Exercise Solution: A Fuzzy Controller for the
Pole Balancing Problem

Advanced Control lecture
at Ecole Centrale Paris

Anne Auger and Dimo Brockhoff

firstname.lastname@inria.fr

Jan 18, 2013

Abstract

After implementing the pole balancing problem and getting an in-
tuition about how difficult it is to design the linear controller for it,
we will now apply fuzzy logic to create a controller that does not use
all possible input measurements of the cart.

Solutions are written in blue.

1 Getting familiar with fuzzy implications

Let the temperature T be a fuzzy variable that can belong to the fuzzy set
“hot” and to the fuzzy set “moderately hot” the membership functions of
which are defined as follows:

0 T <25°
Hot(T) = =25 if 25° < T < 35°
1 T > 35°
200 i 20° < T < 25°
ModeratelyHot(T") = — (552 if25° < T <300
0 else

Further, let us define the fuzzy set “Crowdedness” of an ice-cream shop as

0 ifC<25
Crowdedness(C') = 02;525 if 25 <O <50
1 if x > 50

where C' is the number of customers in the shop.

a)

Draw /Plot the membership functions of the three above fuzzy sets. In-
teresting MATLAB functions to look at: trimf, trapmf, plot, hold
on/off

With the Fuzzy Logic Toolbox of Matlab, the implementation of
membership functions is quite easy although it is, in principle, also
possible to program them “by hand” as somebody of you did in the
exercise. The MATLAB script crowdedness0fShop.m in the zip file
icecream.zip shows a possible way to implement the membership
functions with the help of the Fuzzy Logic Toolbox:

1 1

0.9 | —— moderately hot j ool

0.8 4 08}
07 4 07 '
'
06 4 06 !
'
'
05 4 05 '
0.4 4 0.4 '
0.3 q 0.3 !
02 4 0.2 ,

0.1 1 01

0 0

Find the implication of the rule

IF the temperature is hot OR the temperature is
moderately hot THEN the ice-cream shop is crowded.

with respect to Mamdani’s rule and Larsen’s product rule if the tem-
perature is 28°. In other words, how crowded is the ice-cream shop at
a temperature of 7' = 28° according to the above rule? To this end

I) plot first the membership function of the left-hand side of the
implication (see max and min),

1)

111)

V)

hot OR moderately hot

09

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0 5 10 15 20 25 30 35 40
temperature T

then write a function for each of the implication rules (Mam-
dani/Larsen), and third

evaluate the left-hand side membership function at the right tem-
perature (see e.g. evalmf) and apply the two implication rules to
find out how crowded the ice-cream shop is (plot the resulting
membership functions).

Finally, use the centroid defuzzification!' to get a “crisp” answer
whether the ice-cream shop is crowded or not. In which way does
it matter which implication function you use?

The script crowdednessOfShop.m also shows how to implement
this part of the exercise. The final answers according to the two
implication rules are that the shop is 64.9655% crowded (Mamdani
rule) and 68.3587% crowded (Larsen rule). The following plot
shows the resulting membership functions as well as the defuzzified
values for both rules.

1

= crowdedness wrt Mamdani
crowdedness wrt Larsen

= = = centroid wrt Mamdani

0.8} = = = centroid wrt Larsen

0.9

0.7 : !
06 : !
05

0.4 T

0.3

0.2 1

0.1

° i i i
0 20 40 60 80 100
percentage of crowdedness C

'Tt might be helpful to look at the defuzz function from the Fuzzy Logic Toolbox in

MATLAB.

2

A fuzzy controller for the pole balancing
problem

Review the pole balancing problem from the previous exercise. All parame-
ters and variables are essentially the same as before except that, for simplic-
ity, we loose the constraints of the track length to h = £100m and of the
pole failure angle to » = £7/2 (90°). In this exercise, the controller does
not have access to the direct measurements of all four input values (value
and derivative of the position x of the cart and of the angle € of the pole).
Instead, we allow only for the two inputs 6 and 0 for the moment.

a)

Think about how to fuzzify the inputs and outputs of a fuzzy controller
for this restricted pole balancing problem. As a recommendation, use
three linguistic variables or membership functions per input and five
or seven for the output. The inputs to the system are, as mentioned
above, the angle 6 and its velocity 0. The former could be for example
modeled with the three membership functions left, middle, and right
while for the latter, the names could be negative, okay, and positive.
The system’s output is the applied force F' which could be modeled
with the membership functions for strongly negative, negative, slightly
negative, zero, slightly positive, positive, and strongly positive.

Define the membership functions according to your fuzzification. For
simplicity (and for the debugging), the sole use of triangular and trape-
zoidal membership functions is highly recommended. As suggested,
only triangular and trapezoidal membership functions are used which,
for each variable, overlap slightly between neighboring functions. Open
the file controller_2inputs.fis within the archive fuzzycontroller.
zip with the fuzzy logic toolbox for details.

Define the rule matrix for your fuzzy controller. Also for the rule
matrix, we refer to the file controller_2inputs.fis for details.

Implement the fuzzy controller with the help of MATLAB’s Fuzzy Con-
trol Toolkit. Use Mamdani’s rule for the implications and the centroid
defuzzification.

I) Start the Fuzzy Control Toolkit by typing fuzzy in MATLAB.
In the upper half of the new window, you see an abstract view

4

of your system with the inputs on the left, the implication rules
in the middle, and the outputs on the right. Add a second input

variable with choosing Edit-->Add Variable...-->Input from
the menu. Advice: Save your fuzzy system regularly by choosing
File-->Export-->To File... from the menu.

IT) By double-clicking on the input or output variables, a new window
opens where you can name and enter your membership functions.
The menu allows to add or delete functions. Change the member-
ship functions’ shape according to your above design choices by
editing the values in the Params field or using the mouse.

III) In the initial FIS editor window, double-click on the white middle
block with “mamdani” written in the brackets to enter your rules
of the rule matrix.

IV) If you have not done yet, save your fuzzy controller as a .fis file
that you can later on use within your script from last week to get
the response for a certain input.

The file controller_2inputs.fis contains all functionality of the con-
troller.

Test your controller on the pole balancing benchmark from the previous
exercise. To this end, use the functions readfis and evalfis to load
your controller and evaluate it, e.g. like this:

myController = readfis(’NAMEOFYOURCONTROLLER’) ;
F = evalfis([angle_theta angle_velo], myController);

The provided files simulate_fuzzy.m, simulate.m, and myFuzzyController_

2inputs.m provide the functionality to run the controller as well as
plotting the variables of the system over time based on the solution of
last week’s exercise. Does your fuzzy controller allow to stabilize the
pole?

Yes, looking at the angle values and the corresponding velocities over
time (see Fig. 1), we can say that the pole is stabilized around 6 = 0
after starting with an angle of 0.1. Similar starting angles result in
similarly stable behavior.

position

10 T T T T T
5 -
0 1 1 1 1
0 10 20 30 40 50 60
dx/dt
1 | T T T T T
!
05}t -
0 L
0 10 20 30 40 50 60
angle
0.1 T T T T T
0.05
0
0 10 20 30 40 50 60
de/dt
2 | T T T T T |
0
| |
-2 L 1 1 1 1 1
0 10 20 30 40 50 60

Figure 1: Position (blue), angle (red), and their velocities over time.

f) What is not possible with the current problem formulation and why?
The values of the cart’s position indicate that, although the pole angle
is stable, the cart continues to move in one direction. Simulating longer
would cause the simulation to fail due to the constraints on the variable
x. The reason is that the measurement of x is not taken into account by
the controller and the position of the cart is therefore also not conrolled.

3 Non-Mandatory Questions

If you have more time, you can further play around with the system. For
answering those questions, the lecture was too short and no solution will be
given here. However, it is indeed easily possible to answer the questions by
playing around with the provided code.

6

2)

b)

Is the centroidal defuzzification giving better results than other meth-
ods?

What about the influence of other parameters of the sytem such as the
implication rule, the simulation accuracy, or the initial cart and pole
positions?

Can you come up with a nice illustration of the system behavior in
which you can follow the trajectory of the pole and the cart during
the simulation in one single plot? This plot is already contained in the
provided code example.

