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Optimize 𝑓: Ω ⊂ ℝ𝑛 ↦ ℝ𝑘

derivatives not available or not useful

𝑥 ∈ ℝ𝑛 𝑓(𝑥) ∈ ℝ𝑘

Typical scenario in the continuous case:

Numerical Blackbox Optimization
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As in introductory lecture: always examples and small exercises to 

learn “on-the-fly” the concepts and fundamentals

Overall goals:

 give more details on a few important aspects of blackbox

optimization

 prepare you better for a potential Master's thesis (PhD thesis) on 

the topic

Hence, I will give later on some details on our available projects

Lecture Goals
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Date Topic

1 Wed, 27.11.2019 Dimo Randomized Algorithms for Discrete Problems

2 Wed, 4.12.2019 Dimo Exercise: The Travelling Salesperson Problem

3 Wed, 11.12.2019 Dimo Evolutionary Multiobjective Optimization I

4 Mon, 16.12.2019 Dimo Evolutionary Multiobjective Optimization II

5 Wed, 18.12.2019 Dimo Looking at Data

Vacation

6 Wed, 8.1.2020

(morning!)

Anne Continuous Optimization I

7 Wed, 22.1.2020

(morning!)

Anne Continuous Optimization II

Wed, 5.2.2020 oral presentations (individual time slots)

Course Overview



5TC2: Advanced Optimization, U. Paris-Saclay, Nov. 27, 2019© Anne Auger and Dimo Brockhoff, Inria 5

Mastertitelformat bearbeiten

Since the idea is to prepare you for your Master's thesis:

 we don't have a written exam 

 but instead work towards research:

 each student is assigned a scientific paper

 which is to be read, understood, critically questioned, and 

finally presented

 summarize the paper in a short abstract in your own words

 oral presentations in the end of the course

(15min presentation + 15min oral "exam")

 also the exercises are (closer to) research questions than 

before

No Exam...
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In addition, we plan to offer an upgrade of your grade (by 1 point 

max.) if you happen to solve an issue from the COCO issue tracker!

https://github.com/numbbo/coco/issues/

Additional Offer: Solving COCO Issues

deadline:

January 31, 2020 (a Friday)
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 no written exam but instead each student is assigned a scientific 

paper (list online and on next slide)

 to be read, understood, critically questioned, and presented

 maximal 2 students per paper

 decision made until December 4, 2019 (next lecture)

 summary of the paper in a short abstract in your own words

 handed in via email until January 15, 2020, 23h59

 4000 characters max. (please check before submission)

 individual oral presentations at the end of the course

 15min presentation + 15min oral "exam"

 on February 5, 2020, times to be decided with you towards 

the end of the lecture

 slides to be sent by email to us until last lecture (Jan. 22, 

2020)

Details on the Paper Project/Oral Presentation
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All papers are relevant to current research in Randopt.

1) Two-dimensional subset selection for hypervolume and epsilon-indicator

2) RM-MEDA: A regularity model-based multiobjective estimation of distribution 

algorithm.

3) A universal catalyst for first-order optimization.

4) Optimized Approximation Sets for Low-Dimensional Benchmark Pareto Fronts.

5) Efficient optimization of many objectives by approximation-guided evolution.

6) A Mean-Variance Optimization Algorithm.

7) Theoretical foundation for CMA-ES from information geometry perspective.

8) Population Size Adaptation for the CMA-ES Based on the Estimation Accuracy of 

the Natural Gradient.

9) CMA-ES with Optimal Covariance Update and Storage Complexity.

10) Challenges of Convex Quadratic Bi-objective Benchmark Problems

links to the papers available on the lecture webpage at 
http://www.cmap.polytechnique.fr/~dimo.brockhoff/advancedOptSaclay/2019/paperproject.php

The List of Papers

http://www.cmap.polytechnique.fr/~dimo.brockhoff/advancedOptSaclay/2019/paperproject.php
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 present open projects

 randomized search heuristics in the discrete domain

 exercise: Pure Random Search (PRS) and the (1+1)EA

Today's Lecture



Today's Lecture present open projects
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http://randopt.gforge.inria.fr/thesisprojects/

Potential Research Topics for Master's/PhD Theses
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Projects without the involvement of companies:

 stopping criteria in multiobjective optimization

 mixed-integer CMA-ES

all above: relatively flexible between theoretical and practical projects

Coco-related:

 implementing and benchmarking existing algorithms

[new test suites for constraints & mixed-integer available]

 recommendations for noisy optimization

Potential Research Topics for Master's/PhD Theses

not all subject ideas online:

please contact us if you are interested!



Today's Lecture randomized search heuristics in the 
discrete domain

[mainly what we couldn’t do in the introductory lecture]
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Context discrete optimization:

 discrete variables

 or optimization over discrete structures (e.g. graphs)

 search space often finite, but typically too large for enumeration

  need for smart algorithms

Algorithms for discrete problems:

 typically problem-specific

 but some general concepts are repeatedly used:

 greedy algorithms

 dynamic programming

 randomized search heuristics

 branch and bound

Reminder: Discrete Optimization
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Exact

 brute-force often too slow

 better strategies such as dynamic programming & branch 

and bound

 still: often exponential runtime

Approximation Algorithms

 guarantee of low run time

 guarantee of high quality solution

 obstacle: difficult to prove these guarantees

Heuristics

 intuitive algorithms

 guarantee to run in short time

 often no guarantees on solution quality

Remark: Coping with Difficult Problems
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 often, problem complicated and not much time available to 

develop a problem-specific algorithm

 search heuristics are a good choice:

 relatively easy to implement

 easy to adapt/change/improve

 e.g. when the problem formulation changes in an early 

product design phase

 or when slightly different problems need to be solved 

over time

 remember blackbox scenario

 search heuristics are also often "any-time", i.e. give a feasible 

solution early on which is then improved throughout the 

algorithm run  might be important in practice

Motivation General Search Heuristics



18TC2: Advanced Optimization, U. Paris-Saclay, Nov. 27, 2019© Anne Auger and Dimo Brockhoff, Inria 18

Mastertitelformat bearbeiten

A stochastic blackbox search template to minimize 𝒇:𝛀 → ℝ

Initialize distribution parameters 𝜃, set population size 𝜆 ∈ ℕ

While happy do:

 Sample distribution 𝑃 𝒙 𝜃 → 𝒙1, … , 𝒙𝜆 ∈ Ω

 Evaluate 𝒙1, … , 𝒙𝜆 on 𝑓

 Update parameters 𝜃 ← 𝐹𝜃(𝜃, 𝒙1, … , 𝒙𝜆, 𝑓 𝒙1 , … , 𝑓 𝒙𝜆 )

Deterministic algorithms can be cast in this framework as well:

for example in ℝ𝑛: gradient descent

or local search in discrete Ω

well-known stochastic example:

Covariance Matrix Adaptation Evolution Strategy (CMA-ES):

sample distributions = multivariate Gaussian distributions

Reminder: Stochastic Search Template
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Here, we touch algorithms for discrete 𝛀

 Randomized Local Search (RLS)

 Evolutionary Algorithms (EAs)

 Compact GA: an estimation of distribution algorithm on bitstrings

Lecture Outline Randomized Search Heuristics
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For most (stochastic) search heuristics, we need to define a 

neighborhood structure

 which search points are close to each other?

Example: k-bit flip / Hamming distance k neighborhood

 search space: bitstrings of length n (Ω={0,1}n)

 two search points are neighbors if their Hamming 

distance is k

 in other words: x and y are neighbors if we can flip 

exactly k bits in x to obtain y

 0001001101 is neighbor of

0001000101 for k=1

0101000101 for k=2

1101000101 for k=3

Neighborhoods
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 What are the neighborhood sizes for a Hamming distance of 𝑘? 

 or: how many solutions are a 𝑘-bit flip away?

Mini-Exercise: Neighborhood Sizes
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Example: neighborhoods for permutation problems

 search space: all permutations of length 𝑛 (Ω = 𝑆𝑛)

 swap neighborhood:

 swap two entries in the permutation

 equivalence to Hamming distance: swap distance

 allow to swap k pairs

 possible to sample in a given distance of k, but 

algorithm is not trivial

 more neighborhoods for permutations later

Neighborhoods II
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Idea behind (Randomized) Local Search:

 explore the local neighborhood of the current solution (randomly)

Pure Random Search:

 go to randomly chosen neighbor

First Improvement Local Search:

 go to first (randomly) chosen neighbor which is better

Best Improvement strategy:

 always go to the best neighbor

 not random anymore

 computationally expensive if neighborhood large

Randomized Local Search (RLS)
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One class of (bio-inspired) stochastic optimization algorithms: 

Evolutionary Algorithms (EAs)

 Class of optimization algorithms

originally inspired by the idea of

biological evolution

 selection, mutation, recombination

Stochastic Optimization Algorithms

1859
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Classical Optimization Evolutionary Computation

variables or parameters variables or chromosomes

candidate solution

vector of decision variables /      

design variables / object 

variables

individual, offspring, parent

set of candidate solutions population

objective function

loss function

cost function

error function

fitness function

iteration generation

Metaphors



27TC2: Advanced Optimization, U. Paris-Saclay, Nov. 27, 2019© Anne Auger and Dimo Brockhoff, Inria 27

Mastertitelformat bearbeitenGeneric Framework of an EA

Important:

representation (search space)

initialization

evaluation

evaluation

potential

parents

offspring

parents

crossover/

mutation

mating

selection

environmental

selection

stop?

best individual

stochastic operators

“Darwinism”

stopping criteria
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Genetic Algorithms (GA)

J. Holland 1975 and D. Goldberg (USA)

Evolution Strategies (ES)

I. Rechenberg and H.P. Schwefel, 1965 (Berlin)

Evolutionary Programming (EP)

L.J. Fogel 1966 (USA)

Genetic Programming (GP)

J. Koza 1990 (USA)

nowadays one umbrella term: evolutionary algorithms

The Historic Roots of EAs
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The genotype – phenotype mapping

 related to the question: how to come up with a fitness 

("quality") of each individual from the representation?

 related to DNA vs. actual animal (which then has a fitness)

fitness of an individual not always = f(x)

 include constraints

 include diversity

 others

 but needed: always a total order on the solutions

Genotype – Phenotype mapping
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Examples for some EA parts
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Selection is the major determinant for specifying the trade-off 

between exploitation and exploration

Selection is either

stochastic                                  or                     deterministic

e.g. fitness proportional

e.g. via a tournament

Mating selection (selection for variation): usually stochastic

Environmental selection (selection for survival): often deterministic

Selection

Disadvantage:

depends on

scaling of f

e.g. (µ+λ), (µ,λ)

best µ from 

offspring and

parents

best µ from 

offspring only
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Variation aims at generating new individuals on the basis of those 

individuals selected for mating

Variation = Mutation and Recombination/Crossover

mutation: mut:

recombination: recomb:        where and 

 choice always depends on the problem and the chosen 

representation

 however, there are some operators that are applicable to a wide 

range of problems and tailored to standard representations such 

as vectors, permutations, trees, etc.

Variation Operators
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Two desirable properties for mutation operators:

 every solution can be generation from every other with a 

probability greater than 0 (“exhaustiveness”)



(“locality”)

Desirable property of recombination operators (“in-between-ness”):

Variation Operators: Guidelines
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1-bit flip mutation

 flip a randomly chosen bit (from 1 to 0 or vice versa)

k-bit flip mutation

 choose k (different) bits uniformly at random

 flip each of those bits (from 1 to 0 or vice versa)

Standard bitflip mutation

 flip each bit independently with probability 1/n

 expected number of bits changed: 1

 but also:                                         i.e. no bit flipped with constant

probability

Examples of Mutation Operators on {0,1}n
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Swap:

Scramble:

Invert:

Insert:

Examples of Mutation Operators on Permutations

also known as 

2-opt
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1-point crossover

n-point crossover

uniform crossover

Examples of Recombination Operators on {0,1}n

choose each bit

independently from

one parent or another
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 binary search space, maximization

 uniform initialization

 generational cycle:

 evaluation of solutions

 mating selection (e.g. roulette wheel)

 crossover (e.g. 1-point)

 environmental selection (e.g. plus-selection)

A Canonical Genetic Algorithm

You may ask: how does this fit 

into the stochastic search template?

it does: population contained in state 𝜃,

but update function difficult to write down
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 Estimation of Distribution Algorithms (EDAs) fit more obviously 

into the search template

 here, example of the compact Genetic Algorithm (cGA)

 search space: Ω = 0,1 𝑛

 probability distribution: Bernoulli

 store for each bit a probability 𝑝𝑖 to sample a 1

 sample bit 𝑖 with probability 𝑝𝑖 to 1 and with (1 − 𝑝𝑖) to 0

Estimation of Distribution Algorithms
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Parameters: number of variables 𝑛, learning rate 𝐾 (typically = 𝑛)

Init:

𝑝 =
1

2
,
1

2
, … ,

1

2
∈ 0,1 𝑛 # probabilities to sample new solutions

While happy:

create 𝑆 = (𝑠1, … , 𝑠𝑛) by sampling each 𝑠𝑖 with probability 𝑝𝑖
create 𝑆′ = (𝑠1

′ , … , 𝑠𝑛
′ ) by sampling each 𝑠𝑖

′ with probability 𝑝𝑖
evaluate 𝑆 and 𝑆’ on 𝑓

if 𝑓(𝑆) > 𝑓(𝑆’):    # make sure that S is the better solution

𝑆, 𝑆′ ← 𝑆′, 𝑆

# update p parameter:

for 𝑖 ∈ 1, … , 𝑛 :

𝑝𝑖 ← min{max{𝑝𝑖 + (𝑠𝑖−𝑠𝑖
′)/𝐾, 1/𝑛}, 1 − 1/𝑛}

return 𝑆

The Compact GA



40TC2: Advanced Optimization, U. Paris-Saclay, Nov. 27, 2019© Anne Auger and Dimo Brockhoff, Inria 40

Mastertitelformat bearbeiten

 EAs are generic algorithms (randomized search heuristics, 

meta-heuristics, ...) for black box optimization

no or almost no assumptions on the objective function

 They allow for an easy and rapid implementation and 

therefore to find good solutions fast

we will see this next week

also: easy to incorporate (recommended!) 

problem-specific knowledge to improve the algorithm

Conclusions



Today's Lecture exercise: Pure Random Search (PRS)
and the (1+1)EA
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Assumptions: 

 search space Ω = set of all bitstrings of length 𝑛 (Ω = 0,1 𝑛)

 minimization of objective function 𝑓: 0,1 𝑛 → ℝ

Algorithm:

 init: sample a point 𝑥 uniformly at random in Ω

 while not happy:

 𝑦 ← mutate(𝑥)

 if 𝑓 𝑦 ≤ 𝑓 𝑥 :

 𝑥 ← 𝑦

Variants:

 Randomized Local Search (RLS): mutate = sample a Hamming 

neighbor uniformly at random (= flip exactly one bit)

 (1+1)-EA: mutate = flip each bit with probability 1/𝑛

The Simple(st) Evolutionary Algorithm(s)
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Exercise:

Pure Random Search

and the (1+1)EA

http://www.cmap.polytechnique.fr/~dimo.brockhoff/

advancedOptSaclay/2019/exercises.php
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If you want to play around a bit with these algorithms:

 https://sourceforge.net/projects/freak427/

FrEAK


