

A random variable following a 1-D normal distribution is determined by its

mean value m and variance o?.

In the n-dimensional case it is determined by its mean vector and covariance
matrix

Covariance Matrix

If the entries in a vector X = (X1,...,X,)" are random variables, each with
finite variance, then the covariance matrix X is the matrix whose (i, j) entries
are the covariance of (X, Xj)

Y = cov(Xi, X;) = E [(Xi — i) (X — 1)

where pu; = E(X;). Considering the expectation of a matrix as the expectation
of each entry, we have

T =E[(X —p)(X —p)"]



The Multi-Variate (n-Dimensional) Normal Distribution

Any multi-variate normal distribution A/(m, C) is uniquely determined by its
mean value m € R" and its symmetric positive definite n X n covariance matrix

C.

m.C m) C m

The mean value m

2-D Normal Distribution

> determines the displacement (translation)

N
i

> value with the largest density (modal value) !

)
iy

Jii

i
i

T : o
» the distribution is symmetric about the

distribution mean

m, C m C

The covariance matrix C
» determines the shape

» geometrical interpretation: any covariance matrix can be uniquely
identified with the iso-density ellipsoid
{(xeR"|(x —m)'CHx — m) =1}



...any covariance matrix can be uniquely identified with the iso-density
ellipsoid {x € R"|(x — m)TC !(x — m) =1}

Lines of Equal Density

N(m,c?l) ~ m+oN(0,1) N (m,D?)~ m+DN(0,I) J\/’(m,C)Nm—i—C%N(O,I)

one degree of freedom o n degrees of freedom (2 | 1) /2 degrees of freedom
components are components are components are
independent standard independent, scaled correlated

normally distributed

where | is the identity matrix (isotropic case) and D is a diagonal matrix
(reasonable for separable problems) and A x N(0,1) ~ A (0, AA") holds for all
A.



Adapting the mean ...



Evolution Strategies (ES)

Simple Update for Mean Vector
Let u: # parents, \: # offspring

Plus (elitist) and comma (non-elitist) selection

(1 + A)-ES: selection in {parents} U {offspring}
(1, A)-ES: selection in {offspring}

ES algorithms emerged in the community of bio-inspired methods where a parallel between
optimization and evolution of species as described by Darwin served in the origin as inspiration
for the methods. Nowadays this parallel is mainly visible through the terminology used:
candidate solutions are parents or offspring, the objective function is a fitness function, ...

(1 + 1)-ES

Sample one offspring from parent m
x=m+ o N(0,C)
If x better than m select

m<— X



The (u/p, N\)-ES - Update of the mean vector

Non-elitist selection and intermediate (weighted) recombination

Given the j-th solution point x; = m+o y;
——
~MaO0,C)

Let x;., the i-th ranked solution point, such that
F(xin) < - < F(xxn)-
Notation: we denote y;.» the vector such that x;., = m + oy;.

Exercice: realize that y;.\ is generally not distributed as N'(0, C)
The new mean reads

v v
m < E Wi Xji:y = M-+ 0 Wi Yi:\
i=1 i=1 J
::yW
where
L . 1 _. ~ A
W12"'2Wu>07 ,':1Wi—1> u—Wiz—-.uWNZ

i=1

The best 1 points are selected from the new solutions
(non-elitistic) and weighted intermediate recombination is applied.



Invariance Under Monotonically Increasing Functions

Rank-based algorithms

Update of all parameters uses only the ranks

F(xin) < F(xan) < ... < F(xan)

g(f(xn)) < g(fn)) < ... <g(f(xan)) Ve

g is strictly monotonically increasing
g preserves ranks



Adapting the step-size ...



Why Ste

p-Size Control?
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Methods for Step-Size Control

» 1/5-th success rule??, often applied with “+"-selection

increase step-size if more than 20% of the new solutions are
successful, decrease otherwise

» o-self-adaptation€, applied with “,"-selection

mutation is applied to the step-size and the better one, according to
the objective function value, is selected

simplified “global” self-adaptation

> path length control (Cumulative Step-size Adaptation, CSA)®, applied
with “ "-selection

aRechenberg 1973, Evolutionsstrategie, Optimierung technischer Systeme nach Prinzipien der
biologischen Evolution, Frommann-Holzboog

bSchumer and Steiglitz 1968. Adaptive step size random search. IEEE TAC
“Schwefel 1981, Numerical Optimization of Computer Models, Wiley

dHansen & Ostermeier 2001, Completely Derandomized Self-Adaptation in Evolution Strategies,
Evol. Comput. 9(2)

®Ostermeier et al 1994, Step-size adaptation based on non-local use of selection information, PPSN
v



One-fifth success rule
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One-fifth success rule
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One-fifth success rule

ps: # of successful offspring / # offspring (per iteration)

o 0 X exp (1 « Ps — Pta,rget) Increase o if_ Ps > Ptarget
3 1 — Prarget Decrease o if ps < Prarget

(1+1)-ES
Ptarget — 1/5
IF offspring better parent
ps =1, 0 < o x exp(1/3)
ELSE
ps =0, 0 + o/ exp(1/3)1/4



Step-size adaptation

What is achieved

(1 + 1)-ES with one-fifth success rule (blue)
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What do we achieve?

(1+1)-ES

fx)=) xF
=1

distance to optimum

10 ........................... ................. "‘ ............ .......... for n=10
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function evaluations



Adaptive versus Constant Step-size

distance to optimum

normalized chain

500 1000
function evaluations

constant step-size

adaptive step-size

distance to optimum
o
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Path Length Control (CSA)

The Concept of Cumulative Step-Size Adaptation

Xi = m-+oy;
m < m+oyw

Measure the length of the evolution path

the pathway of the mean vector m in the iteration sequence

A

Y U

decrease o Increase o




Path Length Control (CSA)

The Equations

Sampling of solutions, notations as on slide “The (u/u, A)-ES - Update of
the mean vector” with C equal to the identity.

Initialize m € R", 0 € Ry, evolution path p, =0,
set ¢, ~4/n, d, =

m <« m+oy, wherey, =>"5 wiyp update mean
Pr < (1—C0)Pa+\/1—(1—Ca)2 vV Hw Yw
N ,, ——

"

accounts for 1—¢, accounts for w;

g 4 OoX exp <C0 < - | 1 1>) update step-size

d, \ E[|N(O,I

~
>1 <= ||p-|| is greater than its expectation




Step-size adaptation

What is achieved
(5/5,10)-CSA-ES, default parameters
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Why Step-Size Control?

10° S """"""" """"" — with optimal step-size
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On linear convergence ...



Hitting Time versus Convergence

Finite hitting time for all epsilon
T. = inf{t e N, X; € B(x",¢)}
1. < oo for all e > 0

under some regularity conditions on

<:> the algorithm and the function

e.g.) (1+1)-ES on a spherical function

Convergence towards the optimum

lim X; = x*
t—00

<= Ve >0, 3T, < oo such that || X; — x*|| < € for all ¢t > T,

translate that an algorithm approximates the
optimum with arbitrary precision

34



Hitting Time versus Convergence

two side of a coin, measuring
the hitting time 7 given a fixed precision ¢
the precision || X; — x*|| (or €) given the iteration number ¢

10° F

fixed cost

107 }
1072 |

102 }

DN

5 ' ' '
50 0 200 40% T 2600 800 1000 1200
365 € €

t

N Xy — x|

fixed precision




On Convergence alone ...

A theoretical convergence result is a “guarantee” that the algorithm
will approach the solution in infinite time

lim X; = x*
t— 00

often the first/only question investigated about an optimization algorithm

But a convergence result alone is pretty meaningless in practice as it
does not tell how fast the algorithm converges

distance to optimum

0 500 1000 1500
function evaluations

36



Quantifying How Fast the Optimum is Approached

For a fixed dimension

convergence speed of dependency in € of 1

=)

X; towards x* find € — 7(€,n)

Scaling wrt the dimension

dependency of convergence
=)  findn— T(€,m)

rate wrt n




Linear Convergence

X _ *
e =l ()

1X¢ —x* n
% [Xes1 =% e
| “ log N ——
& e X~ n
_ 1 X — x| c
1075 500 , 1000 1500 log 1Xo — x*|| ~ _Et

Different formal statements (not exactly equivalent)

almost surely in expectation
i Lo 1Xe =X B(IXess — %l _ o ()
heo t 0 [ Xo —x*|| | n E [[| X —x*] n
IXepr —x*| ¢
Elog = ——
1X¢ — x| n

Connection with Hitting Time formulation

n €0
T, ~ —log —
c €



Convergence Rates - Hitting time -

Wrap up

Pure Random Search

(1+1)-ES constant step-size

Linear Convergence (fixed n)
+
Linear dependence wrt n

39

Rate of convergence Hitting time
scaling
10 Xy — x*| - ~ 1log(t) (ﬂ)n
HXO — x*|| n t -
t

E[IX, —x*[| =exp (== ) E[IXo=x*] | n . e
( n) v 10g _0

lim — lo IX: — x| __° c ‘

t—oo ||X0 — X*H n



