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Date Topic 

Fri, 10.1.2014 DB Introduction to Control, Examples of Advanced Control 

Fri, 17.1.2014  DB Introduction to Fuzzy Logic 

Fri, 24.1.2014 DB Introduction to Artificial Neural Networks, Bio-inspired 

Optimization, discrete search spaces 

Fri, 31.1.2014 AA Continuous Optimization I 

Fri, 7.2.2014 AA Continuous Optimization II 

break 

Fri, 28.2.2014 AA The Traveling Salesperson Problem 

Fr, 7.3.2014 DB Controlling a Pole Cart 

Fr, 14.3.2014 written exam (paper and computer) 

Course Overview 

all classes + exam at 8h00-11h15 (incl. a 15min break around 9h30) 

here in CTI-B3 
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Remark to last lecture 

All information also available at  

 
http://researchers.lille.inria.fr/~brockhof/advancedcontrol/ 

 

(exercise sheets, lecture slides, additional information, links, ...) 
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Artificial Neural Networks 
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The Biological Neuron 

W.-C. A. Lee, H. Huang, G. Feng, J. R. Sanes, E. N. Brown, P. T. So, E. Nedivi 

1836: Discovery of the 

neural cell of the brain, 

the neuron 
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The Biological Neuron 

dendrite 

soma 

nucleus 

node of Ranvier 

myelin sheath 

axon terminal 

Schwann cell 

inputs output 

Quasar  

Jarosz  
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weights 

inputs 

transfer function 

output 

1943: Warren McCulloch  

and Walter Pitts propose 

the Threshold Logic Unit 
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   linear 

 

 

 

   step 

 

 

 

   sigmoidal 

 

        advantage: differentiable 

Types of Transfer Functions 
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Artificial Neural Networks (ANNs) = a network of artificial neurons 

Combining Artificial Neurons 

layer of 

neurons 
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Artificial Neural Networks (ANNs) = a network of artificial neurons 

Combining Artificial Neurons 

input 

layer 
hidden 

layer(s) 

output 

layer 
Feed-forward network: 

no “backwards” flow of 

information 

Linear transfer functions: 

multi-layer networks can be 

simulated by a single-layer ANN 
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Supervised learning scenario: 

 neural network with     inputs and      outputs 

 given a set of training data 

 what are “optimal” weights such that 

                                  

 

 

 is minimal? 

 

 

Optimizing Weights in Order to Optimize Output 

n m
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training data set vs. testing data set 

 

training error vs. validation error 

 

 

 

 

 

 

 

 

Generalization vs. Overfitting 

 generalization behaviour desired 

 overfitting especially when not much training data available 

 

Testing and Training in Supervised Learning 

training error 

validation error 
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Optimization: 

 

 

Gradient Descent Algorithm 

 initialize  

 At each iteration   : 

 compute gradient  

   

 

 

 

 

 

Gradient Descent to Optimize 

learning rate 
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Optimization: 

 

 

Gradient Descent Algorithm 

 initialize  

 At each iteration   : 

 compute gradient  

   

 

 

 

! can be slow close to optimum 

   other algorithms might be favorable 

 

 

Gradient Descent to Optimize 

learning rate 
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Optimization: 

 

 

Gradient Descent Algorithm 

 initialize  

 At each iteration   : 

 compute gradient  

   

 

 

 

! can be slow close to optimum 

   other algorithms might be favorable 

   (keyword: natural gradient) 

 

 

Gradient Descent to Optimize 

learning rate 

P.A. Simionescu 

Example: 

Rosenbrock function 
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How to choose the weights in a multi-layered ANN? 

 Why not optimize weights directly? 

 

 

 

 

 
  

 since complicated*, better: 

 gradient descent after each training sample 

= stochastic gradient descent (SGD, online gradient descent) 

 

 
 

 descent steps can be performed multiple times over the 

training set (e.g. with random shuffling) 
* complicated: difficult analytically, numerically expensive 

 

Optimizing Weights in a Layered Network 
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The Backpropagation Algorithm 

 introduced around 1970, it gave rise to a renaissance of ANNs 

 “backwards propagation of errors” 

 mainly useful for feed-forward networks 

 all transfer functions must be differentiable 

 

Main Idea: 

 for each training sample: 

 compute output of ANN, given the current weights 

 compute gradient wrt. weight on each node from the output 

layer backwards to the input layer 

 update the weights according to gradient descent 

  

 an efficient stochastic gradient descent by updating all weights at 

once in a smart way 

 

Optimizing Weights in a Layered Network 
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Notes: 

 stochastic gradient descent converges to local minimum 

 random initial values, restarts 

 more about optimization algorithms within the next weeks 

 

 

Optimizing Weights in a Layered Network 



19 Advanced Control Lecture: Optimization, ECP, Jan. 24, 2014 © Anne Auger and Dimo Brockhoff, INRIA 19 

Mastertitelformat bearbeiten 

Many application areas: e.g. 

 identification problems 

 face recognition 

 medical diagnoses 

 character recognition in mobile devices 

 predictions/forecasting 

 stock market 

 electronic nose 

 control 

 

Applications of Neural Networks 

At the end of the course: 

     exercise using ANNs for 

     the pole balancing problem 

Ralf Pfeifer 

1993 
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Introduction to 

Bio-inspired Optimization 
and Genetic Algorithms in particular 
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Given: 

set of possible solutions 

 

quality criterion 

 

Objective: 

 Find the best possible solution for the given criterion 

 

 

Formally: 

Maximize or minimize 

 

 

 

General Context Optimization 

Search space 

Objective / Fitness function 
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Why are we interested in a black box scenario? 

 objective function F often noisy, non-differentiable, or sometimes 

not even understood or available 

 

 

Objective: find x with small F(x) with as few function evaluations as 

possible 

assumption: internal calculations of algo irrelevant 

Black Box Scenario 

black box 
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Knapsack Problem 

 Given a set of objects  with 

 a given weight and value (profit) 

 Find a subset of objects whose 

 overall mass is below a certain 

 limit and maximizing the 

 total value of the objects 
 

 [Problem of ressource allocation 

 with financial constraints] 

 

 

Example 1: Combinatorial Optimization 

Dake 
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Travelling Salesperson Problem (TSP) 

 Given a set of cities and their 

 distances 

 Find the shortest path going 

through all cities 
 

  

 

Example 2: Combinatorial Optimization 
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Design of a Launcher 

 

 

 

 

 

 

 Scenario: multi-stage launcher brings a 

satellite into orbit 

 Minimize the overall cost of a launch 

 Parameters: propellant mass of each stage / 

diameter of each stage / flux of each engine / 

parameters of the command law 

    23 continuous parameters to optimize 

    + constraints 

 

Example 3: Continuous Optimization 

Vol atmosphérique 
- efforts généraux 

- pilotage 

retombée d’étage 

visibilité 

120km 

fragmentation 

flux thermique largage coiffe 
(flux thermique) 

station 1 
station 2 

Injection en 
orbite 

- position 
- vitesse 

pas de tir 

Séparations 
(pression 

dynamique) 

Poppy 

copyright by Astrium 
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Coffee Tasting Problem 

 Find a mixture of coffee in order to keep the coffee taste from 

one year to another 

 Objective function = opinion of one expert 

 

 

Example 4: Interactive Optimization 

M. Herdy: “Evolution Strategies with subjective 

selection”, 1996 

1 

3 

2 
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Why using (bio-inspired) search heuristics? 

 

 Search space too large 

 exhaustive search impossible 

 

 Non conventional objective function or search space 

 mixed space, function that cannot be computed 

 

 Complex objective function 

 non-smooth, non differentiable, Noisy, ... 

 

What makes an optimization problem difficult? 
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Basic Algorithms 
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One class of bio-inspired stochastic optimization algorithms: 

Evolutionary Algorithms (EAs) 

 

 

 

 Class of optimization algorithms 

 inspired by the idea of biological 

 evolution 

 selection, mutation, recombination 

 

 

Bio-inspired Stochastic Optimization Algorithms 

1859 
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Classical Optimization Evolutionary Computation 

 

candidate solution 

vector of decision variables /      

design variables / object 

variables 

individual, offspring, parent 

 

set of candidate solutions population 

objective function 

loss function 

cost function 

error function 

fitness function 

iteration generation 

Metaphors 
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Generic Framework of an EA 

Important: 

representation (search space) 
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Genetic Algorithms (GA) 

J. Holland 1975 and D. Goldberg (USA) 

 

Evolution Strategies (ES) 

 I. Rechenberg and H.P. Schwefel, 1965 (Berlin) 

 

Evolutionary Programming (EP) 

 L.J. Fogel 1966 (USA) 

 

Genetic Programming (GP) 

 J. Koza 1990 (USA) 

 

 

 nowadays one umbrella term: evolutionary algorithms 

The Historic Roots of EAs 
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Examples for some EA parts 
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Selection is the major determinant for specifying the trade-off 

between exploitation and exploration 
 

Selection is either 

      stochastic                                  or                     deterministic 
 

e.g. fitness proportional 

 

 
 

                               e.g. via a tournament 

 

 
Mating selection (selection for variation): usually stochastic 

Environmental selection (selection for survival): often deterministic 

 

Selection 

Disadvantage: 

depends on 

scaling of f 

e.g. (µ+λ), (µ,λ) 
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Variation aims at generating new individuals on the basis of those 

individuals selected for mating 

 

Variation = Mutation and Recombination/Crossover 

 

mutation:   mut: 

recombination: recomb:                     where           and  

 

 

 choice always depends on the problem and the chosen 

representation 

 however, there are some operators that are applicable to a wide 

range of problems and tailored to standard representations such 

as vectors, permutations, trees, etc. 

 

Variation Operators 
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Two desirable properties for mutation operators: 

 every solution can be generated from every other with a 

probability greater than 0 (“exhaustiveness”) 

   

 (“locality”) 

 

 

Desirable property of recombination operators (“in-between-ness”): 

Variation Operators: Guidelines 
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Swap: 

 

 
 

Scramble: 

 

 
 

Invert: 

 

 
 

Insert: 

Examples of Mutation Operators on Permutations 
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1-point crossover 

 

 

 

 

n-point crossover 

 

 

 

 

uniform crossover 

Examples of Recombination Operators: {0,1}n 

choose each bit 

independently from 

one parent or another 
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 binary search space, maximization 

 uniform initialization 

 generational cycle: of the population 

 evaluation of solutions 

 mating selection (e.g. roulette wheel) 

 crossover (e.g. 1-point) 

 environmental selection (e.g. plus-selection) 

A Canonical Genetic Algorithm 
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 EAs are generic algorithms (randomized search heuristics, 

meta-heuristics, ...) for black box optimization 

no or almost no assumptions on the objective function 

 

 They are typically less efficient than problem-specific 

(exact) algorithms (in terms of #funevals) 

not the case in the continuous case (we will see later) 

 

 Allow for an easy and rapid implementation and therefore 

to find good solutions fast 

 easy to incorporate (and recommended!) to incorporate 

problem-specific knowledge to improve the algorithm 

 

First Conclusions of Introductory Part 
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Exercise: 

Pure Random Search 

and the (1+1)EA 

http://researchers.lille.inria.fr/~brockhof/advancedcontrol/ 
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Proof Technique Fitness-based Partitions 
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Upper Runtime Bound for (1+1)EA on ONEMAX 
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Upper Runtime Bound for (1+1)EA on ONEMAX 


