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Course Overview
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Date | _lTopic

Introduction to Control, Examples of Advanced Control,
Introduction to Fuzzy Logic

Fuzzy Logic (cont’d), Introduction to Artificial Neural
Networks

Bio-inspired Optimization, discrete search spaces
The Traveling Salesperson Problem

Continuous Optimization |

Continuous Optimization Il

Controlling a Pole Cart

Advanced Optimization: multiobjective optimization,
constraints, ...

written exam (paper and computer)

next Tuesday exam at ! 9n45-13h00 !
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Remark to last lecture

All information also available at

http://researchers.lille.inria.fr/~brockhof/advancedcontrol/

(exercise sheets, lecture slides, additional information, links, ...)
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(More) Advanced Concepts
of Optimization

(Evolutionary) Multiobjective Optimization + MCDM
Constrained Optimization
Possible Thesis Projects
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The Single-Objective Knapsack Problem

weight = 7509 lweight = 1500g | weight = 300g @weight = 1000g
profit=5 profit =8 profit =7 profit =3

DG M.&IN

Fablen1 309

Single-objective Goal:
choose a subset that
= maximizes overall profit

= w.r.t a weight limit
(constraint)
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The Multiobjective Knapsack Problem

weight = 7509 lweight = 1500g | weight = 300g @weight = 1000g
profit=5 profit =8 profit =7 profit =3

Multiobjective Goal:
Choose a subset that

= maximizes overall profit
= minimizes overall weight

: B DGM.&IN
Fablen1 309 Ev  &n

Single-objective Goal:
choose a subset that
= maximizes overall profit

= w.r.t a weight limit
(constraint)
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Principles of Multiple Criteria Decision Analys

Knapsack problem: all solutions plotted

single objective case

N weight [in g]

|
500 1000 1500 2000 2500 3000 3500
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Principles of Multiple Criteria Decision Analys

Knapsack problem: all solutions plotted

profit multiobjective case —
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Principles of Multiple Criteria Decision Analysis

Knapsack problem: all solutions plotted

profit
Q
20 Q
Q
tter Q incomparable
15 — Q Q
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Q
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Principles of Multiple Criteria Decision Analysis

Observations: © there is no single optimal solution, but
® some solutions (@) are better than others (9)

profit
' ®
20 <
Q
° incomparable
15 — Q@ Q
Q
10 - 9
Q
5— Q worse
Q
weight [in g]
9 | | | | | >

| |
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Principles of Multiple Criteria Decision Analys

Observations: © there is no single optimal solution, but
® some solutions (@) are better than others (9)

profit
. Q
Pareto-optimal front - :
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15 — Qe O o ?o o0
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Principles of Multiple Criteria Decision Ané

Observations: © there is no single optimal solution, but
® some solutions (@) are better than others (9)
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Decision Making: Selecting a Solution

Possible « profit more important than weight (ranking)
Approach:

profit
20 ©
15 — Q

10 —

weight [in g]

| | | I | | |
500 1000 1500 2000 2500 3000 3500
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Decision Making: Selecting a Solution

Possible « profit more important than weight (ranking)

Approach: « weight must not exceed 2400 (constraint)

profit !!b .
204 - . -

15 — a Q @

® : too heavy

10 - 5

° 5

5 E

weight [in g]

| | | I | | |
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When to Make the Decision

Before Optimization:
a A

' rank objectives,

a

l define constraints,...

v

o AT

search for one .
(blue) solution 3

v

e i 0
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When to Make the Decision

Before Optimization:
a A

u rank objectives,

# e

l‘ define constraints,...

v

o
' profit n
search for one 1 " ~
(blue) solution 20 Q
15 ] ° ®. : :
T ° = too expensive
il [f 10 | .
° .
5 .
9 I | | | — | —> weight
500 1000 1500 2000 2500 3000 3500
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When to Make the Decision

Before Optimization:

o ]

'@ rank objectives,

l define constraints,...

ﬂ-ﬁ.

AR

\ search for one

(blue) solution

Uhﬁlm[f
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v

v

After Optimization:

considering

Advanced Control Lecture: Advanced Concepts

| search for a set of
(blue) solutions

select one solution

constraints, etc.

ECP, March 14, 20



When to Make the Decision

Before Optimization: After Optimization:

% A . é
rank objectives, search for a set of

" define constraints,”. (blue) solutions

l .

-

o : u select one solution °
sslarch folr :)ne | o | considering .‘Q
(blue) solution X l constraints, etc. °

Focus: learning about a problem
» trade-off surface

* interactions among criteria

= structural information

4
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Multiple Criteria Decision Making (MCDM)

Definition: MCDM

MCDM can be defined as the study of methods and procedures by which
concerns about multiple conflicting criteria can be formally incorporated into

the management planning process . International Society on
" Multiple Criteria Decision Making

. w& ..........................................................
R (e, () ) decision making
s.t.
g(z) <0
h(g):; . (exact) optimization
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Multiple Criteria Decision Making (MCDM

Definition: MCDM

MCDM can be defined as the study of methods and procedures by which
concerns about multiple conflicting criteria can be formally incorporated into

the management planning process L e e .
" Multiple Criteria Decision Making

non-linear  NOISY | many objectives
uncertain huge
objectives problem search
expensive spaces

non-differentiable (integrated simulations) many constraints

(e»€t) optimization
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Multiple Criteria Decision Making (MC

Definition: MCDM

MCDM can be defined as the study of methods and procedures by which
concerns about multiple conflicting criteria can be formally incorporated into

the management planning process e

/,./"' Multiple Criteria Decision Making

non-linear  NOISY many ob CIVS
uncerti Black box optimization

objectives

non-differentiable (integrated sir

CXPET IS f — (fi(@),- .., fi(x))

(exCt) opti only mild assumptions
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Evolutionary Multiobjective Optimizatio

Definition: EMO

EMO = evolutionary algorithms / randomized search algorithms
= applied to multiple criteria decision making (in general)
» used to approximate the Pareto-optimal set (mainly)

profit
PP ooty " 4 - :
‘ Pareto set approximation
mutation survival
rs ¥
LY : &t
" L .:ea t.,,
L ey #
Rod’ Saght
. : ‘ age“;’{r:
recombination mating p AR
» weight
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Multiobjectivization

Some problems are easier to solve in a multiobjective scenario

example: TSP

0&
[Knowles et al. 2001] ?

T €S, — f(m) 7w € Sy — (fi(m,a,b), folr, a,b))

Multiobjectivization
by addition of new “helper objectives” [Jensen 2004]

job-shop scheduling [Jensen 2004], frame structural design

[Greiner et al. 2007], theoretical (runtime) analyses [Brockhoff et al.
2009]

by decomposition of the single objective

TSP [Knowles et al. 2001], minimum spanning trees [Neumann and
Wegener 2006], protein structure prediction [Handl et al. 2008a],
theoretical (runtime) analyses [Handl et al. 2008b]
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Overview EMO part

The Big Picture

Basic Principles of Multiobjective Optimization
= algorithm design principles and concepts
= performance assessment

Selected Advanced Concepts
* indicator-based EMO
= preference articulation

A Few Examples From Practice

e Auger and Dimo Brockhoff, INRIA Advanced Control Lecture: Advanced Concepts



Starting Point

h performance performance

single objective multiple objectives

© Anne Auger and Dimo Brockhoff, INRIA Advanced Control Lecture: Advanced Concepts, ECP, March 14,2013



A General (Multiobjective) Optimization Proi

A multiobjective optimization problem: (X? Z,.f g, §)

X search / parameter / decision space
/Z = IR"™ objective space
f = (f Tyewns fn) vector-valued objective function with
fi: X—R
g = (91; <. 3gm) vector-valued constraint function with
g : X— R
<C Z X Z binary relation on objective space

Goal: find decision vector(s) a € X such that
O forall 1 gigm;gi(a) < (0 and
@ forallp c X :f(b) <f(a)= f(a) < f(b)

© Anne Auger and Dimo Brockhoff, INRIA Advanced Control Lecture: Advanced Concepts, ECP, Mar



A Single-Objective Optimization Problem

decision space objective space objective function

. total order
(X, Z, . X »>Z, rel cZ xZ)

© Anne Auger and Dimo Brockhoff, INRIA Advanced Control Lecture: Advanced Concepts



A Single-Objective Optimization Problem

decision space objective space objective function

total order
(X, Z, . X >Z rel cZ xZ)

1 total preorder where
(X, prefrel) a prefrel b < f(a) rel f(b)
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A Single-Objective Optimization Problem

Example: ONEMAX Problem

X, Z,FX>Z rel cZ x2)
O\

o
\Qc bifre/)

({0,1}", {0,1, 2, ..., n}, foy, =)  Where fo (@) =22 @
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Simple Graphical Representation

Example: > (total order)

a,beX
/ \
I} \

/
b
O— O —O—O&220— ) optimum  totally ordered

< is a total order if

1) a<band b < athen a =b (antisymmetry),
2) a<bandb =< cthen a < c (transitivity), and
3) a<borb =< a (totality).
see, e.g., wikipedia
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A Multiobjective Optimization Problem

Example: Counting Ones Counting Zeros Problem (COCZ)

tcocz,
11110000

X, Z,FX>ZrelcZx2)

R \\
= Ny N\ 00000000\ 11111111

\ - _cocr,

00001111

rlght Laumanns
e, and B Zitzler, 2003

({0,1}" [n even), {01 2,....,n} x 0,1, 2, ..., n}, (fopr Tzn): 7))

n/2

fomla) = Z&z fom(a) = Zﬁz‘ Z (1—a;)
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Preference Relations

decision space objective space objective functions

X / /partial order

X, Z,FX>Z rel cZx2)

preorder where

. —+—aprefrel b :=f(a) rel f(b)
(X, prefrel)

preorder on search space
iInduced by partial order
on objective space

J
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Parenthesis: Relations

< is a preorder if

1) a < a (reflexivity) for all a in P and
2) a<band b =< c then a < c (transitivity)

< is a partial order if

1) a < a (reflexivity) for all a in P,
2) a< b and b < athen a = b (antisymmetry), and
3) a<band b < cthen a < c (transitivity).

see, e.g., wikipedia
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Preference Relations

decision space objective space objective functions

X / /partial order

X, Z,FX>Z rel cZx2)

preorder where

. —+—aprefrel b :=f(a) rel f(b)
(X, prefrel)

preorder on search space
iInduced by partial order
on objective space

J
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Pareto Dominance

(u1,...,u,) weakly Pareto dominates (v1,...,0,): <
(U1, tn) Spar (V1,...,0,) & VI <i<n:u; <o -
(u1,...,uy) Pareto dominates (vq,...,vp):
. u<uv
profit — (u1,...,Un) <par (V1,...,0n) A (V1,-.-, V) Lpar (U1,...,Up)
Q
20 — dominating Q
no partial order! J
15 ® O 9
o Q
10 — Q ®
o Q Q
5— Q .
o dominated
? | | | | | | > weight
500 1000 1500 2000 2500 3000 3500
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Different Notions of Dominance

profit
N £
/_/% Q
20 — Q
€ Q
g-dominance
15 —
Q
10 — Q
Q Q Q
5 — Q :
Q cone dominance
? | | | weight
500 1000 1500 2000 2500 3000 3500
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Visualizing Preference Relations

/

[ —— optima

(f weight’ f profit )

Q\%ﬁ note:
O\C\Ao reflexive and
transitive edges

fo% not shown
| J

weak Pareto dominance: (X, <)
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The Pareto-optimal Set

The minimal set of a preordered set (Y, <) is defined as
Min(Y,S):={acY|VbeY :bSa=aZlb}

Pareto-optimal set Min(X,<) @  Pareto-optimal front
non-optimal decision vector Q  non-optimal objective vector

x2 decision f2 objective
» Space A space
. [ — Y
| Y .
Qo Q| | Q) Pk
................................................................................................ vQ
. [ L
> X1 > f1
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Remark: Properties of the Pareto Set

Computational complexity:
multiobjective variants can become NP- and #P-complete

Size: Pareto set can be exponential in the input length
(e.g. shortest path [Serafini 1986], MSP [Camerini et al. 1984])

f, )

Q Q Q Q
o Q IV nadir point | g_ e
R O O : p O :
? @ © | Q ©
o O Range
? | S
S%ape
XQ' ----- Q x _________________________ Q Q

. —idealpoint |
> f1 > f1
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Approaches To Multiobjective Optimization

A multiobjective problem is as such underspecified
...because not any Pareto-optimum is equally suited!

Additional preferences are needed to tackle the problem:

Solution-Oriented Problem Transformation:
Induce a total order on the decision space, e.g., by aggregation.

Set-Oriented Problem Transformation:

First transform problem into a set problem and then define an
objective function on sets.

Preferences are needed in any case, but the latter are weaker!

© Anne Auger and Dimo Brockhoff, INRIA Advanced Control Lecture: Advanced Concepts



Solution-Oriented Problem Transformations

_ parameters ,
multiple single
objectives objective
(f, fp, ..., ) f

A scalarizing function s is a function s : Z — IR that maps each objective vector
(ty,...,uy) € Z to areal value s(uy,...,u,) < R.

© Anne Auger and Dimo Brockhoff, INRIA Advanced Control Lecture: Advanced Concepts, ECP, March 14, 2013



Aggregation-Based Approaches

. parameters ,
multiple single
objectives objective
(f, fp, ..., ) f
r Example: weighting approach

(Wq, Wy, ..., W, )

N
% e
° % b —

e
T

Other example: Tchebycheft

© y= max w;(u; — z)

>f1

© Anne Auger and Dimo Brockhoff, INRIA Advanced Control Lecture: Advanced Concepts, ECP, March 14, 2013



Problem Transformations and Set Problems

single solution problem set problem

search space

©

fx) = (f®), fol2), .o frlz)  f7(A) = {f(z) |z € A}

objective space

@

v >y Vifilx)> fily A>"B:&VyepIpear >y

(partially) ordered set RBE 2)

(totally) ordered set

ﬁ@
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Set-Oriented Problem Transformations

For a multiobjective optimization problem (X, Z, f, g, <),
the associated set problem is given by (U, Q, F, G, <) where

e U = 2% is the space of decision vector sets,
i.e., the powerset of X,

o () =27 is the space of objective vector sets,
i.e., the powerset of Z,

e [ is the extension of f to sets, i.e.,

F(A):={f(a) : a€ A} for A e V¥,

e G=(Gy,...,G,,) is the extension of g to sets,
i.e., G;(A) :=max{g;(a) :ac€ Al for1 <i<m and A € ¥,

o < extends < to sets where
Az B:<VbeBdaec A:a<b.

© Anne Auger and Dimo Brockhoff, INRIA Advanced Control Lecture: Advanced Concepts



Pareto Set Approximations

Pareto set approximation (algorithm outcome) =
set of (usually incomparable) solutions

performance

A

PAY weakly dominates
= not worse in all objectives
and sets not equal

i@ dominates (D)
= better in at least one objective

FAD strictly dominates 88
= better in all objectives

cheapness

B is incomparable to i@3
= neither set weakly better

© Anne Auger and Dimo Brockhoff, INRIA
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What Is the Optimization Goal (Total Order):

* Find all Pareto-optimal solutions?

» Impossible in continuous search spaces

» How should the decision maker handle 10000 solutions?
* Find a representative subset of the Pareto set?

» Many problems are NP-hard

» What does representative actually mean?
* Find a good approximation of the Pareto set?

» What is a good approximation?

» How to formalize intuitive
understanding:

O close to the Pareto front
® well distributed

© Anne Auger and Dimo Brockhoff, INRIA
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Quality of Pareto Set Approximations

A (unary) quality indicator [ is a function [ : ¥ — IR that assigns a Pareto set
approximation a real value.

f, f
X 2
Q P «
reference set y¢’
Q / SR
X 7
By Q
Q H{J
>f, >f,
hypervolume indicator epsilon indicator
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General Remarks on Problem Transformation

ldea:
Transform a preorder into a total preorder

Methods:

» Define single-objective function based on the multiple criteria
(shown on the previous slides)

= Define any total preorder using a relation
(not discussed before)

Question:

|s any total preorder ok resp. are there any requirements
concerning the resulting preference relation?

= Underlying dominance relation rel should be reflected

© Anne Auger and Dimo Brockhoff, INRIA Advanced Control Lecture: Advanced Concepts



Refinements and Weak Refinements

ref

O =< refines a preference relation < iff

ref ref

AXBAB#AA=A<BAB#A (better = better)

= fulfills requirement

ref

® < weakly refines a preference relation < iff
ref

ABr BLA=A<B (better = weakly better)

f
= does not fulfill requirement, but r% does not contradict <

...sought are total refinements...

© Anne Auger and Dimo Brockhoff, INRIA Advanced Control Lecture: Advanced Concepts



Example: Refinements Using Indicators

ref ref

A < B:sI(A) >I(B) A < B: = I(A,B) <I(B,A)

I(A) = volume of the
weakly dominated area
in objective space

I(A,B) = how much needs A to
be moved to weakly dominate B

--------
:
S R
l_(:) A
Ay P
unary hypervolume indicator binary epsilon indicator
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Example: Weak Refinement / No Refinement

ref ref
A< B:<I(AR) <I(B,R) As B:=I(A) <I(B)
I(A,R) = how much needs A to I(A) = variance of pairwise
be moved to weakly dominate R distances

weak refinement no refinement

............ | ’
o __ | A
...... : |(A) Q
2 A |
Q |
.................. ‘ % > | >
unary epsilon indicator unary diversity indicator

© Anne Auger and Dimo Brockhoff, INRIA Advanced Control Lecture: Advanced Concepts



Overview

The Big Picture

Basic Principles of Multiobjective Optimization
= algorithm design principles and concepts
= performance assessment

Selected Advanced Concepts
* indicator-based EMO
= preference articulation

A Few Examples From Practice
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Algorithm Design: Particular Aspects

representation 1 fitness assignment mating selection

0111

[0100 .

°®
L4

2 environmental selection 3 variation operators

Advanced Control Lecture: Advanced Concepts, ECP, Mar
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Fithess Assignment: Principal Approaches

aggregation-based criterion-based dominance-based
weighted sum VEGA SPEA?2
Y2 y? y?
/5 !
Q ™, {‘ o
.. /‘/ ) B LTEN o
o ?;” °
/ Q Q
y
Q A Q :
% > VY1
parameter-oriented _ . set-oriented
scaling-dependent scaling-independent
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Aggregation-Based: Multistart Constraint Meth

Underlying concept:
= Convert all objectives except of one into constraints
= Adaptively vary constraints

y2 maximize f,
—

feasible region

© Anne Auger and Dimo Brockhoff, anced Concepts, ECP, March 14, 2C



Aggregation-Based: Multistart Constraint Meth

Underlying concept:
= Convert all objectives except of one into constraints
= Adaptively vary constraints

y2 maximize f,
—

feasible region t

constraint .

© Anne Auger and Dimo Brockhoff, INRIA Advanced Control Lecture: Advanced Concepts, ECP, March 14, 20



Aggregation-Based: Multistart Constraint Meth

Underlying concept:
= Convert all objectives except of one into constraints
= Adaptively vary constraints

y2 maximize f,
—

feasible region T
constraint

Y1

epts, ECP, March 14, 20



Criterion-Based Selection: VEGA

select shuffle [Schaffer 1985]
according to

f1 > T >
1
f, ! T, X
fs | T, X
M .
e e >
fk > Tk >
population K separate selections mating pool
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General Scheme of Dominance-Based EMO

mating selection (stochastic) —
A

fitness assignment
partitioning into
dominance classes

: \/
population (archiv) offspring

v rank refinement within
dominance classes

environmental selection (greedy heuristic) |—

Note: good in terms of set quality = good in terms of search?

© Anne Auger and Dimo Brockhoff, INRIA Advanced Control Lecture: Advanced Concepts



Ranking of the Population Using Dominance

... goes back to a proposal by David Goldberg in 1989.
... Is based on pairwise comparisons of the individuals only.

» dominance rank: by how
many individualsisan 1 )
individual dominated?

: dominance
= dominance count: how many

individuals does an individual
dominate?

v

* dominance depth: at which O %
: T dominance oy :
front is an individual located? count %y, :
Q Co :
d&l\ f1
)
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lllustration of Dominance-based Partitioning

minf,  dominance rank min f, dominance depth

N 8 N
26 @

© Anne Auger and Dimo Brockhoff, INRIA Advanced Control Lecture: Advanced Concepts, ECP, March 14,2013



Refinement of Dominance Rankings

Goal: rank incomparable solutions within a dominance class

© Density information (good for search, but usually no refinements)

Kernel method

density =
function of the
distances

I
LIS
&

k-th nearest neighbor Histogram method

density =

density =

function of distance number of elements

to k-th neighbor

within box

Q

Q

@0

S Q

® Quality indicator (good for set quality): soon...

© Anne Auger and Dimo Brockhoff, INRIA
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Example: SPEA2 Dominance Ranking

Basic idea: the less dominated, the fitter...

Principle: first assign each solution a weight (strength),
then add up weights of dominating solutions

f2
“
Q
2
Q i |
" Qe 0 Q S (strength) =
4 O, #dominated solutions @
o ™ . -
o 4430 o R (raw fitness) =
2+1+4+3+2 > strengths of
Q4+3+2 % f dominators Q
N,

© Anne Auger and Dimo Brockhoff, INRIA Advanced Control Lecture: Advanced Concepts



Example: SPEA2 Diversity Preservation

Density Estimation

k-th nearest neighbor method:

= Fitness=R + 1/ (2 + D)
N J

v
<1

= Dk = distance to the k-th O
nearest individual

» Usually used: k=2

© Anne Auger and Dimo Brockhoff, INRIA Advanced Control Lecture: Advanced Concepts



Example: NSGA-II Diversity Preservation

Density Estimation
crowding distance:

= sort solutions wrt. each
objective

= crowding distance to neighbors:

d(z) o Z ‘fm(z o 1) o fm(z + 1)|

obj. m
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SPEA2 and NSGA-II: Cycles in Optimization

Selection in SPEA2 and NSGA-II can result in

T T
Pareto set -

, ; £ T T
deteriorative cycles > [ NsGaLT
4200 Archive elements after t=5.000.000 ¢ A
Archive elements after t=10,000,000 o
q00fF 8 @ .

- Bgy 'G'"{g

non-dominated
solutions already
found can be lost

© Anne Auger and Dimo Brockhoff, INRIA



Hypervolume-Based Selection

Latest Approach (SMS-EMOA, MO-CMA-ES, HypE, ...)
use (hypervolume) indicator to guide the search: refinement!

i l........ruuu........r T T N TY P TP TP TP T R PTR PR LI TIN U TR TRTTTITIYY i 1
Main idea e
Delete solutions with Hypervolume of A: ;
the smallest 1, (A) = ja(f)dz
hypervolume loss \ /
d(s) = l4(P)-ly(P 7 {s}) : |
iteratively a(Z)=1
mi~ rrize A ‘ 5
«(2)=0 fitness of point: ;
gontribution to —_
But: can also result hypervolume s

In cycles [Judt et al. 2011]
and is expensive [Bringmann and Friedrich 2009]
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Decomposition-Based Selection: MOEA/D

MOEA/D: Multiobjective Evolutionary Algorithm Based on

Decomposition [Zhang and Li 2007]

ldeas:
= Optimize N scalarizing functions in parallel

= Use only best solutions of “neighbored scalarizing function” for

mating
= keep the best solutions for each
scalarizing function thy
» use external archive for non- . )
dominated solutions
,’/6/

© Anne Auger and Dimo Brockhoff, INRIA Advanced Control Lecture: Advanced Concepts

ECP, March



Overview

The Big Picture

Basic Principles of Multiobjective Optimization
= algorithm design principles and concepts
= performance assessment

Selected Advanced Concepts
* indicator-based EMO
= preference articulation

A Few Examples From Practice
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Once Upon a Time...

... multiobjective EAs were mainly compared visually:

4.25

“4 i A
A A A
A A AAA a N
N A A AA A A, A
A A A A A Ay Ay A 4
A A A A A A 8 B
4 A A4 a4 N - (0
AA A A, A4 A Aa A A N
- 4 A A A a4 A A4 4
A Al A Ayp A L, a P A A -
’ - ry A as - LI At
ata a A AA A, A A a Y
A A A A A A A A A A “A
AL 4 4 A * A N A, A A A A A A Adaa,
A k4 av 4 4 L A * o Aﬁ A A~ A“
x T A A H # O x 4 a4 A - N
A - X A =2 LA # ‘2 A, aay Ao **2‘ b 4 £
* - &&iﬁ; L *x*; “a **:;‘ a o owk, % R ; Ai 4 A" A A%ﬁA“A N
* x X VI A
* * A & X% x A A AL A
x *y o K, * + X x A v * A
a * ;H,*** 2 ‘Qy“: *&: f**'*; x 4 ‘:* * "‘r ~ . LA o ?Q‘ Y
A * A" % * x % Rl T La ad Kook Ay o
* R N x X Y % 4 F S 3.25;
* A A A, A RSV B et VU = N fat S’ 3
* /S * - X * *
At A a A XA *

Aﬂ‘ 2 : A

.3 0.4

A

A
by AA

4 . A AT A 2 aaly ﬁA A
A ; A, 2 R A A,h § AA“M:{A"A:
ZDT6 benchmark problem:.|IBEA; SPEA2, NSGA > 5%

“
‘A
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...And Even Today!

ZDT1 Multiple Runs of Each Method ZDT1 Multiple Runs of Each Method
for Pop Size=100; 500 Evals for Pop Size=100; 1,000 Evals
gg —— Trug Front gg | —— True Frant
20 ke + MI-SHERPA, 50 < MO-EHERPA
a5 g - NOGA a5 - NCGA
401 i 0 RSEA 410 = PIEGAI
35 e o 25 s
e 2 A0 f—h
® 25 B M. , Y R LI
20 FEu_a S NI 20 B e —
R dg g d e a ¢ ,].5 ' 0w P
13 LT = n ) [N 10 ah:a“ :h - a oy
Slg “\—_.__\_\__\__ i B .. US o -'f.ﬂ"‘.u.mn . ,ﬂnd' 3 e a 2
00 : wﬂh‘ 00 T T T = T = ‘m‘“—.r
00 03 04 0 0% 10 0.0 02 0.4 0.6 08 10
() fix}
(=l b
ZDT1 Muttiple Runs of Each Method ZDT1 Multiple Runs of Each Method
for Pop Size=100: 5,000 Evals for Pop Size=100; 10.000 Evals
20
25 e Frar ——Tue Front
a MOSHERPA, & WO-SHERPA
20 - NEGA s NOEA
o NEGA a  MIEA
= =
& &4
u *.;-‘5,5‘ 5 e
[:IO T T T T _-&
0o el 0.4 0& 0& 10
f10x) Hix)
(e} {d]

[found in a paper from 2009]
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Two Approaches for Empirical Studies

Attainment function approach: Quality indicator approach:

= Applies statistical tests directly = First, reduces each
to the samples of approximation approximation set to a single
sets value of quality

= Gives detailed information about " Applies statistical tests to the
how and where performance samples of quality values

differences occur

A attains B attains

) ) Indicator A B

HIREETEIEE L e Hypervolume indicator | 6.3431  7.1924
ﬁ BT - eindicator | 1.2090  0.12722
' H ™| | Ry indicator | 0.2434  0.1643
T A T, Ry indicator | 0.6454  0.3475

minimize minimize

see e.q. [Zitzler et al. 2003]
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Empirical Attainment Functions

three runs of two multiobjective optimizers

Rep]

/I I I N N N N NN S R N NN S I S S S I |

0313 23 3/3

TT T T I T T T T T T T T Tl I
5 10 15 20 °

[ S B
5 10 15 20

frequency of attaining regions

Advanced Control Lecture: Advanced Concepts
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Attainment Plots

50% attainment surface for IBEA, SPEA2, NSGAZ (ZDT6)

]

AL
1.35 " s e,
AA&AA R
AE -, AAAA
1-3j “AMAA“
4
N
x * *x
1-25 A; . " TE ok **'&
1 R
*
1-2{ * % * *&"&
Lol
= A A N A
1-15 j AmA ‘AA
A tA‘ AAA
I I I | I I | I I M‘AA .
1.2 1.4 1.6 1.8 5.2
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latest implementation online at

http://eden.dei.uc.pt/~cmfonsec/software.html
see [Fonseca et al. 2011]
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Attainment Plots

objective 1

0.45 0.5 0.55 0.6 0.65 07 0.75
l l l l ] l l
W (08, 1.0
W (05 08)
T = [0.4, 0.8)
P s Bt O (02 0.4}
= H O [0.0, 0:2) B
& of % .
[
5 |
L
0w -
[T =]
2
b5
D
=)
[=]
o _| L
[}
8 |
o -.’:
-
t 3
3 ad N
.Pl
| | | | I | | .
0.45 0.5 0.55 06 0.65 07 0.75
ohjective 1

latest implementation online at
http://eden.dei.uc.pt/~cmfonsec/software.html
see [Fonseca et al. 2011]
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Quality Indicator Approach

Goal: compare two Pareto set approximations A and B

hypervolume 432.34 420.13

®". distance 0.3308 0.4532

o Sa g diversity 0.3637 0.3463

%, e % spread 0.3622  0.3601
s cardinality 6 5

— “A better”

Comparison method C = quality measure(s) + Boolean function

quality Boolean

measure funct|on
2z "
reduction mterpretatlon

© Anne Auger and Dimo Brockhoff, INRIA
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Example: Box Plots

epsilon indicator  hypervolume R indicator

IBEA NSGA-IISPEA2 IBEA NSGA-IISPEA2 IBEA NSGA-IISPEA2
.008

008 oy ; Y
DTLZ2 °°° ; 0% % 0253901 —
= | Fam
0.02 0.002 0.00002
1 2 3 1 2 3 1 2 3
0.6 — — 0.8 o4 _
0.5
0.6 0.3
Knapsacko.4 . —
0.3 0.4 0.2
0.2 0.2 0.1
0.1, in 1 | | ‘ | 1 ‘
1 2 3 1 2 3 1 2 3
0.35 0.35 0.12
0.3 0.3 0.1
ZDTo 0.25 0.25 0.08
0.2 0.2 0 oe
0.15 0.15 -
0.1 % 0.1 0.04
0.05 0.05 0.02
0 0 0
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Statistical Assessment (Kruskal Test)

/DT6 DTLZ2
Epsilon R
is better Is better
than than
r % IBEA |NSGA2 SPEA2 r % IBEA |NSGA2 SPEA2
IBEA ~0 () |~0 () | IBEA ~0 © |70 ©
NSGA2 |1 ~0 (&) | NSGA2 |1 1
SPEA2 |1 1 SPEA2 |1 ~0 ©
Overall p-value = 6.22079e-17. Overall p-value = 7.86834e-17.
Null hypothesis rejected (alpha 0.05) Null hypothesis rejected (alpha 0.05)

Knapsack/Hypervolume: H, = No significance of any differences
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Problems With Non-Compliant Indicators

5 |
| | | | A A
Indicator A B B +
ﬁ Generational distance | 3.46396  2.37411
ar Spacing (Schott) | 026476 0.19989 i}
Max Pareto front error | 3.35489  3.31314
Extent | 356039  3.57319
'o.ga 31 z _
E A
2 1 _
A %
A-I— +
1 = + + 7
/\ +

© Anne Auger and Dimo Brockhoff, INRIA Advanced Control Lecture: Advanced Concepts



What Are Good Set Quality Measures?

There are three aspects [Zitzler et al. 2000]

LOMpArmg tirmcTrent opuImiilZatnon TCCIques CXPeTHIICHTIny aiways MIvOIves THC NNOTION
of performance. In the case of multiobjective optimization, the definition of quality is
substantially more complex than for single-objective optimization problems, because the

optimization goal itself consists of multiple objectives:

o The distance of the resulting nondominated set to the Pareto-optimal front should be
minimized.
o A good (in most cases uniform) distribution of the solutions found is desirable. The

assessment of this criterion might be based on a certain distance metric.

. Theiﬂ%ﬁh’fof the obtained nondominated front should be maximized, i.e., for each
objective, a wide range of values should be covered by the nondominated solutions.

In the literature. some artemnts can be found to formalize the above definition (or parts

Wrong! [Zitzler et al. 2003]
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Overview

The Big Picture

Basic Principles of Multiobjective Optimization
= algorithm design principles and concepts
= performance assessment

Selected Advanced Concepts
* indicator-based EMO
= preference articulation

A Few Examples From Practice
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Indicator-Based EMO: Optimization Goal

When the goal is to maximize a unary indicator...
* we have a single-objective set problem to solve
= but what is the optimum?
= Important: population size u plays a role!

Multiobjective Indicator Single-objective
Problem > Problem

Optimal p-Distribution:
A set of y solutions that maximizes a certain unary indicator |
among all sets of y solutions is called

optimal p-distribution for I. [Auger et al. 2009a]
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Optimal p-Distributions for the Hypervolume

Hypervolume indicator refines dominance relation
—> most results on optimal p-distributions for hypervolume

Optimal p-Distributions (example results)

[Auger et al. 2009a]:
= contain equally spaced points iff front is linear
= density of points « v/—f'(z) with f’ the slope of the front

[Friedrich et al. 2011]:
OPT 1

N log(min{A /a, B/b})

optimal u-distributions for the n

hypervolume correspond to HYP 1 A VO

g-approximations of the front ogiiyp 1.4 VIPEC/a) 1oa(B/b)
n—2

| (probably) does not hold for > 2 objectives
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Overview

The Big Picture

Basic Principles of Multiobjective Optimization
= algorithm design principles and concepts
= performance assessment

Selected Advanced Concepts
* indicator-based EMO
= preference articulation

A Few Examples From Practice
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Articulating User Preferences During Search

What we thought: EMO is preference-less

TIVEII Uy UIE JIVL.

Search before decision making: Optimization is performed without any pref-
erence Information given. The result of the search process is a set of
(1deally Pareto-optimal) candidate solutions from which the final choice
1s made by the DM.

[Zitzler 1999]

What we learnt: EMO just uses weaker preference information

environmental
selection

©

Q preferable?

Q
3 out of 6
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Incorporation of Preferences During Search

Nevertheless...
= the more (known) preferences incorporated the better

* n particular if search space is too large
[Branke 2008], [Rachmawati and Srinivasan 2006], [Coello Coello 2000]
ﬁz
©® Refine/modify dominance relation, e.g.:

* using goals, priorities, constraints ’
[Fonseca and Fleming 1998a,b] :

= using different types of cones
[Branke and Deb 2004]

® Use quality indicators, e.g.:

= based on reference points and directions [Deb and Sundar 2006,
Deb and Kumar 2007]

* based on binary quality indicators [Zitzler and Kiinzli 2004]
= based on the hypervolume indicator (now) [Zitzler et al. 2007]
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Example: Weighted Hypervolume Indicator

[Zitzler et al. 2007]

weighted
hypervolume

woig-t ¢ '

. e
WEIght 1 ¢ S
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Weighted Hypervolume in Practice

IBEA ‘

weighlec
Fypervelume

IBFA

weighled

Fyre-vel.me \WQ pre‘erence
1] peitls

0L - - - -
fi fy fy f4 f, fi f)
[Auger et al. 2009b]
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Overview

The Big Picture

Basic Principles of Multiobjective Optimization
= algorithm design principles and concepts
= performance assessment

Selected Advanced Concepts
* indicator-based EMO
= preference articulation

A Few Examples From Practice
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Application: Design Space Exploration

| |

Specification Evaluation — Implementation

Latency

tal
Power

Cost

. f
|
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Application: Design Space Exploration

Truss Bridge Design
[Bader 2010]

intial bridge warren truss

right side mirrored
fixed nodes

L /\/\A/\/\/\/\A

o, :
/7( ndecks i IoadL ;

i water level

207 207
' no robustness

© Anne Auger and Dimo Brockhoff, INRIA

— Implementation

Advanced Control Lecture: Advanced Concepts, ECP, March 14, 2013



Application: Design Space Exploration

Truss Bridge Design | Network Processor Design
[Bader 2010] [Thiele et al. 2002]

. Encryption/Decryption

O Voice Processing
fixed nodes

Verify i
. saesvG || SmespG || SmmpNG || close | Scemarios: Sceni R i IPhoader Cale Chock Flow NRT Forward
N i Maodify Sum
B Y =
: Oﬁnlmfmom Tink R Verify [P Process P A ule  Lin
o+ oo Total Memony: 9,963 Look Uj Tx

intial bradge warren truss Flow NRT Encrypt 7
raght side mirrore: ;

B implementation Mr. 11

ey 74
Voice RTP Tx UDP Tx Build IP Route UDP Rx. RTP Rx Dejitter Voice
Usikzation: 14% Utiiizasion: 0% Uikzation: 86% N
7( n deCkS |Oad L : Encods Flow RT Send Header Look Up Flow RT Recv Decoder
i water level < 1 I 1 >
Flaw: NRTForward Priofity: 3 Act. Wareg Ti in Queus: 1M.192

LinkT: Wi P
CalcChack
ARPLU
Classify

no robustness
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Application: Design Space Exploration

Truss Bridge Design

Network Processor Design
[Bader 2010]

[Thiele et al. 2002]

. Encryption/Decryption
intial bradge warren truss Flow NRT Encrypt o, ety s\ O\faice Processing
raghtsnde mirrore R irpiemariaten e NEG RN
fx Ed__ ngld_?s | samsve || smwspc || smmew || cose | scenarios: | scenz || scomt | RN IP header. Cale Check Flow NRT Forward
& ‘Optimal Sealing Factor: 0.540 Link Rx Ve ces! Al ule inl
o+ o Total Memory: 9,503 Hy Header Look Uy Tx
ey 74
% /{ i e G| 6 DD DD s @t @t @@
Voice RTPTx UDP Tx Build [P Route UDP Rx RTPRx Dejitter Voice
Usilzation: 14% Uiization: 0% Unikzation: 88% N
/ ﬂ dECkS Ioad L : ool oW RT Send T Lok Flow RT Recy "%
i water level < | I 1 >

Water resource
management
[Siegfried et al. 2009]

no robustness
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Application: Trade-Off Analysis

Module identification from biological data [Calonder et al. 2006]

Find group of genes wrt 1+ """"""" - T . ot 'f1' 'V'S;_'éé'f'z """""
different data types: 0'9‘; """"" S S X GEfvs.PPIf, |
0.8K S U + GEf, vs. metabolicf, | :
o+ |

= similarity of gene > L e
expression profiles - 063><<++ ------------ N
§ ospx ;-**t ----- S
= overlap of protein o 04k S — S T
interaction partners £ . )&&)& ______________ SRR S

o ‘ n
02k - oo RO CORRERERE P S

. : X, ;
* metabolic pathway o e X -+ - ;
map distances | k. o SN % + |
i i I i [
% 0.2 0.4 0.6 0.8 C
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Conclusions: EMO as Interactive Decision SUpport

/A modeling

y

44

adjustment ,

4

analysis

oroblem

specification optimization

A

A 4

visualization

preference |

articulation | =

-

*= decision making

© Anne Auger and Dimo Brockhoff, INRIA
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PISA: http://lwww.tik.ee.ethz.ch/pisa/

SYSTEMS OPTIMIZATION

ETH Ziirich - D-ITET - TIK - SOP - PISA

Mrisa
Principles and
a. Documentation
“ PISA for Beginners

’ Downloads

Performance
Assessment
~— Write and Submit a
- Module

* Publications, Bugs,
Contact & License

© Anne Auger and Dimo Brockhoff, INRIA

‘this webpage might no longer be updated more.. F]

Download of Selectors, Variators and Performance Assessment

This page contains the currently available variators and selector (see also Principles of PISA) as well as performance
assessment tools (see also Performance Assessment). The variators are mainly test and benchmark problems that
can be used to assess the performance of different optimizers. EXPO is a complex application form the are of
computer design that can be used as a benchmark problem too. The selectors are state-of-the-art evolutionary
multi-objective optimization methods. If you want to write or submit 3 module, please look at Write and Submit 3
Module. Links to documentation on the PISA specification can be found at Documentation.

Jaroslav Hajek pointed out a severe bug in the WFEG selector, please redownload the module if your version is older
than 2010/02/03.

Optimization Problems
(variator)

GWLAB - Multi-Objective Groundwater Management
Package: in Matlab

Optimization Algorithms
(selector)

SPAM - Set Preference Algorithm for Multiobjective
Optimization

Source: inC

Lol Binaries: Windows, Linux 32bit, Linux 64bit

more...

LOTZ - Demonstration Program

Source:  inC SHV - Sampling-based
Binaries: Solaris, Windows, Linux

rperVolume-oriented algorithm

Source:  inC

MOore... : ) ) :
Binaries: Windows, Linux 32bit, Linux 64bit
LOTZ2 - Leading Ones Trailing Zeros MOTE-
Cnli e SIBEA - Simple Indicator Based Evolutionary Algorithm
Binaries: Solaris, Windows, Linux - :
more... Source: InJava asrar or Zip
Binarfes: asrar, as zip or as tar.gz
LOTZ2 - Java Example Variator it
_— HypE - H rvolume Estimation rithm for Multiobjective
Source: injava e e mation Aloo i
Binaries: Windows, Linux
mMOore...

Source:  inC )
Binarfes: ‘Windows, Linux 32bit, Linux 64bit

Knapsack Problem mare...

Source: inC : : SEMO - Demonstration Program
Binaries: Solaris, Windows, Linux

mare... Source:  inC .
Binarfes: Solaris, Windows, Linux -
EXPO - Network Processor Design Problem
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Exercise:
Runtime Analysis of a
Simple EMO Algorithm
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Constrained Optimization
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Constrained Optimization

= up-to-now only unconstrained problems considered
= but constraints are frequent in practice

* most combinatorial optimization problems have constraints
(think about knapsack, scheduling, ...)

= also continuous problems might have constraints (remember
the initial Ariane launcher problem?)

min f(x)
s.t.
gi(x) <0forall 1 <i<m

| (z) = <j<
Main approaches: hj(z) = 0 for all l=g=p

= straightforward rejection sampling

= penalty functions

= special representations and operators
= multiobjective formulation

© Anne Auger and Dimo Brockhoff, INRIA Advanced Control Lecture: Advanced Concepts, ECP, Mar



The Simplest Approach: Rejection Sampling

until candidate solution is feasible: resample the search space
according to current probability distribution

* no information about infeasible region is used
= not applicable if feasible region is (too) small
» other approaches used (much) more frequently
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Penalty Functions

» transform constrained problem into unconstrained one:

incorporate (the amount of) constraint violations into the
objective function

= already proposed in the 1940s by Richard Courant

. .
general example: / constants

é(ﬁ) = f(z) +Z% G; +Z%

T i=0 A =0 A

“old” function

unconstrained function function of  function of
gi(x) hi(x)
Remarks:

= death penalty = rejection sampling
= (difficult to find appropriate constants and G, and H, functions
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Special Representations And Operators

we have seen already examples:
= TSP: permutations
* single-objective knapsack problem: no details

» either operators directly produce a feasible solution (like for TSP)

= or after the operator is used, a repair strategy transforms any
infeasible solution into a feasible one

* e.g.in knapsack problem: greedily reduce the number of
chosen items according to profit/weight; until constraint fulfilled
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Constraints and Multiobjective Optimization

ldea 1:

use a multiobjective algorithms to solve a problem where all
constraints are objective functions

ldea 2:

solve a bi-objective problem where the second objective is the
sum of all constraint violations

Possible problem:
the algorithm might only search in the infeasible domain
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Box Constraints With CMA-ES

Main idea of standard implementation:

* using standard covariance matrix update with unchanged
differences as if the new points are feasible

= projection of infeasible points onto boundary variable-by-
variable to compute a feasible function value

= no penalty
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Possible Thesis Projects
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INRIA Saclay — lle-de-France with Anne

= more related to continuous single-objective optimization

* both theoretical and practical projects
» several possible options with respect to benchmarking

= constrained optimization
» |arge-scale optimization
= expensive optimization
= more concrete: visualizing algorithm comparison results on
an interactive web page
£ g LA
%D 7 § 20-D
i i F—sl=
3 : . - = — 418019
Eﬁ DFJ/_J 33" 6 7 §"";l I
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INRIA Lille — Nord Europe with Dimo

More related to multiobjective optimization (but probably also
possible in Saclay)

» scalarization/aggregation-based EMO (also parallelization
possible) o

= variation operators for set-based EMO

= stopping criteria and restarts for EMO

= optimal y-distributions (both theoretical Il?f,-:,,-.,
and numerical) 1R

opt. dist. of
- |50 points.

for questions, just ask us: D11
firstname.lasthname@inria.fr 0
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Good luck for the exam!
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