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Date | _lTopic

Introduction to Control, Examples of Advanced Control
Introduction to Fuzzy Logic

Introduction to Artificial Neural Networks, Bio-inspired
Optimization, discrete search spaces

Continuous Optimization |
Continuous Optimization Il

The Traveling Salesperson Problem
Controlling a Pole Cart
written exam (paper and computer)

all classes at 8n00-11h15 (incl. a 15min break around 9h30)

next week: exam at 8h00-11h15
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Exercise: Pole Balancing
with ANNs and CMA-ES
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Reminder: The Pole Balancing Benchmark

Typical benchmark example of a system with “advanced control”:

The Pole Balancing Problem

1-dimensional,
no friction, _
4 inputs: z,z,0,0,
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Reminder: Simulated Pole Balancing

Given all the parameters of the system, what do we do with it?

Answer: simulate!
= starting point: certain (random) position and angle;
velocities and accelerations are zero
= choose discretization time step (e.g. 7 = 0.02s )
= at each time step, do:
= compute 6, with values 8; and 6,
= compute i, with é,,6, and the new

. Xy = T+ TX
Tir1 = Ty +TI
0rs1 = 0 +76,
ét+1 = éi + ’Tét
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Reminder: Linear Control Law

Remark:

if the values and velocities of both position and angle are
measured, there exists a linear (bang-bang) controller of the form:

F, = F,, sgn(kix; + kody + ks + k46;)

What we have seen:

random choice of ki, k2, k3, ks enough to find a good controller
most of the time

But
= this holds only for one specific initial condition of zo and

= parameters different for different initial conditions or random
sampling of ki, ks, k3, k4 NOt enough anymore
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Excursion: Robustness and Noise

A controller is robust if it works for different
Initial conditions - not only for one
- simulate for different initial conditions

= however, amount of “testable” initial
conditions is typically limited
= put one would like to find a controller that
works for all initial conditions
- simulate for different random conditions

random initialization introduces noisy
measurements in terms of number of stable

simulation steps
- Interested In robust solutions
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More General Issue: Uncertainty

Uncertainty iIs always an important aspect in practice:

* the objective function is only a model of what we want
measuring/simulation/modeling errors

» the problem formulation is static while reality is dynamic
temperature, atmospheric pressure, ... changes
material wears down

= even if we can detect the optimum, we might not be able to
produce it

based on H.G Beyer and B. Sendhoff: “Robust Optimization — A Comprehensive Survey”. In Computer
Methods in Applied Mechanics and Engineering, 196(33-34):3190-3218, 2007
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Exercise Part I
Is the linear controller robust?

http://researchers.lille. inria.fr/~brockhof/advancedcontroI/J
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Combining Artificial Neurons

Artificial Neural Networks (ANNs) = a network of artificial neurons

Z5
e
no “backwards” flow of
Information
5 S M 0 T 190
Transfer functions: Y=o Zﬂ:w-m-
output of each neuron based on inputs e
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Exercise Part Il:
Implementing an
Artificial Neural Network

http://researchers.lille. inria.fr/~brockhof/advancedcontroI/J
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The Algorithm CMA-ES

Input: m e R", c € Ry, A
Initialize: C =1, andp. =0, p, =0,
Set: cc m4/n, co m4/n, ¢y & 2/n%, cp & /0?1 +op S 1 de &1+ /B

and w;—;._ such that p,, = %ﬂ ~ 0.3\
While not terminate
xi=m+oy, yi~ Ni(0,C), fori=1,...,\ sampling
m— > wixpy =m+ oy, wherey, = > wiyia update mean
pe + (1 —=ce)pe + Ny <rsvm V1 — (1 —ce)> /iy cumulation for €
Po (1 = co)po + /1= (1 = co)2/lw C 7y cumulation for &
C(I—c1=cu)C + crpepe’ + cu Dt WidiaVin update C
T 4= T X exp (;: (Ellkfi"?'l}ll — 1)) update of &

Not covered on this slide: termination, restarts, useful output, boundaries and
encoding
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The output of CMA-ES
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Issues on the Representation

Observation

= The weights of ANNSs are typically normalized and lie within [0, 1]

= But CMA-ES does not restrict the variables in the standard
setting

Hence, we have to set the bound constraints correctly:

opts.LBounds = 0;
opts.UBounds = 1;
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Exercise Part lll:

Using CMA-ES to Optimize the
Weights of our ANN controller

http://researchers.lille.inria.fr/~brockhof/advancedcontrol/

J
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