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Date Topic
Fri, 11.1.2013 DB Introduction to Control, Examples of Advanced Control, 

Introduction to Fuzzy Logic
Fri, 18.1.2013 DB Fuzzy Logic (cont’d), Introduction to Artificial Neural 

Networks
Fri, 25.1.2013 AA Bio-inspired Optimization, discrete search spaces
Fri, 1.2.2013 AA The Traveling Salesperson Problem
Fri, 22.2.2013 AA Continuous Optimization I
Fri, 1.3.2013 AA Continuous Optimization II
Fr, 8.3.2013 DB Controlling a Pole Cart
Do, 14.3.2013 DB Advanced Optimization: multiobjective optimization, 

constraints, ...
Tue, 19.3.2013 written exam (paper and computer)

Course Overview

next Tuesday exam at ! 9h45-13h00 !

DB
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Remark to last lecture

All information also available at 

http://researchers.lille.inria.fr/~brockhof/advancedcontrol/

(exercise sheets, lecture slides, additional information, links, ...)
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(More) Advanced Concepts
of Optimization

(Evolutionary) Multiobjective Optimization + MCDM
Constrained Optimization
Possible Thesis Projects
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Single-objective Goal: 
choose a subset that

maximizes overall profit
w.r.t a weight limit 
(constraint)

The Single-Objective Knapsack Problem

Joadl

Fabien1309
Simon A. Eugster

weight = 750g
profit = 5

weight = 1500g
profit = 8

weight = 300g
profit = 7

weight = 1000g
profit = 3

?
Denae Bedard
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Multiobjective Goal:
Choose a subset that

maximizes overall profit
minimizes overall weight

The Multiobjective Knapsack Problem

Joadl

Fabien1309
Denae Bedard

Simon A. Eugster

weight = 750g
profit = 5

weight = 1500g
profit = 8

weight = 300g
profit = 7

weight = 1000g
profit = 3

?
Single-objective Goal: 
choose a subset that

maximizes overall profit
w.r.t a weight limit 
(constraint)
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500 1000 1500 2000 2500 3000 3500

weight [in g]

Principles of Multiple Criteria Decision Analysis

Knapsack problem: all solutions plotted

single objective case
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500 1000 1500 2000 2500 3000 3500

profit

5

10

15

20

Principles of Multiple Criteria Decision Analysis

Knapsack problem: all solutions plotted

multiobjective case

weight [in g]
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better

worse

incomparable

500 1000 1500 2000 2500 3000 3500

profit

5

10

15

20

Principles of Multiple Criteria Decision Analysis

Knapsack problem: all solutions plotted

weight [in g]
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better

worse

incomparable

500 1000 1500 2000 2500 3000 3500

profit

5

10

15

20

Principles of Multiple Criteria Decision Analysis

Observations: there is no single optimal solution, but
some solutions (   ) are better than others (   )

weight [in g]
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Pareto-optimal front

500 1000 1500 2000 2500 3000 3500

profit

5

10

15

20

Principles of Multiple Criteria Decision Analysis

Vilfredo Pareto:
Manual of Political 
Economy
(in French), 1896

Observations: there is no single optimal solution, but
some solutions (   ) are better than others (   )

weight [in g]
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finding the good
solutions

500 1000 1500 2000 2500 3000 3500

profit

5

10

15

20

Principles of Multiple Criteria Decision Analysis

selecting a
solution

decision making

optimization

Observations: there is no single optimal solution, but
some solutions (   ) are better than others (   )

weight [in g]
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Possible
Approach:

500 1000 1500 2000 2500 3000 3500

5

10

15

20

Decision Making: Selecting a Solution

profit

• profit more important than weight (ranking)

weight [in g]
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• profit more important than weight (ranking)

• weight must not exceed 2400 (constraint)

too heavy

500 1000 1500 2000 2500 3000 3500

profit

5

10

15

20

Decision Making: Selecting a Solution

Possible
Approach:

weight [in g]
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Before Optimization:

rank objectives,
define constraints,…

search for one 
(blue) solution

When to Make the Decision
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too expensive

500 1000 1500 2000 2500 3000 3500

weight

profit

5

10

15

20

Before Optimization:

rank objectives,
define constraints,…

search for one 
(blue) solution
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After Optimization:

search for a set of       
(blue) solutions

select one solution
considering
constraints, etc.

When to Make the Decision

Before Optimization:

rank objectives,
define constraints,…

search for one 
(blue) solution
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Focus: learning about a problem
trade-off surface
interactions among criteria
structural information

After Optimization:

search for a set of       
(blue) solutions

select one solution
considering
constraints, etc.

Before Optimization:

rank objectives,
define constraints,…

search for one 
(blue) solution
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MCDM can be defined as the study of methods and procedures by which 
concerns about multiple conflicting criteria can be formally incorporated into 
the management planning process 

Definition: MCDM

model

μ3                

μ2μ1

trade-off surface

decision making

(exact) optimization
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model

μ3                

μ2μ1decision making

(exact) optimization

MCDM can be defined as the study of methods and procedures by which 
concerns about multiple conflicting criteria can be formally incorporated into 
the management planning process 

Definition: MCDM

objectives

non-differentiable
expensive

(integrated simulations)

non-linear noisy

problem
uncertain huge

search
spaces

many constraints

many objectives
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μ3                

μ2μ1

(exact) optimization

huge search spacesmultiple objectives

model objectives

non-differentiable
expensive

(integrated simulations)

non-linear noisy

problem
uncertain

many constraints

many objectives
Black box optimization trad

only mild assumptions

MCDM can be defined as the study of methods and procedures by which 
concerns about multiple conflicting criteria can be formally incorporated into 
the management planning process 

Definition: MCDM
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profit

weight

EMO = evolutionary algorithms / randomized search algorithms
applied to multiple criteria decision making (in general)
used to approximate the Pareto-optimal set (mainly)

Definition: EMO

Pareto set approximation
survivalmutation

x2

x1

f

matingrecombination
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Some problems are easier to solve in a multiobjective scenario

example: TSP 
[Knowles et al. 2001]

Multiobjectivization
by addition of new “helper objectives” [Jensen 2004]

job-shop scheduling [Jensen 2004], frame structural design 
[Greiner et al. 2007], theoretical (runtime) analyses [Brockhoff  et al. 
2009]

by decomposition of the single objective
TSP [Knowles et al. 2001], minimum spanning trees [Neumann and 
Wegener 2006], protein structure prediction [Handl et al. 2008a], 
theoretical (runtime) analyses [Handl et al. 2008b]

Multiobjectivization
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The Big Picture

Basic Principles of Multiobjective Optimization
algorithm design principles and concepts
performance assessment

Selected Advanced Concepts
indicator-based EMO
preference articulation

A Few Examples From Practice
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What makes evolutionary multiobjective optimization
different from single-objective optimization?  

performance performance

cost

single objective multiple objectives

?
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A multiobjective optimization problem:

search / parameter / decision space
objective space
vector-valued objective function with

vector-valued constraint function with

binary relation on objective space

Goal: find decision vector(s)              such that
for all                                        and
for all
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(X, Z, f: X → Z, rel ⊆ Z × Z)

A Single-Objective Optimization Problem

decision space objective space objective function

total order
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decision space objective space objective function

total order

total preorder where
a prefrel b ⇔ f(a) rel f(b)

(X, Z, f: X → Z, rel ⊆ Z × Z)

A Single-Objective Optimization Problem

(X, prefrel) 
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Example: ONEMAX Problem

({0,1}n, {0,1, 2, ..., n}, fOM, ≥)      where fOM(a) =

(X, Z, f: X → Z, rel ⊆ Z × Z)

A Single-Objective Optimization Problem

P
i ai

(X, prefrel) 
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Example: ≥ (total order)

totally orderedoptimum
a ≥ b

ab

a, b ∈ X

≤  is a total order if

1) a ≤ b and b ≤ a then a = b (antisymmetry),
2) a ≤ b and b ≤ c then a ≤ c (transitivity), and
3) a ≤ b or b ≤ a (totality).

see, e.g., wikipedia
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(X, Z, f: X → Z, rel ⊆ Z × Z)

A Multiobjective Optimization Problem

Example: Counting Ones Counting Zeros Problem (COCZ)

(X, prefrel) 

copyright: M. Laumanns, 
L. Thiele, and E. Zitzler, 2003

({0,1}n [n even], {0,1, 2, ..., n} × {0,1, 2, ..., n}, (fOM, fZM), ? )
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decision space objective space objective functions

partial order

preorder where
a prefrel b :⇔ f(a) rel f(b)

(X, Z, f: X → Z, rel ⊆ Z × Z)

(X, prefrel) 

preorder on search space
induced by partial order

on objective space
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≤  is a preorder if

1) a ≤ a (reflexivity) for all a in P and
2) a ≤ b and b ≤ c then a ≤ c (transitivity)

≤  is a partial order if

1) a ≤ a (reflexivity) for all a in P,
2) a ≤ b and b ≤ a then a = b (antisymmetry), and
3) a ≤ b and b ≤ c then a ≤ c (transitivity).

see, e.g., wikipedia
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decision space objective space objective functions

partial order

preorder where
a prefrel b :⇔ f(a) rel f(b)

(X, Z, f: X → Z, rel ⊆ Z × Z)

(X, prefrel) 

preorder on search space
induced by partial order

on objective space
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500 1000 1500 2000 2500 3000 3500
weight

profit

5

10

15

20

dominated

Pareto Dominance

dominating

incomparableno partial order!
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500 1000 1500 2000 2500 3000 3500
weight

profit

5

10

15

20
ε

ε

Pareto dominance

ε-dominance

cone dominance

Different Notions of Dominance
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optima

note:
reflexive and 

transitive edges 
not shown
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f2

f1

x2

x1

decision
space 

objective
space 

Pareto-optimal set                  
non-optimal decision vector

Pareto-optimal front
non-optimal objective vector

Min(Y,5) := {a ∈ Y | ∀b ∈ Y : b 5 a⇒ a 5 b}
The minimal set of a preordered set (Y,5) is defined as
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f2

f1

f2

f1

nadir point

ideal point

Computational complexity: 
multiobjective variants can become NP- and #P-complete

Size: Pareto set can be exponential in the input length
(e.g. shortest path [Serafini 1986], MSP [Camerini et al. 1984])

Shape

Range
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A multiobjective problem is as such underspecified
…because not any Pareto-optimum is equally suited!

Additional preferences are needed to tackle the problem: 

Solution-Oriented Problem Transformation:
Induce a total order on the decision space, e.g., by aggregation.

Set-Oriented Problem Transformation:
First transform problem into a set problem and then define an 
objective function on sets.

Preferences are needed in any case, but the latter are weaker!
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transformation

parameters

f(f1, f2, …, fk)

multiple
objectives

single
objective
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f2

f1

transformation

parameters

f(f1, f2, …, fk)

multiple
objectives

single
objective

Example: weighting approach

y = w1y1 + … + wkyk

(w1, w2, …, wk)

Other example: Tchebycheff
y= max wi(ui – zi)
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search space

objective space

(partially) ordered set

(totally) ordered set

single solution problem set problem
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weakly dominates
= not worse in all objectives

and sets not equal

dominates
= better in at least one objective

strictly dominates
= better in all objectives

is incomparable to
= neither set weakly better 

Pareto Set Approximations 

performance

cheapness

A B

C D

A C

B C

Pareto set approximation (algorithm outcome) =
set of (usually incomparable) solutions
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Find all Pareto-optimal solutions?
Impossible in continuous search spaces
How should the decision maker handle 10000 solutions?

Find a representative subset of the Pareto set?
Many problems are NP-hard
What does representative actually mean?

Find a good approximation of the Pareto set?
What is a good approximation?
How to formalize intuitive
understanding:

close to the Pareto front
well distributed

y2

y1
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f2

f1

f2

f1

reference set

ε

ε

hypervolume indicator epsilon indicator
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Idea:
Transform a preorder into a total preorder

Methods:
Define single-objective function based on the multiple criteria
(shown on the previous slides)
Define any total preorder using a relation
(not discussed before)

Question:
Is any total preorder ok resp. are there any requirements
concerning the resulting preference relation?

⇒ Underlying dominance relation rel should be reflected
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refines a preference relation iff

A    B ∧ B A ⇒ A     B ∧ B A            (better ⇒ better)

⇒ fulfills requirement

weakly refines a preference relation     iff

A    B ∧ B A ⇒ A     B                 (better ⇒ weakly better)

⇒ does not fulfill requirement, but does not contradict

…sought are total refinements…
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I(A)
A

B

A

I(A) = volume of the
weakly dominated area

in objective space

I(A,B) = how much needs A to
be moved to weakly dominate B

A     B :⇔ I(A) ≥ I(B) A     B :⇔ I(A,B) ≤ I(B,A)

unary hypervolume indicator binary epsilon indicator

A’
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R

A

I(A,R) = how much needs A to
be moved to weakly dominate R

A     B :⇔ I(A,R) ≤ I(B,R)

unary epsilon indicator

A’

I(A)
A

I(A) = variance of pairwise
distances

A     B :⇔ I(A) ≤ I(B)

unary diversity indicator

weak refinement no refinement
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The Big Picture

Basic Principles of Multiobjective Optimization
algorithm design principles and concepts
performance assessment

Selected Advanced Concepts
indicator-based EMO
preference articulation

A Few Examples From Practice
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0100

0011 0111

0011
0000

0011

1011

representation

environmental selection

parameters

fitness assignment mating selection

variation operators
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y1

y2

y1

y2y2

y1

aggregation-based criterion-based dominance-based

parameter-oriented
scaling-dependent

set-oriented
scaling-independent

weighted sum                     VEGA                           SPEA2



55Advanced Control Lecture: Advanced Concepts, ECP, March 14, 2013© Anne Auger and Dimo Brockhoff, INRIA 55

Mastertitelformat bearbeiten

feasible region
constraint

Aggregation-Based: Multistart Constraint Method

Underlying concept:
Convert all objectives except of one into constraints
Adaptively vary constraints

y2

y1

maximize f1
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feasible region
constraint

Underlying concept:
Convert all objectives except of one into constraints
Adaptively vary constraints

y2

y1

maximize f1

Aggregation-Based: Multistart Constraint Method
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feasible region
constraint

Underlying concept:
Convert all objectives except of one into constraints
Adaptively vary constraints

Aggregation-Based: Multistart Constraint Method

y2

y1

maximize f1
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M

T2

T3

Tk-1

Tk

M’

T1

select
according to

f1

f2
f3

fk-1

fk

shuffle

population         k separate selections           mating pool

[Schaffer 1985]
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Note: good in terms of set quality = good in terms of search?

(archiv)population offspring

environmental selection (greedy heuristic)

mating selection (stochastic) fitness assignment
partitioning into

dominance classes

rank refinement within
dominance classes

+
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... goes back to a proposal by David Goldberg in 1989.

... is based on pairwise comparisons of the individuals only.

dominance rank: by how
many individuals is an
individual dominated?
MOGA, NPGA
dominance count: how many
individuals does an individual
dominate?
SPEA, SPEA2
dominance depth: at which
front is an individual located?
NSGA, NSGA-II

f2

f1

dominance
count

dominance
rank
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min f2

min f1

dominance depth

1

2

3

min f2

min f1

dominance rank

4

1

8

6

3
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Goal: rank incomparable solutions within a dominance class

Density information (good for search, but usually no refinements)

Quality indicator (good for set quality): soon...

f
f

f

Kernel method

density =
function of the 

distances

k-th nearest neighbor

density =
function of distance

to k-th neighbor

Histogram method

density =
number of elements

within box
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Basic idea: the less dominated, the fitter...
Principle: first assign each solution a weight (strength), 

then add up weights of dominating solutions

f2

f1

0

0
0

4+3+2
2+1+4+3+2

2

4

4+3

S (strength) =
#dominated solutions 

R (raw fitness) =  
∑ strengths of 
dominators
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Density Estimation

k-th nearest neighbor method: 

Fitness = R + 1 / (2 + Dk)

Dk = distance to the k-th
nearest individual

Usually used: k = 2

Example: SPEA2 Diversity Preservation

< 1

Dk
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d(i)−
X
obj. m

|fm(i− 1)− fm(i+ 1)|

Example: NSGA-II Diversity Preservation

f2

f1

i-1

i+1
i

Density Estimation

crowding distance: 

sort solutions wrt. each
objective

crowding distance to neighbors:
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Selection in SPEA2 and NSGA-II can result in
deteriorative cycles

non-dominated
solutions already
found can be lost

SPEA2 and NSGA-II: Cycles in Optimization
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Latest Approach (SMS-EMOA, MO-CMA-ES, HypE, …)
use (hypervolume) indicator to guide the search: refinement!

Main idea
Delete solutions with
the smallest
hypervolume loss
d(s) = IH(P)-IH(P / {s})
iteratively

But: can also result
in cycles [Judt et al. 2011]

and is expensive [Bringmann and Friedrich 2009]
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MOEA/D: Multiobjective Evolutionary Algorithm Based on 
Decomposition [Zhang and Li 2007]

Ideas:
Optimize N scalarizing functions in parallel
Use only best solutions of “neighbored scalarizing function” for 
mating
keep the best solutions for each
scalarizing function
use external archive for non-
dominated solutions

Decomposition-Based Selection: MOEA/D

f2

f1
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The Big Picture

Basic Principles of Multiobjective Optimization
algorithm design principles and concepts
performance assessment

Selected Advanced Concepts
indicator-based EMO
preference articulation

A Few Examples From Practice
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0.3 0.4 0.5 0.6 0.7 0.8 0.9
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3.25

3.5

3.75

4

4.25

Once Upon a Time...

... multiobjective EAs were mainly compared visually:

ZDT6 benchmark problem: IBEA, SPEA2, NSGA-II
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[found in a paper from 2009]

...And Even Today!
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Attainment function approach:

Applies statistical tests directly
to the samples of approximation 
sets
Gives detailed information about 
how and where performance 
differences occur

Two Approaches for Empirical Studies

Quality indicator approach:

First, reduces each 
approximation set to a single 
value of quality
Applies statistical tests to the 
samples of quality values

see e.g. [Zitzler et al. 2003]
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three runs of two multiobjective optimizers

frequency of attaining regions
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50% attainment surface for IBEA, SPEA2, NSGA2 (ZDT6)

1.2 1.4 1.6 1.8 2

1.15

1.2

1.25

1.3

1.35

latest implementation online at 
http://eden.dei.uc.pt/~cmfonsec/software.html

see [Fonseca et al. 2011]
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latest implementation online at 
http://eden.dei.uc.pt/~cmfonsec/software.html

see [Fonseca et al. 2011]
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Goal: compare two Pareto set approximations A and B

Comparison method C = quality measure(s) + Boolean function

reduction   interpretation                                 

A

B

Rn
quality
measure

Boolean
function statementA, B

hypervolume 432.34 420.13
distance 0.3308 0.4532
diversity 0.3637 0.3463
spread 0.3622 0.3601
cardinality 6 5          

A B

“A better”



77Advanced Control Lecture: Advanced Concepts, ECP, March 14, 2013© Anne Auger and Dimo Brockhoff, INRIA 77

Mastertitelformat bearbeitenExample: Box Plots

IBEA NSGA-IISPEA2 IBEA NSGA-IISPEA2 IBEA NSGA-IISPEA2

DTLZ2

ZDT6
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0.0001
0.00012
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Knapsack

epsilon indicator     hypervolume R indicator
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ZDT6
Epsilon

DTLZ2
R

IBEA NSGA2 SPEA2

IBEA ~0 ~0

NSGA2 1 ~0

SPEA2 1 1

Overall p-value = 6.22079e-17.
Null hypothesis rejected (alpha 0.05)

is better 
than

IBEA NSGA2 SPEA2

IBEA ~0 ~0

NSGA2 1 1

SPEA2 1 ~0

Overall p-value = 7.86834e-17.
Null hypothesis rejected (alpha 0.05)

is better 
than

Knapsack/Hypervolume: H0 = No significance of any differences
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There are three aspects [Zitzler et al. 2000]

Wrong! [Zitzler et al. 2003]

f2

f1

An infinite number of unary set measures is needed to detect
in general whether A is better than B
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Basic Principles of Multiobjective Optimization
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performance assessment

Selected Advanced Concepts
indicator-based EMO
preference articulation

A Few Examples From Practice
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When the goal is to maximize a unary indicator…
we have a single-objective set problem to solve
but what is the optimum?
important: population size µ plays a role!

Optimal µ-Distribution:
A set of µ solutions that maximizes a certain unary indicator I 
among all sets of µ solutions is called
optimal µ-distribution for I.                             [Auger et al. 2009a]

Indicator-Based EMO: Optimization Goal

Multiobjective
Problem

Single-objective
Problem

Indicator
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Hypervolume indicator refines dominance relation
most results on optimal µ-distributions for hypervolume

Optimal µ-Distributions (example results)

[Auger et al. 2009a]:
contain equally spaced points iff front is linear
density of points                    with     the slope of the front

[Friedrich et al. 2011]:
optimal µ-distributions for the
hypervolume correspond to
ε-approximations of the front

! (probably) does not hold for > 2 objectives

Optimal µ-Distributions for the Hypervolume

∝
p
−f 0(x) f 0



84Advanced Control Lecture: Advanced Concepts, ECP, March 14, 2013© Anne Auger and Dimo Brockhoff, INRIA 84

Mastertitelformat bearbeitenOverview

The Big Picture

Basic Principles of Multiobjective Optimization
algorithm design principles and concepts
performance assessment

Selected Advanced Concepts
indicator-based EMO
preference articulation
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What we thought: EMO is preference-less

What we learnt: EMO just uses weaker preference information

[Zitzler 1999]

preferable?environmental
selection

3 out of 6
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Nevertheless...
the more (known) preferences incorporated the better
in particular if search space is too large

[Branke 2008], [Rachmawati and Srinivasan 2006], [Coello Coello 2000]

Refine/modify dominance relation, e.g.:
using goals, priorities, constraints
[Fonseca and Fleming 1998a,b]
using different types of cones
[Branke and Deb 2004]

Use quality indicators, e.g.:
based on reference points and directions [Deb and Sundar 2006, 
Deb and Kumar 2007]
based on binary quality indicators [Zitzler and Künzli 2004]

based on the hypervolume indicator (now) [Zitzler et al. 2007]

f2

f1
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[Zitzler et al. 2007]
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[Auger et al. 2009b]
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Cost          

Latency Power

Specification Optimization Implementation

Environmental
SelectionMutation

x2

x1

f

Mating
SelectionRecombination

Evaluation
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Cost          

Latency Power

Specification Optimization Implementation

Environmental
SelectionMutation

x2

x1

f

Mating
SelectionRecombination

Evaluation

Truss Bridge Design
[Bader 2010]
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Cost          

Latency Power

Specification Optimization Implementation

Environmental
SelectionMutation

x2

x1

f

Mating
SelectionRecombination

Evaluation

Truss Bridge Design
[Bader 2010]

Network Processor Design
[Thiele et al. 2002]
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Cost          

Latency Power

Specification Optimization Implementation

Environmental
SelectionMutation

x2

x1

f

Mating
SelectionRecombination

Evaluation

Truss Bridge Design
[Bader 2010]

Network Processor Design
[Thiele et al. 2002]

Water resource
management
[Siegfried et al. 2009]
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Module identification from biological data [Calonder et al. 2006]

Find group of genes wrt
different data types:

similarity of gene
expression profiles

overlap of protein
interaction partners

metabolic pathway
map distances
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problem

solution

decision making

modeling

optimization

analysis

specification

visualization

preference
articulation

adjustment
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Exercise:
Runtime Analysis of a 
Simple EMO Algorithm
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Constrained Optimization
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up-to-now only unconstrained problems considered
but constraints are frequent in practice

most combinatorial optimization problems have constraints 
(think about knapsack, scheduling, ...)
also continuous problems might have constraints (remember 
the initial Ariane launcher problem?)

Main approaches:
straightforward rejection sampling
penalty functions
special representations and operators
multiobjective formulation

Constrained Optimization
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until candidate solution is feasible: resample the search space 
according to current probability distribution

no information about infeasible region is used
not applicable if feasible region is (too) small
other approaches used (much) more frequently

The Simplest Approach: Rejection Sampling
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transform constrained problem into unconstrained one:
incorporate (the amount of) constraint violations into the 
objective function
already proposed in the 1940s by Richard Courant
general example:

Remarks:
death penalty = rejection sampling
difficult to find appropriate constants and Gi and Hi functions

Penalty Functions

“old” function

unconstrained function

constants

function of function of 
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we have seen already examples:
TSP: permutations
single-objective knapsack problem: no details

either operators directly produce a feasible solution (like for TSP)
or after the operator is used, a repair strategy transforms any 
infeasible solution into a feasible one

e.g. in knapsack problem: greedily reduce the number of 
chosen items according to profiti/weighti until constraint fulfilled

Special Representations And Operators
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Idea 1:
use a multiobjective algorithms to solve a problem where all 
constraints are objective functions

Idea 2:
solve a bi-objective problem where the second objective is the 
sum of all constraint violations

Possible problem:
the algorithm might only search in the infeasible domain

Constraints and Multiobjective Optimization
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Main idea of standard implementation:
using standard covariance matrix update with unchanged 
differences as if the new points are feasible
projection of infeasible points onto boundary variable-by-
variable to compute a feasible function value
no penalty

Box Constraints With CMA-ES
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Possible Thesis Projects
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more related to continuous single-objective optimization

both theoretical and practical projects
several possible options with respect to benchmarking

constrained optimization
large-scale optimization
expensive optimization
more concrete: visualizing algorithm comparison results on 
an interactive web page

INRIA Saclay – Ile-de-France with Anne
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More related to multiobjective optimization (but probably also 
possible in Saclay)

scalarization/aggregation-based EMO (also parallelization 
possible)

variation operators for set-based EMO

stopping criteria and restarts for EMO

optimal µ-distributions (both theoretical
and numerical)

INRIA Lille – Nord Europe with Dimo

for questions, just ask us:
firstname.lastname@inria.fr
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Good luck for the exam!




