Algorithms & Complexity
Lecture 3: Sorting

October 5, 2020
CentraleSupélec / ESSEC Business School

g - Dimo Brockhoff

RRRRRRRRRRRRRRRRRRRRRRRRRRR Inria Sac|ay — lle-de-France

@ INSTITUT
‘@, ®: POLYTECHNIQUE B 1P PARIS
M DE PARIS

Corona Update

Taux d'incidence ACTIONS

Chiffres-clés 2020-09-11-2020-09-17

Statistique France
France : 107,2 minimum 14,6 (Creuse - 23)
maximum 2929 (Guadeloupe - 971)
Essonne : 105,8 médiane 66,4
obsemvations valides 104 sur 104

Graphiques et comparaisons

Evolution temporelle comparée -

Comparaison e

140,0
120,0
100,0
20,0
60,0
40,0

20,0
=

——— ——
2020-05-21-2020-05-27 2020-06-04-2020-08-10 2020-06-18-2020-06-24 2020-07-02-2020-07-08 2020-07-18-2020-07-22 2020-07-30-2020-08-05 2020-08-13-2020-08-19 2020-08-27-2020-09-02 2020-09-10-2020-08-16 2020-09-24-2020-08-30
m— ES50MNMNE = France

0,0

https://geodes.santepubliquefrance.fr/#bbox=38985,6323608,423056,255910&c=indicator&i=sp _ti
tp_7j.tx_pe_gliss&s=2020-09-11-2020-09-17&selcodgeo=91&t=a01&view=map2

© Dimo Brockhoff, Inria 2019-20 i ity, CentraleSupélec/ESSEC, Oct. 5, 2020

Course Overview

Thu
Mon, 21.09.2020
Mon, 28.09.2020
= Mon, 5.10.2020
Mon, 12.10.2020
Mon, 19.10.2020
Mon, 2.11.2020
Mon, 16.11.2020
Mon, 23.11.2020

Mon, 14.12.2019

__Topic

PM
PM
PM
PM
PM
PM
PM
PM

PM

Introduction, Combinatorics, O-notation, data structures
Data structures Il

Sorting algorithms, recursive algorithms

Greedy algorithms

Dynamic programming

Randomized Algorithms and Blackbox Optimization
Complexity theory |

Complexity theory Il

Exam

© Dimo Brockhoff, Inria 2019-20

Algorithms & Complexity, CentraleSupélec/ESSEC, Oct. 5, 202C

discussion home exercises

Discussion Home Exercise

Exercise 1. Connected Components

only two possibilities:
= removed edge not part of a cycle, I.e. its removal removes
connectivity for its end nodes:
connected components +1
= removed edge is part of a cycle, i.e. there Is another path
between the end nodes, hence no removal of connectivity:
connected components 0

© Dimo Brockhoff, Inria 2019-20 Algorithms & Complexity, CentraleSupélec/ESSEC

Discussion Home Exercise

Exercise 2: Binary Search Tree

add 9, 2, 10,6, 1, 3,7, 5, 4:

© Dimo Brockhoff, Inria 2019-20 Algorithms & Complexity, CentraleSupélec/ESSEC, Oct

Discussion Home Exercise

Exercise 2: Binary Search Tree

remove 10, 3, 2:

© Dimo Brockhoff, Inria 2019-20 Algorithms & Complexity, CentraleSupélec/ESSEC, Oct

Discussion Home Exercise

Exercise 2: Binary Search Tree

remove 10, 3, 2:

Replace 2 either

a with smallest entry larger
or

with largest entry smaller

Algorithms & Complexity, CentraleSupélec/ESSEC, Oc

© Dimo Brockhoff, Inria 2019-20

Discussion Home Exercise

Exercise 2: Binary Search Tree

remove 10, 3, 2:

Replace 2 either

a with smallest entry larger
or

with largest entry smaller

Algorithms & Complexity, CentraleSupélec/ESSEC, Oc

© Dimo Brockhoff, Inria 2019-20

Discussion Home Exercise

Exercise 2: Binary Search Tree

remove 10, 3, 2:

Replace 2 either

a with smallest entry larger
or

with largest entry smaller

Algorithms & Complexity, CentraleSupélec/ESSEC, Oc

© Dimo Brockhoff, Inria 2019-20

Discussion Home Exercise

Exercise 3: DFS/BFS /Q\
assumption (important): @

children stored from left to right! \

(D
OO

DFS order: 1,2,5,3,6,7,4,8,9, 10
BFS order: 1,2,3,4,5,6,7,8,9, 10

© Dimo Brockhoff, Inria 2019-20 Algorithms & Complexity, CentraleSupélec/ESSEC, Oct

Discussion Home Exercise

Exercise 4: Hashing with h(x) = x mod 19

Insert the (key, value) pairs 0
6
7
(key, value) >8
(63, “one”) %
(388, “two”) '
/’ 10
(296, “three”) ’
11
(68, “four”) Z
. 12
(160, “five”)
. 13
(264, “six”)
14
(8, “seven”)
15
16

address |

(68, “four”)

(296, “three”)
(160, “five”)
(264, “six”)

(8, “seven”)

(63, “one”)

(388, “two”)

© Dimo Brockhoff, Inria 2019-20

Exercise: Sorting

Alm: Sort a set of numbers

Questions:
= What is the underlying algorithm you used?
= How long did it take to sort?

= What is a good measure?

* |s there a better algorithm or did you find the optimal one?

© Dimo Brockhoff, Inria 2019-20

Overview of Today’s Lecture

Sorting

* [nsertion sort

* Insertion sort with binary search
= Mergesort

= Timsort idea

Exercise
= Comparison of sorting algorithms

© Dimo Brockhoff, Inria 2019-20 Algorithms & Complexity, CentraleSupélec/ESSEC, Oct. 5, 2020

Essential vs. Non-Essential Operations

In sorting, we distinguish
= comparison- and non-comparison-based sorting
* in the former, we distinguish further:

= comparisons as essential operations

= they are comparable over computer architectures,
operating systems, implementations, (historic) time

» they can take more time than other operations, e.g. when
we compare trees w.r.t. their lexicographic DFS sorting

= other non-essential operations: additions, multiplications,
shifts/swaps in arrays, ...

© Dimo Brockhoff, Inria 2019-20 Algorithms & Complexity, CentraleSupélec/ESSEC, Oct. 5, 20

Insertion Sort

ldea:
for k from 1 to n-1:
= assume array a[1]...a[k] is already sorted

= Insert alk+1] correctly into a[1]...a[k+1]
swapping a[k+1] with all other numbers larger than a[k+1]

6 5§ 3 1 8 7 2 4

Swiunge

see also https://en.wikipedia.org/wiki/Insertion_sort

© Dimo Brockhoff, Inria 2019-20 Algorithms & Complexity, CentraleSupélec/ESSEC, Oct. 5, 2020

https://en.wikipedia.org/wiki/Insertion_sort

Insertion Sort: Analysis

Worst case:
» reverse ordering: insert always to the beginning
= then1+2+3+--+ (n—1) = 0(n?) comparisons needed

Average Case:
= even here: O(n?) comparisons needed (without proof)

© Dimo Brockhoff, Inria 2019-20

Algorithms & Complexity, CentraleSupélec/ESSEC, Oct. 5, 2020

Insertion Sort with Binary Search

Idea for an improved version:

use binary search for the right position of new entry in sorted subarray

» toinsert array element a[i], we need [log(i — 1)] comparisons in
worst case (= depth of the binary tree search)

= overall, therefore

z [log(i—1)] = z [log(i)] < log(n!) +n
2<is<n 1<isn-1

comparisons are needed

= from last time, we know that
1 1
log(n!) < log(en"“Lf e‘") = nlog(n) — nlog(e) + 5 (log(n)) + log(e)

In total, insertion sort with binary search needs
nlog(n) — 0.4426n + O(log(n))

comparisons in the worst case.

© Dimo Brockhoff, Inria 2019-20 Algorithms & Complexity, CentraleSupélec/ESSEC, O

Another Possible Sorting Idea:

= sort first and second half of the array independently
= then merge the pre-sorted halves:

= take the smaller of the smallest two values each time

Mergesort(ay, ..., a,)
If n = 1 then stop
If n > 1 then:
" (bp ---;b[n/Z]) = Mergesort(ay, ..., Ajn/2])

* (¢4, -y Cnyz)) = Mergesort(apn /2141, - an)
= return (dy, ...,d;) = Merge(by, s binyap €15 ey Cny2))

© Dimo Brockhoff, Inria 2019-20

Algorithms & Complexity, CentraleSupélec/ESSEC, Oct. 5, 2020

Another Possible Sorting Idea:

38|27 |43 (3|9 |82(10

= sort first an 7
= then merge 38|27 [43]3 9|82 |10

= take thﬁ (l l ne
38 |27 9|82 10
Mergesort({ !
fn=1 38 27 4

fn>1
= (bl, 27|38
u (Cl, l

= retu

I P
e

Y L ™G

10

43 9|8

L/ZJ)

‘ 3/9(10(27 (384382

© Dimo Brockhoff, Inria 2019-20 Algorithms & Complexity, CentraleSupélec/ESSEC, Oct. 5, 2020

Mergesort: Runtime

= the number of essential comparisons C(n) when sorting n items
with Mergesort is

c(=0, Cm) =2‘@\+ 2@&1 -1 mergng

sorting sorting

left half right half

= without proof, C(n) = nlog(n) + n—1ifn = 2%

Remarks:
Mergesort is practical for huge data sets, that don’t fit into memory
Mergesort is a recursive algorithm (= calls itself)

...solves a problem by solving smaller sub-problems first

© Dimo Brockhoff, Inria 2019-20 Algorithms & Complexity, CentraleSupélec/ESSEC, Oct. 5, 202

Recommended Read

v

an Eternal Golden Braid

Douglas R.Hofstadter

A metaphorical fugwe on milds and mackines

| i tae spirnt of Lewwis Carroll

= “for leisure” — remark: it is quite hard to understand!
» https://en.wikipedia.org/wiki/G%C3%B6del, Escher, Bach

© Dimo Brockhoff, Inria 2019-20

https://en.wikipedia.org/wiki/G%C3%B6del,_Escher,_Bach

Python’s Sorting: Timsort

= python uses a combination of Mergesort with insertion sort
https://en.wikipedia.org/wiki/Timsort

» nsertion sort for small arrays quicker than merging from n=1
(can be done in memory/cache)

* |n addition, Timsort searches for subarrays which are already
sorted (called "natural runs”) and that are handled as blocks

= worst case runtime of 0(nlog(n)), actually O(n log(N)) with N
being the number of natural runs

= Dpest case: 0(n)

© Dimo Brockhoff, Inria 2019-20 Algorithms & Complexity, CentraleSupélec/ESSEC, Oct. 5, 202C

Lower Bound for Comparison-Based Sorting

= [nsertion Sort, standard: 8(n?)
» |nsertion Sort with binary search: nlog(n) — 0.4426n + 0(log(n))
= Mergesort: nlog(n) + n—1if n = 2%

Can we do better than nlog(n)?

= Nol! [at least for comparison-based sorting]

= Lower bound for comparison-based sorting of Q(n log(n))
without proof here

© Dimo Brockhoff, Inria 2019-20 Algorithms & Complexity, CentraleSupélec/ESSEC, Oct. 5, 2020

(Home-) Exercise in Python (question

Comparing sorting algorithms in python

Goals:
= |earn about Mergesort (and how to implement it)

= observe the differences in runtime between your own Mergesort
and python’s internal Timsort

= |earn how to do a scientific (numerical) experiment and how to
report the results

© Dimo Brockhoff, Inria 2019-20 Algorithms & Complexity, CentraleSupéle

(Home-) Exercise in Python (questi

TODOs:

©® implement your own Mergesort e.g. based on lists
http://www.cmap.polytechnique.fr/~dimo.brockhoff/algorithmsandcomplexity/2020/schedule.php

® compare the differences in runtime between your own Mergesort
and python’s internal Timsort (*sorted(..) /) on randomly

generated lists of integers

® plot the times to sort 100 lists of equal length n with both
algorithms for different values of n € {10,100,1 000,10 000}

Tip:

>>> import timeit

>>> timeit.timeit (‘your code', number=100)
Another (even more important) Tip:

use the “?” to get help on a module (and “??” to inspect the code)

© Dimo Brockhoff, Inria 2019-20

http://www.cmap.polytechnique.fr/~dimo.brockhoff/algorithmsandcomplexity/2020/schedule.php

Conclusions

| hope it became clear...

...what sorting is about and how fast we can do it

© Dimo Brockhoff, Inria 2019-20 Algorithms & Complexity, CentraleSupélec/ESSEC, Oct. 5, 2020

