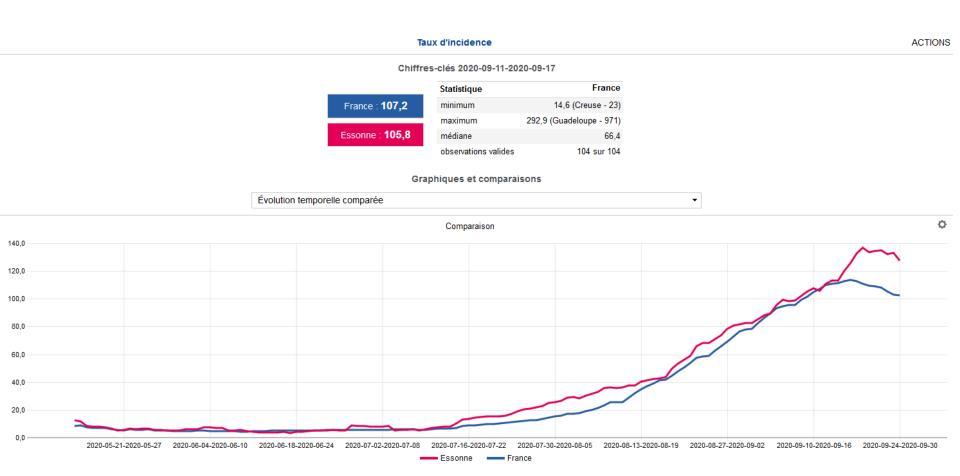
Algorithms & Complexity Lecture 3: Sorting

October 5, 2020 CentraleSupélec / ESSEC Business School

Dimo Brockhoff Inria Saclay – Ile-de-France

Corona Update



https://geodes.santepubliquefrance.fr/#bbox=38985,6323608,423056,255910&c=indicator&i=sp_ti_tp_7j.tx_pe_gliss&s=2020-09-11-2020-09-17&selcodgeo=91&t=a01&view=map2

Course Overview

Thu		Topic
Mon, 21.09.2020	PM	Introduction, Combinatorics, O-notation, data structures
Mon, 28.09.2020	PM	Data structures II
Mon, 5.10.2020	PM	Sorting algorithms, recursive algorithms
Mon, 12.10.2020	PM	Greedy algorithms
Mon, 19.10.2020	PM	Dynamic programming
Mon, 2.11.2020	PM	Randomized Algorithms and Blackbox Optimization
Mon, 16.11.2020	PM	Complexity theory I
Mon, 23.11.2020	PM	Complexity theory II
Mon, 14.12.2019	PM	Exam

discussion home exercises

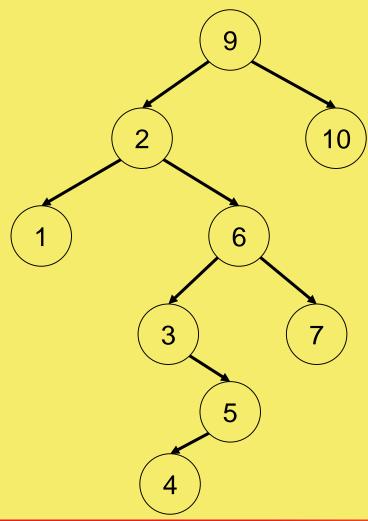
Exercise 1: Connected Components

only two possibilities:

- removed edge not part of a cycle, i.e. its removal removes connectivity for its end nodes:
 - # connected components +1
- removed edge is part of a cycle, i.e. there is another path between the end nodes, hence no removal of connectivity:
 - # connected components ±0

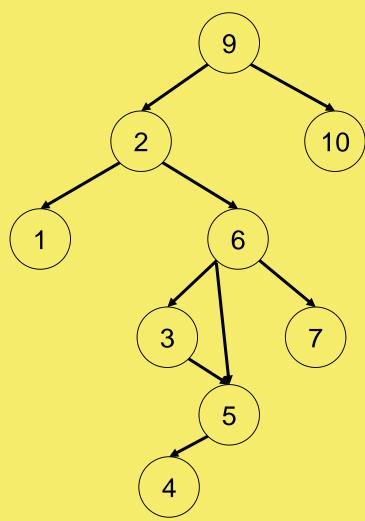
Exercise 2: Binary Search Tree

add 9, 2, 10, 6, 1, 3, 7, 5, 4:



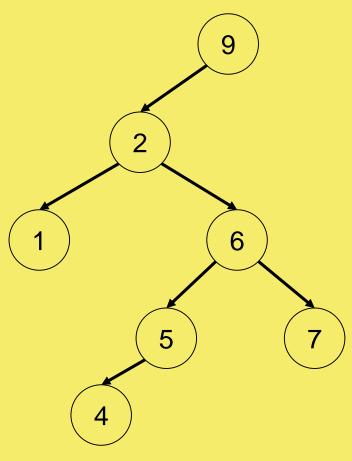
Exercise 2: Binary Search Tree

remove 10, 3, 2:



Exercise 2: Binary Search Tree

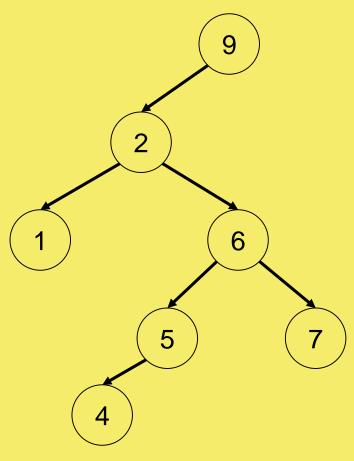
remove 10, 3, 2:



Replace 2 either with smallest entry larger or with largest entry smaller

Exercise 2: Binary Search Tree

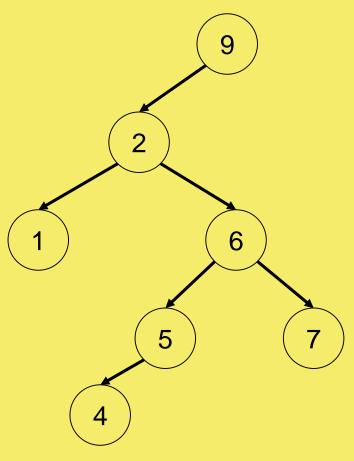
remove 10, 3, 2:



Replace 2 either
with smallest entry larger
or
with largest entry smaller

Exercise 2: Binary Search Tree

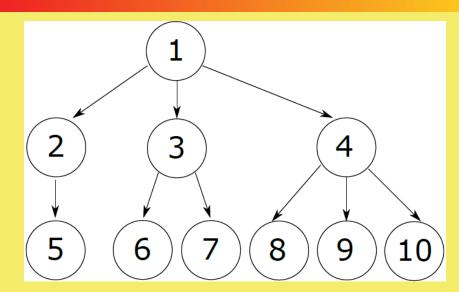
remove 10, 3, 2:



Replace 2 either
with smallest entry larger
or
with largest entry smaller

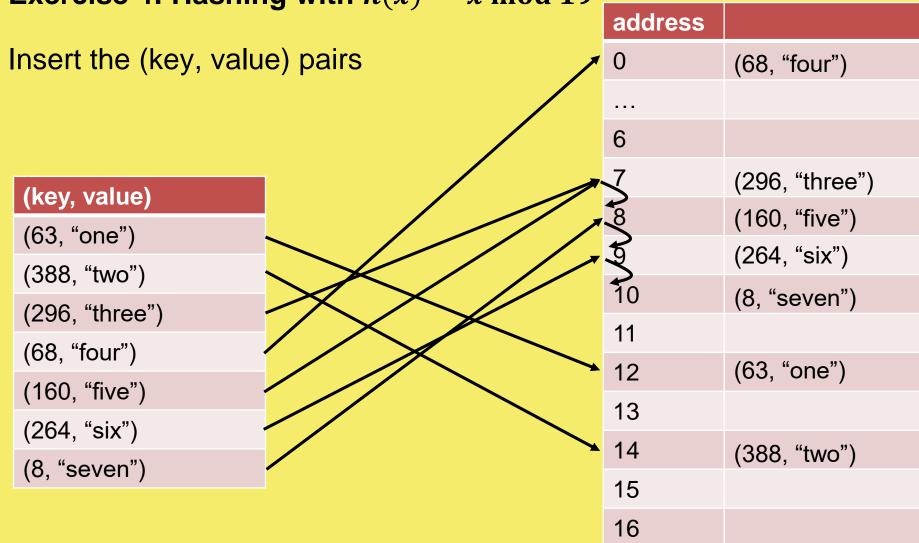
Exercise 3: DFS/BFS

assumption (important): children stored from left to right!



DFS order: 1, 2, 5, 3, 6, 7, 4, 8, 9, 10

BFS order: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10



Exercise: Sorting

Aim: Sort a set of numbers

Questions:

- What is the underlying algorithm you used?
- How long did it take to sort?
 - What is a good measure?
- Is there a better algorithm or did you find the optimal one?

Overview of Today's Lecture

Sorting

- Insertion sort
- Insertion sort with binary search
- Mergesort
- Timsort idea

Exercise

Comparison of sorting algorithms

Essential vs. Non-Essential Operations

In sorting, we distinguish

- comparison- and non-comparison-based sorting
- in the former, we distinguish further:
 - comparisons as essential operations
 - they are comparable over computer architectures, operating systems, implementations, (historic) time
 - they can take more time than other operations, e.g. when we compare trees w.r.t. their lexicographic DFS sorting
 - other non-essential operations: additions, multiplications, shifts/swaps in arrays, ...

Insertion Sort

Idea:

for k from 1 to n-1:

- assume array a[1]...a[k] is already sorted
- insert a[k+1] correctly into a[1]...a[k+1]

swapping a[k+1] with all other numbers larger than a[k+1]

6 5 3 1 8 7 2 4

see also https://en.wikipedia.org/wiki/Insertion_sort

Insertion Sort: Analysis

Worst case:

- reverse ordering: insert always to the beginning
- then $1+2+3+\cdots+(n-1)=\Theta(n^2)$ comparisons needed

Average Case:

• even here: $\Theta(n^2)$ comparisons needed (without proof)

Insertion Sort with Binary Search

Idea for an improved version:

use binary search for the right position of new entry in sorted subarray

- to insert array element a[i], we need $\lceil \log(i-1) \rceil$ comparisons in worst case (= depth of the binary tree search)
- overall, therefore

$$\sum_{2 \leq i \leq n} \lceil \log(i-1) \rceil = \sum_{1 \leq i \leq n-1} \lceil \log(i) \rceil < \log(n!) + n$$

comparisons are needed

from last time, we know that

$$\log(n!) \le \log(en^{n+\frac{1}{2}}e^{-n}) = n\log(n) - n\log(e) + \frac{1}{2}(\log(n)) + \log(e)$$

in total, insertion sort with binary search needs $n \log(n) - 0.4426n + \mathcal{O}(\log(n))$

comparisons in the worst case.

Mergesort

Another Possible Sorting Idea:

- sort first and second half of the array independently
- then merge the pre-sorted halves:
 - take the smaller of the smallest two values each time

```
Mergesort(a_1, ..., a_n)

if n = 1 then stop

if n > 1 then:

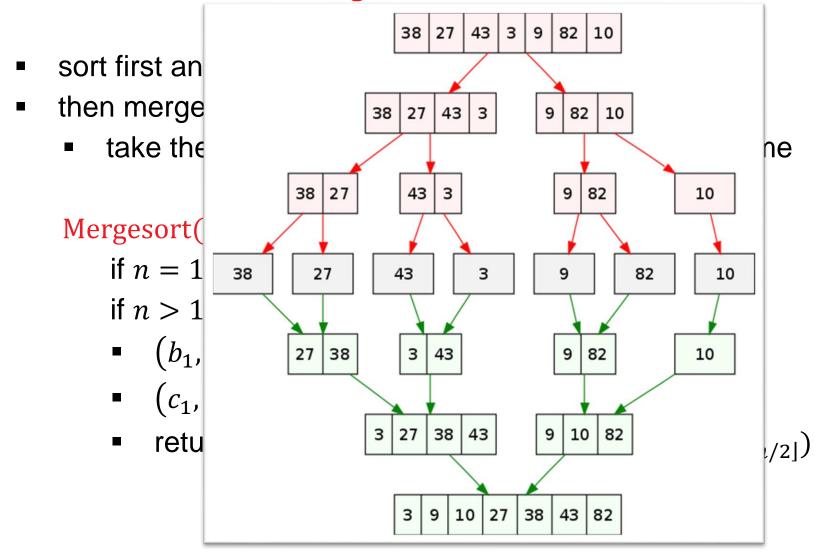
• (b_1, ..., b_{\lceil n/2 \rceil}) = \operatorname{Mergesort}(a_1, ..., a_{\lceil n/2 \rceil})

• (c_1, ..., c_{\lfloor n/2 \rfloor}) = \operatorname{Mergesort}(a_{\lceil n/2 \rceil + 1}, ..., a_n)

• return (d_1, ..., d_n) = \operatorname{Merge}(b_1, ..., b_{\lceil n/2 \rceil}, c_1, ..., c_{\lceil n/2 \rceil})
```

Mergesort

Another Possible Sorting Idea:



Mergesort: Runtime

 the number of essential comparisons C(n) when sorting n items with Mergesort is

$$C(1) = 0, C(n) = C(\left\lceil \frac{n}{2} \right\rceil) + C(\left\lceil \frac{n}{2} \right\rceil) + n - 1 merging$$
sorting sorting right half

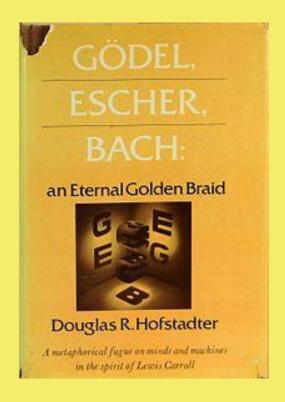
• without proof, $C(n) = n \log(n) + n - 1$ if $n = 2^k$

Remarks:

Mergesort is practical for huge data sets, that don't fit into memory Mergesort is a recursive algorithm (= calls itself)

...solves a problem by solving smaller sub-problems first

Recommended Read



- "for leisure" remark: it is quite hard to understand!
- https://en.wikipedia.org/wiki/G%C3%B6del,_Escher,_Bach

Python's Sorting: Timsort

- python uses a combination of Mergesort with insertion sort https://en.wikipedia.org/wiki/Timsort
- insertion sort for small arrays quicker than merging from n=1 (can be done in memory/cache)
- in addition, Timsort searches for subarrays which are already sorted (called "natural runs") and that are handled as blocks
- worst case runtime of $\mathcal{O}(n \log(n))$, actually $\mathcal{O}(n \log(N))$ with N being the number of natural runs
- best case: $\mathcal{O}(n)$

Lower Bound for Comparison-Based Sorting

- Insertion Sort, standard: $\Theta(n^2)$
- Insertion Sort with binary search: $n \log(n) 0.4426n + O(\log(n))$
- Mergesort: $n \log(n) + n 1$ if $n = 2^k$

Can we do better than $n \log(n)$?

- No! [at least for comparison-based sorting]
- Lower bound for comparison-based sorting of $\Omega(n \log(n))$

without proof here

(Home-) Exercise in Python (question 3)

Comparing sorting algorithms in python

Goals:

- learn about Mergesort (and how to implement it)
- observe the differences in runtime between your own Mergesort and python's internal Timsort
- learn how to do a scientific (numerical) experiment and how to report the results

(Home-) Exercise in Python (question 3)

TODOs:

- implement your own Mergesort e.g. based on lists

 http://www.cmap.polytechnique.fr/~dimo.brockhoff/algorithmsandcomplexity/2020/schedule.php
- compare the differences in runtime between your own Mergesort and python's internal Timsort ('sorted(...)') on randomly generated lists of integers
- **❸** plot the times to sort 100 lists of equal length n with both algorithms for different values of $n \in \{10, 100, 1000, 10000\}$

Tip:

```
>>> import timeit
>>> timeit.timeit('your code', number=100)
```

Another (even more important) Tip:

use the "?" to get help on a module (and "??" to inspect the code)

Conclusions

I hope it became clear...

...what sorting is about and how fast we can do it