Algorithms & Complexity Lecture 2: Sorting

September 24, 2019 CentraleSupélec / ESSEC Business School

Dimo Brockhoff

Inria Saclay – Ile-de-France

NSTITUT

Correction from Last Lecture

! The definition of the O-notation had a mistake related to where the absolute value was !

- it reads correctly $|f(n)| \le c \cdot g(n)$ instead of $f(n) \le c \cdot |g(n)|$ in the definition [corrected in old slides on the web]
- it definitely makes more sense like that:
 - -n = O(n) i.e. -n increases at most as quickly as n

Course Overview

Thu		Торіс
Thu, 12.09.2019	PM	Introduction, Combinatorics, O-notation, data structures
Tue, 24.09.2019	PM	Sorting algorithms I
Tue, 1.10.2019	PM	Sorting algorithms II, recursive algorithms
Tue, 8.10.2019	PM	Greedy algorithms
Tue, 15.10.2019	PM	Dynamic programming
Thu, 31.10.2019	AM	Randomized Algorithms and Blackbox Optimization
Tue, 5.11.2019	PM	Complexity theory I
Tue, 26.11.2019	PM	Complexity theory II
Tue, 17.12.2019	AM	Exam (written)

Quick Recap

- Basics of combinatorics and the O-notation
- Data structures
 - Arrays: fast access, slow search, no insert
 - Lists: slow access, slow search, but insert/remove in constant time
 - Hence python lists are implemented as dynamic arrays (once array is full, a larger chunk of memory gets allocated) <u>http://www.laurentluce.com/posts/python-list-</u> <u>implementation/</u>
 - Trees: log(n) access, log(n) add/remove [today]
 - Dictionaries: we will see ☺

Trees

© Dimo Brockhoff, Inria 2019

Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 24, 2019

© Dimo Brockhoff, Inria 2019

For a more formal definition, we need to introduce the concept of graphs...

Basic Concepts of Graph Theory

[following for example http://math.tut.fi/~ruohonen/GT_English.pdf]

Graphs

Definition 1 An undirected graph G is a tupel G = (V, E) of edges $e = \{u, v\} \in E$ over the vertex set V (i.e., $u, v \in V$).

- vertices = nodes
- edges = lines
- Note: edges cover two unordered vertices (undirected graph)
 - if they are ordered, we call G a directed graph with edges e = (u, v)

Graphs: Basic Definitions

- G is called *empty* if E empty
- u and v are end vertices of an edge {u,v}
- Edges are *adjacent* if they share an end vertex
- Vertices u and v are *adjacent* if {u,v} is in E
- The *degree* of a vertex is the number of times it is an end vertex
- A complete graph contains all possible edges (once):

Walks, Paths, and Circuits

Definition 1 A walk in a graph G = (V, E) is a sequence

$$v_{i_0}, e_{i_1} = (v_{i_0}, v_{i_1}), v_{i_1}, e_{i_2} = (v_{i_1}, v_{i_2}), \dots, e_{i_k}, v_{i_k},$$

alternating vertices and adjacent edges of G.

A walk is

- closed if first and last node coincide
- a trail if each edge traversed at most once
- a path if each vertex is visited at most once
- a closed path is a *circuit* or *cycle*
- a closed path involving all vertices of G is a *Hamiltonian cycle*

Graphs: Connectedness

- Two vertices are called *connected* if there is a walk between them in G
- If all vertex pairs in G are connected, G is called connected
- The connected components of G are the (maximal) subgraphs which are connected.

Trees and Forests

- A forest is a cycle-free graph
- A *tree* is a connected forest

A spanning tree of a connected graph G is a tree in G which contains all vertices of G

Sometimes, we need to traverse a graph, e.g. to find certain vertices

Depth-first search and breadth-first search are two algorithms to do so

Depth-first Search (for undirected/acyclic and connected graphs)

- start at any node x; set i=0
- e as long as there are unvisited edges {x,y}:
 - choose the next unvisited edge {x,y} to a vertex y and mark x as the parent of y
 - if y has not been visited so far: i=i+1, label y as the node visited at iteration i, and continue the search at x=y in step 2
 - else continue with next unvisited edge of x
- If all edges {x,y} are visited, we continue with x=parent(x) at step 2 or stop if x equals the starting node v0

DFS: Stage Exercise

Exercise the DFS algorithm on the following graph!

Breadth-First Search (BFS)

Breadth-first Search (for undirected/acyclic and connected graphs)

- start at any node x, set i=0, and label x with value i
- e as long as there are unvisited edges {x,y} which are adjacent to a vertex x that is labeled with value i:
 - label all vertices y with value i+1
- set i=i+1 and go to step 2

Back to Trees as Data Structure

Binary Search Tree

- a tree with degree ≤ 2
- children sorted such that the left subtree always contains values smaller than the corresponding root and the right subtree only values larger

Round 1: give an integer to be filled into our tree Round 2: tell where the next integer inserts

Binary Search Tree: Complexities

Search

- similar to binary search in array (go left or right until found)
- O(log (n)) if tree is well balanced
- $\Theta(n)$ in worst case (linear list)

Insertion

- first like search to determine the parent of the new node
- then add in O(1) [we are always at a leaf or have an "empty child"]

Remove (more tricky)

- if node has no child, remove it
- if node has a single child, replace node by its child
- if node has two children: find left-most tree entry L larger than the to-be-removed node, copy its value to the to-be-removed node, and remove L according to the two above rules
- cost: O(tree depth), in worst case: Θ(n)

Binary Search Tree

average case (random inserts)			worst case			
search	insert	delete	search	insert	delete	
$O(\log(n))$	$O(\log(n))$	$O(\log(n))$	$\Theta(n)$	$\Theta(n)$	$\Theta(n)$	
average o	ase (randor	n inserts)	Guarantee a balanced tree: • AVL trees • B trees • Red-Black trees • worst case			
search	insert	delete	search	insert	delete	
$O(\log(n))$	$O(\log(n))$	$O(\log(n))$	$O(\log(n))$	$O(\log(n))$	$O(\log(n))$	

Balanced Trees

average c	ase (randor	n inserts)	worst case				
search	insert	delete	search	insert	delete		
$O(\log(n))$	$O(\log(n))$	$O(\log(n))$	$O(\log(n))$	$O(\log(n))$	$O(\log(n))$		
average case (random inserts) worst case							
search	insert	delete	search	insert	delete		
0(1)	0(1)	0(1)	$\Theta(n)$	$\Theta(n)$	$\Theta(n)$		

Dictionaries

In python:

```
my_dict = {`Joe': 113, `Pete': 7, `Alan': `110'}
print(`my_dict[`Joe']: `` + my_dict[`Joe'])
gives my_dict[`Joe']: 113 as output
```

- the immutables 'Joe', 'Pete', and 'Alan' are the keys
- **113**, **7**, and **110** are the values (or the stored data)

Next: Why dictionaries and how are they implemented?

Dictionaries

© Dimo Brockhoff, Inria 2019

Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 24, 2019

25

Where is Alan?

• Go through all offices one by one?

like in list and array

No, you would ask the receptionist for the office number

Dictionaries Implemented as Hashtables

Dictionaries Implemented as Hashtables

Possible hash function: $h = z \mod n$

Hash Functions

...should be

- deterministic: find data again
- uniform: use allocated memory space well [more tricky with variable length keys such as strings]

Problems to address in practice:

- how to deal with collisions (e.g. via multiple hash functions)
- deleting needs to insert dummy keys when a collision appeared
- what if the hash table is full? \rightarrow resizing

All this gives a constant average performance in practice and a worst case of $\Theta(n)$ for insert/remove/search

Not more details here, but if you are interested: For more details on python's dictionary: https://www.youtube.com/watch?v=C4Kc8xzcA68

What Have We Learned?

- Combinatorics: basic ways of counting things
- O-notation: how to formalize classes of asymptotic function growth
- Basic data structures and their operations
 - arrays
 - lists
 - (binary search) trees
 - dictionaries / hash tables

see also https://www.bigocheatsheet.com/

And along the way: graph theory, DFS, and BFS

discussion home exercises

Discussion Home Exercise

Exercise 1: Matrix Multiplication

•
$$c_{ij} = \sum_{k=1}^{n} a_{i,k} b_{k,j}$$

naïve implementation:

for
$$i = 1$$
 to m do:
for $j = 1$ to l do:
 $c_{ij} = 0$
for $k = 1$ to n do:
 $c_{ij} = c_{ij} + a_{ik}$.

- computation per cell: n additions and n multiplications
- has to be done for all $m \times l$ cells
- in total: $m \cdot l \cdot n$ additions and $m \cdot l \cdot n$ multiplications
- $\Theta(n^3)$ if k = l = n
- interesting: we can do better: $O(n^{\log 7}) = O(n^{2.807...})$ by Strassen (1968) even $O(n^{2.3728639})$ by Le Gall (2014)

© Dimo Brockhoff, Inria 2019

 b_{ki}

Discussion Home Exercise

Exercise 2: Tennis Event

- 2 players: trivial
- 4 players:

- first round: 2 games
- final (winners from first games) gives best player

another game needed (!): winner of the two losers against best is 2nd best

- 4 games in total
- with $n = 2^k$ players: k rounds kicks out half of the players with $\frac{n}{2} + \frac{n}{4} + \frac{n}{8} + \dots + 4 + 2 + 1 = n 1$ games to find out best
- Then k 2 = O(log(n)) more games needed to find second best as best among the losers against overall best

Mad melone

Exercise 3: Tennis Event II

No change in asymptotic number of $\Theta(n)$ games, because already finding out about the best player needs $\Theta(n)$ games

Discussion Home Exercise

Exercise 4: *O***-Notation**

$$O(f_1) + O(f_2) = O(f_1 + f_2)$$

Proof:

- choose $g_1 \in O(f_1)$ and $g_2 \in O(f_2)$ arbitrarily
- i.e. we have constants $n_1, n_2, c_1, c_2 > 0$ such that $g_1(n) \le c_1 \cdot f_1(n)$ for all $n > n_1$ and $g_2(n) \le c_2 \cdot f_2(n)$ for all $n > n_2$
- but with $c_+ = \max\{c_1, c_2\}$ then also $|g_1(n) + g_2(n)| \le |g_1(n)| + |g_2(n)|$ $\le c_1 \cdot f_1(n) + c_2 \cdot f_2(n) \le c_+ \cdot (f_1(n) + f_2(n))$

Discussion Home Exercise

Exercise 4: *O***-Notation**

$$0(f_1) - 0(f_2) \neq 0(f_1 - f_2)$$

Proof by counter example:

- use $f_1(n) = f_2(n) = n$
- let $g_1(n) = n$ and $g_2(n) = 0$
- now we have that $g_1 \in O(f_1)$ and $g_2 \in O(f_2)$
- but $g_1 + g_2 = n + 0 \notin O(f_1 + f_2) = O(0)$

Exercise: Sorting

Aim: Sort a set of numbers

Questions:

- What is the underlying algorithm you used?
- How long did it take to sort?
 - What is a good measure?
- Is there a better algorithm or did you find the optimal one?

Overview of Today's Lecture

Sorting

- Insertion sort
- Insertion sort with binary search
- Mergesort
- Timsort idea
- Quicksort idea

Exercise

Comparison of sorting algorithms

Essential vs. Non-Essential Operations

In sorting, we distinguish

- comparison- and non-comparison-based sorting
- in the former, we distinguish further:
 - comparisons as essential operations
 - they are comparable over computer architectures, operating systems, implementations, (historic) time
 - they can take more time than other operations, e.g. when we compare trees w.r.t. their lexicographic DFS sorting
 - other non-essential operations: additions, multiplications, shifts/swaps in arrays, ...

Insertion Sort

Idea:

for k from 1 to n-1:

- assume array a[1]...a[k] to be sorted
- insert a[k+1] correctly into a[1]...a[k+1]

6 5 3 1 8 7 2 4

see also https://en.wikipedia.org/wiki/Insertion_sort

Insertion Sort: Analysis

Worst case:

- reverse ordering: insert always to the beginning
- then $1 + 2 + 3 + \dots + (n 1) = \Theta(n^2)$ comparisons needed

Average Case:

• even here: $\Theta(n^2)$ comparisons needed (without proof)

Insertion Sort with Binary Search

Idea for an improved version:

use binary search for the right position of new entry in sorted subarray

- to insert array element a[i], we need [log(i + 1)] comparisons in worst case (= depth of the binary tree search)
- overall, therefore

$$\sum_{1 \le i \le n-1} \lceil \log(i+1) \rceil = \sum_{2 \le i \le n} \lceil \log(i) \rceil < \log(n!) + n$$

comparisons are needed

from last time, we know that

 $\log(n!) \le en^{n+\frac{1}{2}}e^{-n} = n\log(n) - n\log(e) + O(\log(n))$

in total, insertion sort with binary search needs $n \log(n) - 0.4426n + O(\log(n))$

comparisons in the worst case.

Another Possible Sorting Idea:

- sort first and second half of the array independently
- then merge the pre-sorted halves:
 - take the smaller of the smallest two values each time

$Mergesort(a_1, ..., a_n)$

if n = 1 then stop

if n > 1 then:

- $(b_1, ..., b_{[n/2]}) = \text{Mergesort}(a_1, ..., a_{[n/2]})$
- $(c_1, ..., c_{\lfloor n/2 \rfloor}) = \text{Mergesort}(a_{\lceil n/2 \rceil + 1}, ..., a_n)$
- return $(d_1, ..., d_n) = Merge(b_1, ..., b_{[n/2]}, c_1, ..., c_{[n/2]})$

Mergesort

Another Possible Sorting Idea:

Mergesort: Runtime

 the number of essential comparisons C(n) when sorting n items with Mergesort is

$$C(1) = 0, \qquad C(n) = \left(C\left(\left\lceil\frac{n}{2}\right\rceil\right) + \left(C\left(\left\lceil\frac{n}{2}\right\rceil\right) + \left(n-1\right)\right) \right)$$

sorting
left half sorting
right half

• without proof, $C(n) = n \log(n) + n - 1$ if $n = 2^k$

Remark:

Mergesort is practical for huge data sets, that don't fit into memory

Python's Sorting: Timsort

- python uses a combination of Mergesort with insertion sort https://en.wikipedia.org/wiki/Timsort
- insertion sort for small arrays quicker than merging from n=1 (can be done in memory)
- in addition, Timsort searches for subarrays which are already sorted (called "natural runs") and that are handled as blocks
- worst case runtime of $O(n \log(n))$, best case: O(n)

Exercise in Python

Comparing sorting algorithms in python

Goals:

- learn about Mergesort (and how to implement it)
- observe the differences in runtime between your own Mergesort and python's internal Timsort
- learn how to do a scientific (numerical) experiment and how to report the results

Exercise in Python

TODOs:

- implement your own Mergesort e.g. based on lists
- Compare the differences in runtime between your own Mergesort and python's internal Timsort (`sorted(...)') on randomly generated lists of integers
- Plot the times to sort 1,000 lists of equal length *n* with both algorithms for different values of *n* ∈ {10, 100, 1 000, 10 000}

Tip:

- >>> import timeit
- >>> timeit.timeit('your code', number=1000)
- Another (even more important) Tip:
 - use the "?" to get help on a module (and "??" to inspect the code)

I hope it became clear...

...what is a graph, a node/vertex, an edge,what sorting is about and how fast we can do it