Advanced Optimization
Lecture/Exercise 5: Critically Looking at Data

January 8, 2019
Master AIC
Université Paris-Saclay, Orsay, France

Anne Auger ;’ p Dimo Brockhoff
INRIA Saclay — lle-de-France m INRIA Saclay — lle-de-France

Course Overview

I N £

5 Tue, 8.1.2019 Dimo Looking at Data
6 Tue, 15.1.2019 Anne Continuous Optimization |

23h39 CET deadline abstract submission
7 Tue, 29.1.2019 Anne Continuous Optimization Il
23h39 CET deadline slides submission*
Tue, 12.2.2019 oral presentations (individual time slots)

all lectures from 14h00 till 17h15

here in E107 in Nov/Dec and in E105 in January
* best by email to me

Organization Oral Exams

9:30am Martin
10am Robin
10:30am Hao

11am Malik
11:30am Jiaxin
12am Samuel
12:30pm Nouredine
1:30pm Mirwaisse
2:00pm Luca
2:30pm Alexandre
3pm Luc
3:30pm Cedric

4pm Antoine

Critically Looking at Data

why?

(Some) Main Research Goals

"= novelty

= repeatability

= applicability

A Possible Way to Learn Science...

...Is to look at how others do it ©

...Is to critically ask whether what others are doing is the right thing

= ...is to get your hands dirty and tackle a difficult open question
yourself (most time consuming part probably)

= _..Is to actively review papers

Paper Review:
"Dynamic Search in Fireworks Algorithm"

Dynamic Search in Fireworks Algorithm

» Read Sec. V
= Sec. V.B less important
= read rather only until V.A and look at the results
= Do not care about what the algorithms are actually doing
= Questions:
= Whatis well done in the experimental comparison?
= What can be improved?
» \What shall be done and is not done?
= Concretely: Mark in Tables | and Il what you find remarkable

wrt. repeatability, interpretability, clarity, ...

Exercise: Looking at COCO Data

https://github.com/numbbo/coco

Q GitHub - numbbo/coco: N... x

(' ' 2 | (i) @ GitHub, Inc. (US) | https://github.com/numbbo/caco

b

Most Visited @ Getting Started rl«.{ algorithms [COmparin... 0 numbbo/numbbe - Gi...

O Personal Opensource Business Explore Pricing Blog Support This repository

numbbo / coco © watch 12 | W star 16

<> Code [ssues 113 Pull requests 2

Numerical Black-Box Optimization Benchmarking downl Oad COCO

{0 7,902 commits P 12 branches > 25 releases

Branch: master - MNew pull request Findllfile Clone or download ~

yl! brockho committed on GitHub Merge pull request #1075 from numbbo/development

BB code-experiments Merge pull request #1071 from ttusar/debug 2 months ago
BB code-postprocessing further clean up of postprocessing output, 2 months ago
BB code-preprocessing/archive-update Added empty last lines. 2 months ago
B docs updated reference to biobjective perf-assessment paper on arXiv in ge... 3 months ago
B howtos Update documentation-howto.md 5> months ago
& .clang-format raising an error in bbob2009_logger.c when best_value is NULL. Plus s... a year ago
[= .hgignore raising an error in bbob2009_logger.c when best_value is NULL. Plus s... a year ago

[E AUTHORS small correction in AUTHORS 4 months ago

https://github.com/numbbo/coco

0 GitHub - numbbo/coco: M. ®

(' = | (i) @ GitHub, Inc. (US) | https://github.com/numbbo/ceco C® search

@ Most Visited @ Getting Started rll.:.:ﬁ algorithms [COmparin... 0 numbbeo/numbbeo - Gi.
corresponds to the master branch as linked above.

3.In a system shell, ed into the coco or coco-<version> folder (framework root), where the file do.py can be found. Type,
i.e. execute, one of the following commands once

python . run-c
python . run-java
python . run-matlab
python . run-octave
python . run-python

depending on which language shall be used to run the experiments. run-* will build the respective code and run the
example experiment once. The build result and the example experiment code can be found under
code-experiments/build/<language> (<language>=matlab for Octave). python do.py lists all available commands.

4. On the computer where experiment data shall be post-processed, run

| |
python do.py install-postprocessing Step 2 n

installation of post-processing

to (user-locally) install the post-processing. From
the builds to a new release.

5. Copy the folder code-experiments/build/YOUR-FAVORITE-LANGUAGE and its content to another location. In Python it is
sufficient to copy the file example_experiment.py . Run the example experiment (it already is compiled, in case). As the
details vary, see the respective read-me's and/or example experiment files:

o ¢ read me and example experiment

© Java read me and example experiment

O Matlab/Octave read me and example experiment

https://github.com/numbbo/coco

C=SRCEL X

e

O GitHub - numbbo/coco: M. ® ‘
—_— — — — e———
|| C®search B8 ¥+ H &

(- 2 | (i) @ GitHub, Inc. (US) | https://github.com/numbbo/coco

@ Most Visited @ Getting Started .{ algorithms [COmparin... O numbbeo/numbbeo - Gi.

6. Now you can run your favorite algorithm on the bbob-biobj (for multi-objective algorithms) or on the bbob suite (for

single-objective algorithms). Output is automatically generated in the specified data result_folder

7. Postprocess the data from the results folder by typing

python -m bbob_pproc [-o OUTPUT_FOLDERNAME] YOURDATAFOLDER [MORE_DATAFOLDERS]

Step 3:
postprocess

L |

The name bbob_pproc will become cocopp in future. Any subfolder in the folder argu
data. That is, experiments from different batches can be in different folders collected
YOURDATAFOLDER folder. We can also compare more than one algorithm by specifying

generated by different algorithms.

python -m cocopp 2010/IPOP-CMA! BIPOP!
NelderDoerr BFGS! 2009/GA! ONEFIFTH!

Description by Folder

Measuring Performance Empirically
convergence graphs is all we have to start with...

=]
]
N |
£ i
c i
= |:
5 E i
O D e
S o i
© i
>§, :
Ss._
= O '
o + -
CI‘U
:S.H — —_— i L o o o o = o
H—-D ' |
-
> i
= R T
© ;
g |
i
i
i
|

nhumber of function evaluations

ECDF:

Empirical Cumulative Distribution Function of the
Runtime

[aka data profile]

A Convergence Graph

110
100/ W
ool M N

380+

function value

0 F— T S T] S -

60

log(function evaluations)

First Hitting Time is Monotonous

110

100/ M
Y I " SO Y W S S S

380+

function value

0 F— T S N] S -

60

log(function evaluations)

15 Runs

anjeA uonouny

3

2

log(function evaluations)

15 Runs £ 15 Runtime Data Points

log(function evaluations)

3

2

60
1

anjeA uonouny

Empirical Cumulative Distribution

) J—

100}

function value

Fitly

60

90

80}

N 4
log(function evaluations)

the of run

lengths to reach
the target

has for each
data point a
vertical step of
constant size

displays for
each x-value
(budget) the
count of
observations to
the left (first
hitting times)

Empirical Cumulative Distribution

) J—

100}

function value

Fitly

60

90

Q0
o

log(function evaluations)

iInterpretations
possible:

. 80% of the runs
reached the
target

. €.g. 60% of the
runs need
between 2000
and 4000
evaluations

Aggregation

15 runs

anjeA uonouny

3

2
log(function evaluations)

Aggregation

15 runs
50 targets

i N
AR LN LY

g

i
s P

. - v 'y L L F]
- Nablkem PN TAF W AT T a0

YR OWL.W.FEMW .
5 ' e Fop AN

. %
ALY - L B L e,
e e o i o) . W .

3

2

o o
o

110
100
9
70
60
1

anjeA uoiduny

log(function evaluations)

Aggregation

R J—

100}

90

80}

function value

Fitly

60 i : j j -' u‘-—hi Ty o -

log(function evaluations)

15 runs
50 targets

Aggregation

R J—

100}

90

80}

function value

Fitly

o) — ; ; ; : ..Lu i

log(function evaluations)

15 runs
50 targets

Fixed-target: Measuring Runtime

ps(Algo A) << 1, fast convergence

ps(Algo B) ~ 1, slow convergence

Fixed-target: Measuring Runtime

» Algo Restart A:

p.(Algo Restart A) = 1

 Algo Restart B:

ps(Algo Restart B) = 1

Fixed-target: Measuring Runtime

» Expected running time of the restarted algorithm:

1-p
E[RTT] — D : E[RTunsuccessful] + E[RTsuccessful]
S

« Estimator average running time (aRT):

__ #Hsuccesses
Ps =

#runs

RT, ,succ = Average evals of unsuccessful runs

RT, .. = Average evals of successful runs

total #evals

aRT =
#successes

ECDFs with Simulated Restarts

What we typically plot are ECDFs of the simulated
restarted algorithms:

. 15phere/Sphere
bbobibiobj + f1 | | 3B
10 instances | | | i i

=
o

o
00

b oo

O
o

o
~

o
N

Proportion of function+target pairs

loal0 of (# f-evals / dimension)

The single-objective BBOB functions

6 dimensions: 2, 3, 5,

24 functions in 5 groups:

1 Separable Functions

f1 |@Sphere Function

f2 |@Ellipsoidal Function

f3 @ Rastrigin Function

f4 |@Biiche-Rastrigin Function
f5 |@Linear Slope

2 Functions with low or moderate conditioning
f5 |@Attractive Sector Function

f7 @ sStep Ellipsoidal Function

fg |@Rosenbrock Function, original

fo |@Rosenbrock Function, rotated

3 Functions with high conditioning and unimodal
f10 @ Ellipsoidal Function

f11 @nDiscus Function

fi2 @ Bent Cigar Function

f13 @ Sharp Ridge Function

f14 | @Different Powers Function

The bbob Testbed

4 Multi-modal functions with adequate global structure
f15 @i Rastrigin Function

f16 @ Weierstrass Function

f17 @ Schaffers F7 Function

fig @ Schaffers F7 Functions, moderately ill-conditionead
f19 @ Composite Griewank-Rosenbrock Function FEF2
5 Multi-modal functions with weak global structure
f20 @ Schwefel Function

f21 @ Gallagher's Gaussian 101-me Peaks Function

f22 @ Gallagher's Gaussian 21-hi Peaks Function

f23 @AKatsuura Function

f24 | @ Lunacek bi-Rastrigin Function

10, 20, (40 optional)

Notion of Instances

* All COCO problems come in form of instances

* e.g. as translated/rotated versions of the same
function

* Prescribed instances typically change from year to
year

 avoid overfitting
5 instances are always kept the same

Plus:

* the bbob functions are locally perturbed by non-
linear transformations

Notion of Instances

- ANl NP\ AR lAAA AAmAA |n -Fr\v-m ~Ff |nn-|-nnnr\n
5 P g V10 RN AR LN

(Ellipsoid) - (Rastrlgln)

\ ”e

linear transformations

Exercise (Part 2)

Objectives:
» investigate the performance of these 6 algorithms:
= CMA-ES ("IPOP-CMA-ES" version)
= CMA-ES ("BIPOP-CMA-ES" version)
» Nelder-Mead simplex (use "NelderDoerr" version here)
» BFGS quasi-Newton
= Genetic Algorithm: discretization of cont. variables ("GA")
= ONEFIFTH: (1+1)-ES with 1/5 rule

= postprocessed already (earlier today) so now:
investigate the datal

Exercise (Part 3)

Objective:

iInvestigate the data:
a) which algorithms are the best ones?
b) does this depend on the dimension?

c) look at single graphs: can we say something about the
algorithms' invariances, e.g. wrt. rotations of the search
space?

d) what's the impact of covariance-matrix-adaptation?

e) what do you think: are the displayed algorithms well-suited
for problems with larger dimension?

