
1Algorithms&Complexity @ CentraleSupelec/ESSEC, Oct. 31, 2019© Dimo Brockhoff, Inria 1

Algorithms & Complexity
Lecture 6: Randomized Algorithms

Dimo Brockhoff

Inria Saclay – Ile-de-France

October 31, 2019

CentraleSupélec / ESSEC Business School

2Algorithms&Complexity @ CentraleSupelec/ESSEC, Oct. 31, 2019© Dimo Brockhoff, Inria 2

Exercise 1: Greedy Algorithm vs. Dynamic Programming

Correct statements:

a) In a dynamic programming approach, we make at each step a

decision considering the current problem and the solution(s) to

previously solved sub-problem(s).

b) It is guaranteed that a dynamic programming approach will

generate an optimal solution as it generally considers all

possible cases and then choose the best.

c) A greedy algorithm follows the problem solving heuristic of

making the locally optimal choice at each stage.

d) A problem should possess the property of overlapping

subproblems to make a dynamic programming approach an

efficient alternative.

e) A greedy algorithm is more efficient in terms of memory than a

dynamic programming approach as it never looks back or

revises previous choices.

Discussion Home Exercise

3Algorithms&Complexity @ CentraleSupelec/ESSEC, Oct. 31, 2019© Dimo Brockhoff, Inria 3

Exercise 2: Matrix Chain Multiplications

𝐴1 ⋅ 𝐴2⋯𝐴𝑛
1) Conditions on matrix sizes (A is 𝑎𝑖 times 𝑏𝑖 matrix):

∀1 ≤ 𝑖 < 𝑛: 𝑏𝑖 = 𝑎𝑖+1
2) Example: 4x3 (matrix) times 3x1 times 1x3 times 3x4

number of calculations:

i) (4x3 times (3x1 times 1x3)) times 3x4 [greedy]

 3 ⋅ 1 ⋅ 3 + 4 ⋅ 3 ⋅ 3 + 4 ⋅ 3 ⋅ 4 = 9 + 36 + 48 = 93
ii) (4x3 times 3x1) times (1x3 times 3x4) [better than greedy]

 4 ⋅ 3 ⋅ 1 + 1 ⋅ 3 ⋅ 4 + 4 ⋅ 1 ⋅ 4 = 12 + 12 + 16 = 40

Definition: 𝐶(𝑖, 𝑗) := number of calculations to calculate 𝐴𝑖⋯ 𝐴𝑗

3) Easy to compute: 𝐶 𝑖, 𝑖 = 0 and 𝐶 𝑖, 𝑖 + 1 = 𝑎𝑖 ⋅ b𝑖 ⋅ 𝑏𝑖+1
4) Sought value (optimum): 𝐶(1, 𝑛)

Discussion Home Exercise

4Algorithms&Complexity @ CentraleSupelec/ESSEC, Oct. 31, 2019© Dimo Brockhoff, Inria 4

Exercise 2: Matrix Chain Multiplications

5) Assumption: 𝐴𝑖⋯𝐴𝑗 optimally computed as 𝐴𝑖⋯𝐴𝑘 ⋅ 𝐴𝑘+1⋯𝐴𝑗
then: 𝐶 𝑖, 𝑗 = 𝐶 𝑖, 𝑘 + 𝐶 𝑘 + 1, 𝑗 + 𝑎𝑖 ⋅ 𝑏𝑘 ⋅ 𝑏𝑗

6) In general:

𝐶 𝑖, 𝑗 = ൞

0
𝑎𝑖 ⋅ 𝑏𝑖 ⋅ 𝑏𝑗

min𝑖≤𝑘<𝑗𝐶 𝑖, 𝑘 + 𝐶 𝑘 + 1, 𝑗 + 𝑎𝑖 ⋅ 𝑏𝑘 ⋅ 𝑏𝑗

if 𝑖 = 𝑗
if 𝑗 = 𝑖 + 1

else

Discussion Home Exercise

5Algorithms&Complexity @ CentraleSupelec/ESSEC, Oct. 31, 2019© Dimo Brockhoff, Inria 5

Exercise 2: Matrix Chain Multiplications

7) Matrices: A1 (5-by-2), A2 (2-by-10), A3 (10-by-1), A4 (1-by-10),

and A5 (10-by-2)

Discussion Home Exercise

i/j 1 2 3 4 5

1

2 -

3 - -

4 - - -

5 - - - -

6Algorithms&Complexity @ CentraleSupelec/ESSEC, Oct. 31, 2019© Dimo Brockhoff, Inria 6

Exercise 2: Matrix Chain Multiplications

7) Matrices: A1 (5-by-2), A2 (2-by-10), A3 (10-by-1), A4 (1-by-10),

and A5 (10-by-2)

Discussion Home Exercise

i/j 1 2 3 4 5

1 0 100

2 - 0 20

3 - - 0 100

4 - - - 0 20

5 - - - - 0

7Algorithms&Complexity @ CentraleSupelec/ESSEC, Oct. 31, 2019© Dimo Brockhoff, Inria 7

Exercise 2: Matrix Chain Multiplications

7) Matrices: A1 (5-by-2), A2 (2-by-10), A3 (10-by-1), A4 (1-by-10),

and A5 (10-by-2)

C 1,3 = min 0 + 20 + 5 ⋅ 2 ⋅ 1, 100 + 0 + 5 ⋅ 10 ⋅ 1 = min{30, 150}

Discussion Home Exercise

i/j 1 2 3 4 5

1 0 100

2 - 0 20

3 - - 0 100

4 - - - 0 20

5 - - - - 0

8Algorithms&Complexity @ CentraleSupelec/ESSEC, Oct. 31, 2019© Dimo Brockhoff, Inria 8

Exercise 2: Matrix Chain Multiplications

7) Matrices: A1 (5-by-2), A2 (2-by-10), A3 (10-by-1), A4 (1-by-10),

and A5 (10-by-2)

C 2,4 = min 0 + 100 + 2 ⋅ 10 ⋅ 10, 20 + 0 + 2 ⋅ 1 ⋅ 10 = min{300, 40}

Discussion Home Exercise

i/j 1 2 3 4 5

1 0 100 30

2 - 0 20

3 - - 0 100

4 - - - 0 20

5 - - - - 0

9Algorithms&Complexity @ CentraleSupelec/ESSEC, Oct. 31, 2019© Dimo Brockhoff, Inria 9

Exercise 2: Matrix Chain Multiplications

7) Matrices: A1 (5-by-2), A2 (2-by-10), A3 (10-by-1), A4 (1-by-10),

and A5 (10-by-2)

C 3,5 = min 0 + 20 + 10 ⋅ 1 ⋅ 2, 100 + 0 + 10 ⋅ 10 ⋅ 2 = min{40, 300}

Discussion Home Exercise

i/j 1 2 3 4 5

1 0 100 30

2 - 0 20 40

3 - - 0 100

4 - - - 0 20

5 - - - - 0

10Algorithms&Complexity @ CentraleSupelec/ESSEC, Oct. 31, 2019© Dimo Brockhoff, Inria 10

Exercise 2: Matrix Chain Multiplications

7) Matrices: A1 (5-by-2), A2 (2-by-10), A3 (10-by-1), A4 (1-by-10),

and A5 (10-by-2)

C 1,4 = min
0 + 40 + 5 ⋅ 2 ⋅ 10

100 + 100 + 5 ⋅ 10 ⋅ 10
30 + 0 + 5 ⋅ 1 ⋅ 10

= min{140, 700,80}

Discussion Home Exercise

i/j 1 2 3 4 5

1 0 100 30

2 - 0 20 40

3 - - 0 100 40

4 - - - 0 20

5 - - - - 0

11Algorithms&Complexity @ CentraleSupelec/ESSEC, Oct. 31, 2019© Dimo Brockhoff, Inria 11

Exercise 2: Matrix Chain Multiplications

7) Matrices: A1 (5-by-2), A2 (2-by-10), A3 (10-by-1), A4 (1-by-10),

and A5 (10-by-2)

C 2,5 = min
0 + 40 + 2 ⋅ 10 ⋅ 2
20 + 20 + 2 ⋅ 1 ⋅ 2
40 + 0 + 2 ⋅ 10 ⋅ 2

= min{80, 44,80}

Discussion Home Exercise

i/j 1 2 3 4 5

1 0 100 30 80

2 - 0 20 40

3 - - 0 100 40

4 - - - 0 20

5 - - - - 0

12Algorithms&Complexity @ CentraleSupelec/ESSEC, Oct. 31, 2019© Dimo Brockhoff, Inria 12

Discussion Home Exercise

i/j 1 2 3 4 5

1 0 100 30 80

2 - 0 20 40 44

3 - - 0 100 40

4 - - - 0 20

5 - - - - 0

Exercise 2: Matrix Chain Multiplications

7) Matrices: A1 (5-by-2), A2 (2-by-10), A3 (10-by-1), A4 (1-by-10),

and A5 (10-by-2)

C 1,5 = min

0 + 44 + 5 ⋅ 2 ⋅ 2
100 + 40 + 5 ⋅ 10 ⋅ 2
30 + 20 + 5 ⋅ 1 ⋅ 2
80 + 0 + 5 ⋅ 10 ⋅ 2

= min{64, 240,60,180}

13Algorithms&Complexity @ CentraleSupelec/ESSEC, Oct. 31, 2019© Dimo Brockhoff, Inria 13

Discussion Home Exercise

i/j 1 2 3 4 5

1 0 100 30 80 60

2 - 0 20 40 44

3 - - 0 100 40

4 - - - 0 20

5 - - - - 0

Exercise 2: Matrix Chain Multiplications

7) Matrices: A1 (5-by-2), A2 (2-by-10), A3 (10-by-1), A4 (1-by-10),

and A5 (10-by-2)

C 1,5 = min

0 + 44 + 5 ⋅ 2 ⋅ 2
100 + 40 + 5 ⋅ 10 ⋅ 2
30 + 20 + 5 ⋅ 1 ⋅ 2
80 + 0 + 5 ⋅ 10 ⋅ 2

= min{64, 240,60,180}

And the actual solution?

 need to store where optimum was obtained

14Algorithms&Complexity @ CentraleSupelec/ESSEC, Oct. 31, 2019© Dimo Brockhoff, Inria 14

Discussion Home Exercise

i/j 1 2 3 4 5

1 0 100 30 80 60

2 - 0 20 40 44

3 - - 0 100 40

4 - - - 0 20

5 - - - - 0

Exercise 2: Matrix Chain Multiplications

7) Matrices: A1 (5-by-2), A2 (2-by-10), A3 (10-by-1), A4 (1-by-10),

and A5 (10-by-2)

C 1,5 = min

0 + 44 + 5 ⋅ 2 ⋅ 2
100 + 40 + 5 ⋅ 10 ⋅ 2
30 + 20 + 5 ⋅ 1 ⋅ 2
80 + 0 + 5 ⋅ 10 ⋅ 2

= min{64, 240,60,180}

And the actual solution?

 need to store where optimum was obtained

15Algorithms&Complexity @ CentraleSupelec/ESSEC, Oct. 31, 2019© Dimo Brockhoff, Inria 15

Discussion Home Exercise

i/j 1 2 3 4 5

1 0 100 30 80 60

2 - 0 20 40 80

3 - - 0 100 40

4 - - - 0 20

5 - - - - 0

Exercise 2: Matrix Chain Multiplications

7) Matrices: A1 (5-by-2), A2 (2-by-10), A3 (10-by-1), A4 (1-by-10),

and A5 (10-by-2)

C 1,5 = min

0 + 44 + 5 ⋅ 2 ⋅ 2
100 + 40 + 5 ⋅ 10 ⋅ 2
30 + 20 + 5 ⋅ 1 ⋅ 2
80 + 0 + 5 ⋅ 10 ⋅ 2

= min{64, 240,60,180}

And the actual solution?

 need to store where optimum was obtained

𝐴1…𝐴3 ⋅ 𝐴4 ⋅ 𝐴5

then: 𝐴1 ⋅ (𝐴2 ⋅ 𝐴3) ⋅ (𝐴4 ⋅ 𝐴5)

16Algorithms&Complexity @ CentraleSupelec/ESSEC, Oct. 31, 2019© Dimo Brockhoff, Inria 16

Thu Topic

Thu, 12.09.2019 PM Introduction, Combinatorics, O-notation, data structures

Tue, 24.09.2019 PM Sorting algorithms I

Tue, 1.10.2019 PM Sorting algorithms II, recursive algorithms

Tue, 8.10.2019 PM Recursive and Greedy Algorithms

Tue, 15.10.2019 PM Dynamic programming

Thu, 31.10.2019 AM Randomized Algorithms and Blackbox Optimization

Tue, 5.11.2019 PM Complexity theory I

Tue, 26.11.2019 PM Complexity theory II

Tue, 17.12.2019 AM Exam (written)

Course Overview



17Algorithms&Complexity @ CentraleSupelec/ESSEC, Oct. 31, 2019© Dimo Brockhoff, Inria 17

Randomized Algorithms and

Blackbox Optimization

18Algorithms&Complexity @ CentraleSupelec/ESSEC, Oct. 31, 2019© Dimo Brockhoff, Inria 18

Exact

 brute-force often too slow

 better strategies such as dynamic programming

 still: often exponential runtime

Approximation Algorithms

 guarantee of low run time

 guarantee of high quality solution

 obstacle: often difficult to prove these guarantees

Heuristics

 intuitive algorithms

 guarantee to run in short time

 often no guarantees on solution quality

 designed for practice (become non-heuristic once

theoretically analyzed )

Coping with Difficult Problems

19Algorithms&Complexity @ CentraleSupelec/ESSEC, Oct. 31, 2019© Dimo Brockhoff, Inria 19

Randomized Algorithm = Stochastic Algorithm = an algorithm that

uses randomness to make decisions

 first proposals in the 1940s (e.g. by N. Metropolis, J. v. Neumann,

…) with applications in

 optimization

 numerical integration

 generating draws from a probability distribution

 Monte Carlo algorithm: might not be correct with small probability

 Las Vegas: always correct, but might take long/exponential time

Randomized Algorithms

20Algorithms&Complexity @ CentraleSupelec/ESSEC, Oct. 31, 2019© Dimo Brockhoff, Inria 20

Difficult Optimization Problems are Everywhere

© H.-P. Schwefel

Maly LOLek

21Algorithms&Complexity @ CentraleSupelec/ESSEC, Oct. 31, 2019© Dimo Brockhoff, Inria 21

Typically, we want to

 find solutions 𝑥 which minimize 𝑓(𝑥) in the shortest time possible

(maximization is reformulated as minimization)

 or find solutions 𝑥 with as small 𝑓(𝑥) in the shortest time possible

(if finding the exact optimum is not possible)

What is Optimization?

22Algorithms&Complexity @ CentraleSupelec/ESSEC, Oct. 31, 2019© Dimo Brockhoff, Inria 22

Why are we interested in a black box scenario?

 objective function 𝑓 often noisy, non-differentiable, or

sometimes not even understood or available

 objective function 𝑓 contains legacy or binary code, is based

on numerical simulations or real-life experiments

 most likely, you will see such problems in practice...

Objective: find 𝑥 with small 𝑓(𝑥) with as few function evaluations as

possible

assumption: internal calculations of algo irrelevant

Black Box Scenario

black box → 𝑓 𝑥 ∈ ℝ𝑥 ∈ Ω →

23Algorithms&Complexity @ CentraleSupelec/ESSEC, Oct. 31, 2019© Dimo Brockhoff, Inria 23

 often, problem complicated and not much time available to

develop a problem-specific algorithm

 general (blackbox) search heuristic: a “meta-algorithm” or “meta-

heuristic” which can be applied to a large variety of problems

 search heuristics are a good choice:

 relatively easy to implement

 easy to adapt/change/improve

 e.g. when the problem formulation changes in an early

product design phase

 or when slightly different problems need to be solved

over time

 randomized/stochastic algorithms are a good choice because

they are robust to noise

Motivation General Search Heuristics

24Algorithms&Complexity @ CentraleSupelec/ESSEC, Oct. 31, 2019© Dimo Brockhoff, Inria 24

A stochastic blackbox search template to minimize 𝒇:𝛀 → ℝ

Initialize distribution parameters 𝜃, set population size 𝜆 ∈ ℕ

While happy do:

 Sample distribution 𝑃 𝒙 𝜃 → 𝒙1, … , 𝒙𝜆 ∈ Ω

 Evaluate 𝒙1, … , 𝒙𝜆 on 𝑓

 Update parameters 𝜃 ← 𝐹𝜃(𝜃, 𝒙1, … , 𝒙𝜆, 𝑓 𝒙1 , … , 𝑓 𝒙𝜆)

Deterministic algorithms can be cast in this framework as well:

for example in ℝ𝑛: gradient descent

or local search in discrete Ω

well-known stochastic example:

Covariance Matrix Adaptation Evolution Strategy (CMA-ES):

sample distributions = multivariate Gaussian distributions

Stochastic Search Template

25Algorithms&Complexity @ CentraleSupelec/ESSEC, Oct. 31, 2019© Dimo Brockhoff, Inria 25

Here, we touch only algorithms for discrete 𝛀

 Randomized Local Search (RLS)

 Evolutionary Algorithms (EAs)

 Compact GA: an estimation of distribution algorithm on bitstrings

Lecture Outline Randomized Search Heuristics

26Algorithms&Complexity @ CentraleSupelec/ESSEC, Oct. 31, 2019© Dimo Brockhoff, Inria 26

For most (stochastic) search heuristics, we need to define a

neighborhood structure

 which search points are close to each other?

Example: k-bit flip / Hamming distance k neighborhood

 search space: bitstrings of length n (Ω={0,1}n)

 two search points are neighbors if their Hamming

distance is k

 in other words: x and y are neighbors if we can flip

exactly k bits in x to obtain y

 0001001101 is neighbor of

0001000101 for k=1

0101000101 for k=2

1101000101 for k=3

Neighborhoods

27Algorithms&Complexity @ CentraleSupelec/ESSEC, Oct. 31, 2019© Dimo Brockhoff, Inria 27

Example: neighborhoods for permutation problems

 search space: all permutations of length 𝑛 (Ω = 𝑆𝑛)

 swap neighborhood:

 swap two entries in the permutation

 equivalence to Hamming distance: swap distance

 allow to swap k pairs

 possible to sample in a given distance of k, but

algorithm is not trivial

 more neighborhoods for permutations later

Neighborhoods II

28Algorithms&Complexity @ CentraleSupelec/ESSEC, Oct. 31, 2019© Dimo Brockhoff, Inria 28

Idea behind (Randomized) Local Search:

 explore the local neighborhood of the current solution (randomly)

Pure Random Search:

 go to randomly chosen neighbor

First Improvement Local Search:

 go to first (randomly) chosen neighbor which is better

Best Improvement strategy:

 always go to the best neighbor

 not random anymore

 computationally expensive if neighborhood large

Randomized Local Search (RLS)

29Algorithms&Complexity @ CentraleSupelec/ESSEC, Oct. 31, 2019© Dimo Brockhoff, Inria 29

One class of (bio-inspired) stochastic optimization algorithms:

Evolutionary Algorithms (EAs)

 Class of optimization algorithms

originally inspired by the idea of

biological evolution

 selection, mutation, recombination

Stochastic Optimization Algorithms

1859

30Algorithms&Complexity @ CentraleSupelec/ESSEC, Oct. 31, 2019© Dimo Brockhoff, Inria 30

Classical Optimization Evolutionary Computation

variables or parameters variables or chromosomes

candidate solution

vector of decision variables /

design variables / object

variables

individual, offspring, parent

set of candidate solutions population

objective function

loss function

cost function

error function

fitness function

iteration generation

Metaphors

31Algorithms&Complexity @ CentraleSupelec/ESSEC, Oct. 31, 2019© Dimo Brockhoff, Inria 31

Generic Framework of an EA

Important:

representation (search space)

initialization

evaluation

evaluation

potential

parents

offspring

parents

crossover/

mutation

mating

selection

environmental

selection

stop?

best individual

stochastic operators

“Darwinism”

stopping criteria

32Algorithms&Complexity @ CentraleSupelec/ESSEC, Oct. 31, 2019© Dimo Brockhoff, Inria 32

Genetic Algorithms (GA)

J. Holland 1975 and D. Goldberg (USA)

Evolution Strategies (ES)

I. Rechenberg and H.P. Schwefel, 1965 (Berlin)

Evolutionary Programming (EP)

L.J. Fogel 1966 (USA)

Genetic Programming (GP)

J. Koza 1990 (USA)

nowadays one umbrella term: evolutionary algorithms

The Historic Roots of EAs

33Algorithms&Complexity @ CentraleSupelec/ESSEC, Oct. 31, 2019© Dimo Brockhoff, Inria 33

The genotype – phenotype mapping

 related to the question: how to come up with a fitness

("quality") of each individual from the representation?

 related to DNA vs. actual animal (which then has a fitness)

fitness of an individual not always = f(x)

 include constraints

 include diversity

 others

 but needed: always a total order on the solutions

Genotype – Phenotype mapping

34Algorithms&Complexity @ CentraleSupelec/ESSEC, Oct. 31, 2019© Dimo Brockhoff, Inria 34

Examples for some EA parts

35Algorithms&Complexity @ CentraleSupelec/ESSEC, Oct. 31, 2019© Dimo Brockhoff, Inria 35

Selection is the major determinant for specifying the trade-off

between exploitation and exploration

Selection is either

stochastic or deterministic

e.g. fitness proportional

e.g. via a tournament

Mating selection (selection for variation): usually stochastic

Environmental selection (selection for survival): often deterministic

Selection

Disadvantage:

depends on

scaling of f

e.g. (µ+λ), (µ,λ)

best µ from

offspring and

parents

best µ from

offspring only

36Algorithms&Complexity @ CentraleSupelec/ESSEC, Oct. 31, 2019© Dimo Brockhoff, Inria 36

Variation aims at generating new individuals on the basis of those

individuals selected for mating

Variation = Mutation and Recombination/Crossover

mutation: mut:

recombination: recomb: where and

 choice always depends on the problem and the chosen

representation

 however, there are some operators that are applicable to a wide

range of problems and tailored to standard representations such

as vectors, permutations, trees, etc.

Variation Operators

37Algorithms&Complexity @ CentraleSupelec/ESSEC, Oct. 31, 2019© Dimo Brockhoff, Inria 37

Two desirable properties for mutation operators:

 every solution can be generation from every other with a

probability greater than 0 (“exhaustiveness”)



(“locality”)

Desirable property of recombination operators (“in-between-ness”):

Variation Operators: Guidelines

38Algorithms&Complexity @ CentraleSupelec/ESSEC, Oct. 31, 2019© Dimo Brockhoff, Inria 38

1-bit flip mutation

 flip a randomly chosen bit (from 1 to 0 or vice versa)

k-bit flip mutation

 choose k (different) bits uniformly at random

 flip each of those bits (from 1 to 0 or vice versa)

Standard bitflip mutation

 flip each bit independently with probability 1/n

 expected number of bits changed: 1

 but also: i.e. no bit flipped with constant

probability

Examples of Mutation Operators on {0,1}n

39Algorithms&Complexity @ CentraleSupelec/ESSEC, Oct. 31, 2019© Dimo Brockhoff, Inria 39

Swap:

Scramble:

Invert:

Insert:

Examples of Mutation Operators on Permutations

also known as

2-opt

40Algorithms&Complexity @ CentraleSupelec/ESSEC, Oct. 31, 2019© Dimo Brockhoff, Inria 40

1-point crossover

n-point crossover

uniform crossover

Examples of Recombination Operators on {0,1}n

choose each bit

independently from

one parent or another

41Algorithms&Complexity @ CentraleSupelec/ESSEC, Oct. 31, 2019© Dimo Brockhoff, Inria 41

 binary search space, maximization

 uniform initialization

 generational cycle:

 evaluation of solutions

 mating selection (e.g. roulette wheel)

 crossover (e.g. 1-point)

 environmental selection (e.g. plus-selection)

A Canonical Genetic Algorithm

You may ask: how does this fit

into the stochastic search template?

it does: population contained in state 𝜃,

but update function difficult to write down

42Algorithms&Complexity @ CentraleSupelec/ESSEC, Oct. 31, 2019© Dimo Brockhoff, Inria 42

If you want to play around a bit with these algorithms:

 https://sourceforge.net/projects/freak427/

FrEAK

43Algorithms&Complexity @ CentraleSupelec/ESSEC, Oct. 31, 2019© Dimo Brockhoff, Inria 43

 Estimation of Distribution Algorithms (EDAs) fit more obviously

into the search template

 here, example of the compact Genetic Algorithm (cGA)

 search space: Ω = 0,1 𝑛

 probability distribution: Bernoulli

 store for each bit a probability 𝑝𝑖 to sample a 1

 sample bit 𝑖 with probability 𝑝𝑖 to 1 and with (1 − 𝑝𝑖) to 0

Estimation of Distribution Algorithms

44Algorithms&Complexity @ CentraleSupelec/ESSEC, Oct. 31, 2019© Dimo Brockhoff, Inria 44

Parameters: number of variables 𝑛, learning rate 𝐾 (typically = 𝑛)

Init:

𝑝 =
1

2
,
1

2
, … ,

1

2
∈ 0,1 𝑛 # probabilities to sample new solutions

While happy:

create 𝑆 = (𝑠1, … , 𝑠𝑛) by sampling each 𝑠𝑖 with probability 𝑝𝑖
create 𝑆′ = (𝑠1

′ , … , 𝑠𝑛
′) by sampling each 𝑠𝑖

′ with probability 𝑝𝑖
evaluate 𝑆 and 𝑆’ on 𝑓

if 𝑓(𝑆) > 𝑓(𝑆’): # make sure that S is the better solution

𝑆, 𝑆′ ← 𝑆′, 𝑆

update p parameter:

for 𝑖 ∈ 1, … , 𝑛 :

𝑝𝑖 ← min{max{𝑝𝑖 + (𝑠𝑖−𝑠𝑖
′)/𝐾, 1/𝑛}, 1 − 1/𝑛}

return 𝑆

The Compact GA

45Algorithms&Complexity @ CentraleSupelec/ESSEC, Oct. 31, 2019© Dimo Brockhoff, Inria 45

Potential Master's/PhD thesis

projects

46Algorithms&Complexity @ CentraleSupelec/ESSEC, Oct. 31, 2019© Dimo Brockhoff, Inria 46

http://randopt.gforge.inria.fr/thesisprojects/

Potential Research Topics for Master's/PhD Theses

47Algorithms&Complexity @ CentraleSupelec/ESSEC, Oct. 31, 2019© Dimo Brockhoff, Inria 47

 EAs are generic algorithms (randomized search heuristics,

meta-heuristics, ...) for black box optimization

no or almost no assumptions on the objective function

 They are typically less efficient than problem-specific

(exact) algorithms in discrete domain (in terms of #funevals)

but competitive in the continuous case

 Allow for an easy and rapid implementation and therefore to

find good solutions fast

easy (recommended!) to incorporate problem-specific

knowledge to improve the algorithm

Conclusions

48Algorithms&Complexity @ CentraleSupelec/ESSEC, Oct. 31, 2019© Dimo Brockhoff, Inria 48

I hope it became clear...

...that heuristics is what we typically can afford in practice (no

guarantees and no proofs)

...what are the main ideas behind evolutionary algorithms

...and that evolutionary algorithms and genetic algorithms are no

synonyms

Conclusions

