Algorithms & Complexity
Lecture 6: Randomized Algorithms

November 2, 2020
CentraleSupélec / ESSEC Business School

Dimo Brockhoff
Inria Saclay — lle-de-France

@ INSTITUT

@ POLYTECHNIQUE
TTTTTTTTTTTTTTTTTTTTTTTTTTT '«;,/“qy DE PARIS

© Dimo Brockhoff, Inria

Corona Update

Taux d'incidence - semaine glissante ACTIONS 4
Chiffres-clés 2020-09-11-2020-09-17

France : 108,1

pour 100 000 Statistique France
hab. minimum 14,6 (Creuse - 23)

maximum 293,2 (Guadeloupe - 971)
Essonne : médiane 66.4
106,1 pour 100 observations valides 104 sur 104

000 hab.

Graphiques et comparaisons

Evolution temporelle comparée -

Comparaison e

450,0
400,0
350,0
300,0
250,0
200,0
150,0
100,0

50,0

0,0
2020-05-22-2020-05-28 2020-06-08-2020-06-14 2020-08-25-2020-07-01 2020-07-12-2020-07-18 2020-07-28-2020-08-04 2020-08-15-2020-08-21 2020-08-01-2020-09-07 2020-09-18-2020-09-24 2020-10-05-2020-10-11 2020-10-22-2020-10-28

m—— ES50NnNe s France

https://geodes.santepubliquefrance.fr/#bbox=38985,6323608,423056,255910&c=indicator&i=sp _ti
tp_7j.tx_pe_gliss&s=2020-09-11-2020-09-17&selcodgeo=91&t=a01&view=map2

© Dimo Brockhoff, Inria i ity @ CentraleSupelec/ESSEC, Nov. 2, 2020

Clarification

Please submit the exercises maximally 3 times with the same student!
...the grade is an individual grade

“In the case of group submissions, please make sure that you submit
maximally three times with the same partner!”
[from the exercise sheet(s)]

“Group submissions of 5 students allowed (and highly encouraged!)

But: maximally 3 submissions with the same student pair”
[from the slides]

“Because the grading, however, is individual, | kindly ask that each
pair of two students, appears on maximally 3 different solutions.”
[from the webpage]

© Dimo Brockhoff, Inria gori plexity @ CentraleSupelec/ESSEC, Nov. 2

Clarification

Please submit the exercises maximally 3 times with the same student!
...the grade is an individual grade

Exercise 1 studentA/studentB/studentC, studentD
Exercise 2 studentA/studentB/studentD, studentC
Exercise 3 studentA/studentB/studentC/studentD
Exercise 4 not allowed anymore:

studentA with studentB . |A [B |c |D |
.3 2 2

allowed one more time: A
studentA with studentC
studentA with studentD
studentB with studentC
studentB with studentD

- 2 2

A
Bl -
El -

© Dimo Brockhoff, Inria

Discussion Home Exercise

Exercise 1: Greedy Algorithm vs. Dynamic Programming

Correct statements:

a) In a greedy algorithm, we make at each step a decision
considering the current situation but don’t look into the future or
at the history.

b) Itis guaranteed that a dynamic programming approach will
generate an optimal solution.

c) A problem should possess the property of non-overlapping
subproblems to make None an efficient alternative.

d) A problem should possess the property of overlapping
subproblems to make a dynamic programming approach an
efficient alternative.

e) A greedy algorithm is more efficient in terms of memory than a
dynamic programming approach as it never looks back or
revises previous choices.

© Dimo Brockhoff, Inria

Discussion Home Exercise

Exercise 2: Matrix Chain Multiplications

Ay A, A,
1) Conditions on matrix sizes (A is a; times b; matrix):
Vi<i<n: bi= Aijt1
2) Example: 4x3 (matrix) times 3x1 times 1x3 times 3x4
number of calculations:
) (4x3 times (3x1 times 1x3)) times 3x4 [greedy]
>3-1-34+44-3-34+4-3:-4=94+36+48 =93
1) (4x3 times 3x1) times (1x3 times 3x4) [better than greedy]
2>4-3-1+1-3:44+4-1-4=12+12+16=40
Definition: C(i,j) := number of calculations to calculate A; --- A;
3) Easytocompute: C(i,i) =0andC(i,i+1) =a; - b; - b;+1
4) Sought value (optimum): C(1,n)

© Dimo Brockhoff, Inria

Discussion Home Exercise

Exercise 2: Matrix Chain Multiplications

5) Assumption: 4; --- A; optimally computed as (4; -+ Ay) - (Ags1 - 4))
then: C(l,]) = C(l,k) + C(k + 1,]) + a; - bk y b]

6) In general:
(

0 ifi = j
C(i,j) =+ a; - b; - bj ifj=i+1
Kl’rliIliSk<jC(ll, k) + C(k + 1,]) +a; - bk . b] else

© Dimo Brockhoff, Inria

Discussion Home Exercise

Exercise 2: Matrix Chain Multiplications

7) Matrices: Al (5-by-2), A2 (2-by-10), A3 (10-by-1), A4 (1-by-10),
and A5 (10-by-2)

1

o1 NN w N
1
1
1

© Dimo Brockhoff, Inria gori plexity @ CentraleSupelec/ESSEC, Nov. 2

Discussion Home Exercise

Exercise 2: Matrix Chain Multiplications

7) Matrices: Al (5-by-2), A2 (2-by-10), A3 (10-by-1), A4 (1-by-10),
and A5 (10-by-2)

1 0 100

- 0 20

o1 NN w N
1
1
1
o
N
o

© Dimo Brockhoff, Inria

Discussion Home Exercise

Exercise 2: Matrix Chain Multiplications

7) Matrices: Al (5-by-2), A2 (2-by-10), A3 (10-by-1), A4 (1-by-10),
and A5 (10-by-2)

1 0 100

- 0 20

20

o1 NN w N
1
1
1
o

© Dimo Brockhoff, Inria

Discussion Home Exercise

Exercise 2: Matrix Chain Multiplications

7) Matrices: Al (5-by-2), A2 (2-by-10), A3 (10-by-1), A4 (1-by-10),
and A5 (10-by-2)

1 0 100 30

- 0 20

20

o1 NN w N
1
1
1
o

. . . : 0

C(2,4) = min{O + 100 +2-10-10,20+ 0+ 2 - 1 - 10} = min{300, 40}

© Dimo Brockhoff, Inria

Discussion Home Exercise

Exercise 2: Matrix Chain Multiplications

7) Matrices: Al (5-by-2), A2 (2-by-10), A3 (10-by-1), A4 (1-by-10),
and A5 (10-by-2)

1 0 100 30

2 i 0 20 40
3 i . 0 100

4 i i i 0 20
5 i . . . 0

© Dimo Brockhoff, Inria

Discussion Home Exercise

Exercise 2: Matrix Chain Multiplications

7) Matrices: Al (5-by-2), A2 (2-by-10), A3 (10-by-1), A4 (1-by-10),
and A5 (10-by-2)

1 0 100 30

2 i 0 20 40
3 i . 0 100 40
4 i i i 0 20
5 i . . . 0

C(1,4) = min{100 + 100 + 5 - 10 - 10 = min{140, 700,80}

© Dimo Brockhoff, Inria

Discussion Home Exercise

Exercise 2: Matrix Chain Multiplications

7) Matrices: Al (5-by-2), A2 (2-by-10), A3 (10-by-1), A4 (1-by-10),
and A5 (10-by-2)

1 0 100 30 80

2 . 0 20 40
3 - - 0 100 40
4 - - - 0) 20
5 - - - - 0
0+40+2-10-2
C(2,5) = min {20 +20+2-1- 2} min{80, 44,80}
404+ 04+ 2-10-2

© Dimo Brockhoff, Inria gori plexity @ CentraleSupelec/ESSEC, Nov

Discussion Home Exercise

Exercise 2: Matrix Chain Multiplications

7) Matrices: Al (5-by-2), A2 (2-by-10), A3 (10-by-1), A4 (1-by-10),
and A5 (10-by-2)

1 0 100 30 80

2 : 0 20 40 44
3 : : 0 100 40
4 : : : 0 20
4 N
((04+44+5-2-2)
C(1,5) = mind 120+ 1024 — min{64,240,60,180)

© Dimo B \8O+0+5102}

Discussion Home Exercise

a N
And the actual solution?
- need to store where optimum was obtained -10),
_ /
1 0 100 30 80 60
2 - 0) 20 40 44
3 - - 0 100 40
4 - - - 0) 20
4)

(04+44+5-2-2)
100+40+5-10-2

C(1,5) = minJ- 30420 4+5-1-2 > = min{64, 240,60,180}

_— L 80+0+5-10-2 |

Discussion Home Exercise

a N
And the actual solution?
- need to store where optimum was obtained -10),
_ /
1 0 100 30 80 60
2 - 0) 20 40 44
3 - - 0 100 40
4 - - - 0) 20
4)

(04+44+5-2-2)
100+40+5-10-2

C(1,5) = minJ- 30420 +5-1-2 > = min{64, 240,60,180}

_— L 80+0+5-10-2 |

Discussion Home Exercise

-~

\

And the actual solution?

~

- need to store where optimum was obtained -10)

/
1 0 100 30 80 60

J

-

~

2 - 0
(A1 ...A3) - (A4 - A5)
3 _ _
4 then: (4; - (A2 - 43)) - (A4 - As)
] NG
[04+444+5-2-2)
C(1,5) = min{ 100 +40+5-10-20_ . 64, 240,60,180)

30+20+5-1-2

_— L 80+0+5-10-2 |

Course Overview

Thu __Topic

Mon, 21.09.2020 PM Introduction, Combinatorics, O-notation, data structures
Mon, 28.09.2020 AM Data structures Il
Mon, 5.10.2020 AM Sorting algorithms, recursive algorithms
Mon, 12.10.2020 PM Greedy algorithms
Mon, 19.10.2020 PM Dynamic programming
= Mon, 2.11.2020 PM Randomized Algorithms and Blackbox Optimization
Mon, 16.11.2020 AM Complexity theory |
Mon, 23.11.2020 AM Complexity theory Il

Mon, 14.12.2019 PM Exam (very likely online)

© Dimo Brockhoff, Inria i ity @ CentraleSupelec/ESSEC, Nov. 2, 2020

Randomized Algorithms and
Blackbox Optimization

© Dimo Brockhoff, Inria Algorithms&Complexity @ CentraleSupelec/ESSEC, Nov. 2, 2020

Coping with Difficult Problems

Exact
= prute-force often too slow
= petter strategies such as dynamic programming
= still: often exponential runtime
Approximation Algorithms
= guarantee of low run time
= guarantee of high quality solution
= obstacle: often difficult to prove these guarantees
Heuristics
* Intuitive algorithms
= guarantee to run in short time
= often no guarantees on solution quality

= designed for practice (become non-heuristic once
theoretically analyzed ©)

© Dimo Brockhoff, Inria gori plexity @ CentraleSupelec/ESSEC, Nov. 2

Randomized Algorithms

Randomized Algorithm = Stochastic Algorithm = an algorithm that
uses randomness to make decisions

= first proposals in the 1940s (e.g. by N. Metropolis, J. v. Neumann,
...) with applications in

= optimization

= numerical integration

= generating draws from a probability distribution
= Monte Carlo algorithm: might not be correct with small probability
= Las Vegas: always correct, but might take long/exponential time

© Dimo Brockhoff, Inria gori plexity @ CentraleSupelec/ESSEC, Nov. 2

Difficult Optimization Problems are Everyw

40
36
32
28
24
20
16

060515/1800v018 HAM 500 MB HGT, GEO ABS VORTICITY

E2175299R783
E2175299R784
E2175300R787
E2175300R788
E2175300R785
21752997782
E1115150R567
E2025185R548

E2026196R564
E2025188R552
E1115150R 568
E2028185R545
19952557449

E1845184R737
E202:

E1895232R190
E1895232R380

ol

PUBLIC
DOMAIN

« USGS - Rivarm

7. dohn Dap Rocmvos - Loke Umatilla

Elo Edt Yiew Iheme Anshsn Sufsce Geaphics Window Hebp

0] FK]&) [#]:
s

2 Select Diawdown ARernative

= John Day Fusery SN Ootion (Wates Level at Johe Doy Dol e £

e 7 Noamal Opesating Pool INDP) {265 1) 7 Welted Acea r '
I Mo Opecatin Pocl IMOP) (257 K] I~ Wales Depth 156,000 cls
o WERC-Pumpl i 0N I~ Wales Velocky I~ 20u5yTels
> o [Nkl R 16D K] 1™ Podis. Rurs, ared Rifes
o WERC -BOBtR [T Seleck ot hasit oo option from each of the theee cokreis |
we Boat ram
o WaterSurfoce: _Detsie | A4 Selecions 1o View | “Piomave Selackons hom View | Cioe Seections | Coreca|
0 Dewatere
W Dewater

Dewatered
W Natural Ri

1 Pool.Run-Rife,
Pool

PUBLIC
DOMAIN

PUBLIC
DOMAIN

© Dimo Brockhoff, Inria

What is Optimization?

Typically, we want to
= find solutions x which minimize f (x) in the shortest time possible
(maximization is reformulated as minimization)

= or find solutions x with as small f(x) in the shortest time possible
(if finding the exact optimum is not possible)

© Dimo Brockhoff, Inria gori plexity @ CentraleSupelec/ESSEC, Nov. 2, 202C

Black Box Scenario

Why are we interested in a black box scenario?

= objective function f often noisy, non-differentiable, or
sometimes not even understood or available

» objective function f contains legacy or binary code, is based
on numerical simulations or real-life experiments

= most likely, you will see such problems in practice...

Objective: find x with small f(x) with as few function evaluations as
possible

assumption: internal calculations of algo irrelevant

© Dimo Brockhoff, Inria gori plexity @ CentraleSupelec/ESSEC, No

Q@

NN

Looks like non-uniform
distributions are better?!

\
|

Distribution centered
around last (or best) point,
with probability decreasing
with distance

IILIII=

%

|
\
s

Distribution centered
around last (or best) point,
with probability decreasing
with distance

\
|
\

&
HEEEEN

N

B
Distribution centered .
around last (or best) point, .
with probability decreasing [}
with distance B
N

-

Distribution centered
around last (or best) poir.
with probability decreasifigh
with distance

Motivation General Search Heuristics

= often, problem complicated and not much time available to
develop a problem-specific algorithm

= general (blackbox) search heuristic: a “meta-algorithm” or “meta-
heuristic” which can be applied to a large variety of problems

= search heuristics are a good choice:
= relatively easy to implement
= easy to adapt/change/improve

= e.g. when the problem formulation changes in an early
product design phase

= or when slightly different problems need to be solved
over time

» randomized/stochastic algorithms are a good choice because
they are robust to noise

© Dimo Brockhoff, Inria gori plexity @ CentraleSupelec/ESSEC, Nov

Stochastic Search Template

A stochastic blackbox search template to minimize f: Q - R

Initialize distribution parameters 6, set population size 1 € N
While happy do:

= Sample distribution P(x|6) — x4, ...,x; € Q
= Evaluate x4,...,x;0n f
= Update parameters 0 « Fy(0,xq, ..., X3, f (x1), ..., f(x3))

Deterministic algorithms can be cast in this framework as well:
for example in R": gradient descent
or local search in discrete Q

well-known stochastic example:

Covariance Matrix Adaptation Evolution Strategy (CMA-ES):
sample distributions = multivariate Gaussian distributions

© Dimo Brockhoff, Inria gori plexity @ CentraleSupelec/ESSEC, Nov. 2, 202

Lecture Outline Randomized Search Heuristics

Here, we touch only algorithms for discrete Q

© Randomized Local Search (RLS)

® Evolutionary Algorithms (EAS)

® Compact GA: an estimation of distribution algorithm on bitstrings

© Dimo Brockhoff, Inria gori hlexity @ CentraleSupelec/ESSEC, Nov. 2, 2020

Neighborhoods

For most (stochastic) search heuristics, we need to define a
neighborhood structure

= which search points are close to each other?

Example: k-bit flip / Hamming distance k neighborhood
= search space: bitstrings of length n (Q={0,1}")

»= two search points are neighbors if their Hamming
distance is k

*= |n other words: x and y are neighbors if we can flip
exactly k bits in x to obtain y

= (0001001101 is neighbor of
0001000101 for k=1
0101000101 for k=2
1101000101 for k=3

© Dimo Brockhoff, Inria gori plexity @ CentraleSupelec/ESSEC, Nov. 2

Neighborhoods Il

Example:

neighborhoods for permutation problems

search space: all permutations of lengthn (Q = S,))
swap neighborhood:

= swap two entries in the permutation
equivalence to Hamming distance: swap distance
= allow to swap k pairs

= possible to sample in a given distance of k, but
algorithm is not trivial

more neighborhoods for permutations later

© Dimo Brockhoff, Inria

@ CentraleSupelec/ESSEC, Nov. 2, 20

Randomized Local Search (RLS)

Idea behind (Randomized) Local Search:
= explore the local neighborhood of the current solution (randomly)

Pure Random Search:
= go to randomly chosen neighbor

First Improvement Local Search:
= go to first (randomly) chosen neighbor which is better

Best Improvement strategy:

= always go to the best neighbor

= not random anymore

= computationally expensive if neighborhood large

© Dimo Brockhoff, Inria gori plexity @ CentraleSupelec/ESSEC, Nov. 2, 202C

Stochastic Optimization Algorithms

One class of (bio-inspired) stochastic optimization algorithms:

Evolutionary Algorithms (EAS)

= Class of optimization algorithms
originally inspired by the idea of
biological evolution

= selection, mutation, recombination

© Dimo Brockhoff, Inria

@ CentraleSupelec/ESSEC, Nov. 2, 20

Classical Optimization Evolutionary Computation

variables or parameters variables or chromosomes

candidate solution Individual, offspring, parent
vector of decision variables /
design variables / object

variables
set of candidate solutions population
objective function fitness function

loss function
cost function
error function

iteration generation

© Dimo Brockhoff, Inria i ity @ CentraleSupelec/ESSEC, Nov. 2, 2

Generic Framework of an EA

Initialization best individual

: pOtentia mating
evaluation :
parents selection

environmental
selection

crossover/
mutation

evaluation

stochastic operators

__ “Darwinism’ representation (search space)
stopping criteria =

© Dimo Brockhoff, Inria gori plexity @ CentraleSupelec/ESSEC, Nov. 2, 202

The Historic Roots of EAS

Genetic Algorithms (GA)
J. Holland 1975 and D. Goldberg (USA)
Q={0,1}"

Evolution Strategies (ES)
|. Rechenberg and H.P. Schwefel, 1965 (Berlin)
() =R"

Evolutionary Programming (EP)

L.J. Fogel 1966 (USA)

Genetic Programming (GP)

J. Koza 1990 (USA)
() = space of all programs

nowadays one umbrella term: evolutionary algorithms

© Dimo Brockhoff, Inria gori hlexity @ CentraleSupelec/ESSEC, Nov. 2, 2020

Fitness of an individual not always = f(x)

* include constraints

* include diversity

= others

= but needed: always a total order on the solutions

© Dimo Brockhoff, Inria gori hlexity @ CentraleSupelec/ESSEC, Nov. 2, 2020

Examples for some EA parts

© Dimo Brockhoff, Inria Algorithms&Complexity @ CentraleSupelec/ESSEC, Nov. 2, 2020

Selection is the major determinant for specifying the trade-off
between exploitation and exploration

Selection is either

stochastic or deterministic
e.g. fitness proportional Disadvantage: e.g. (U+A), (LLA)
e D "=~ depends on T 4
C Yl f(z;) | scaling of f
best u from
e.g. via a tournament offspring and

parents
. '@ best p from

offspring only

Mating selection (selection for variation): usually stochastic
Environmental selection (selection for survival): often deterministic

© Dimo Brockhoff, Inria

Variation Operators

Variation aims at generating new individuals on the basis of those
Individuals selected for mating

Variation = Mutation and Recombination/Crossover

mutation: mut:) — €
recombination: recomb: 2" — Q° wherer >2ands > 1

= choice always depends on the problem and the chosen
representation

= however, there are some operators that are applicable to a wide

range of problems and tailored to standard representations such
as vectors, permutations, trees, etc.

© Dimo Brockhoff, Inria gori plexity @ CentraleSupelec/ESSEC, Nov. 2, ¢

Variation Operators: Guidelines

Two desirable properties for mutation operators:

= every solution can be generation from every other with a
probability greater than 0 (“exhaustiveness”)

" d(z,2") <d(z,2") => Prob(mut(z) = 2') > Prob(mut(z) = z")
(“locality”)

Desirable property of recombination operators (“in-between-ness”):

" = recomb(z,z’) = d(z",x) < d(z,2") Nd(2",2") < d(x,z")

17
.ZU

© Dimo Brockhoff, Inria

Examples of Mutation Operators on {0,1}"

1-bit flip mutation
= flip a randomly chosen bit (from 1 to O or vice versa)

K-bit flip mutation
» choose k (different) bits uniformly at random
= flip each of those bits (from 1 to O or vice versa)

Standard bitflip mutation

= flip each bit independently with probability 1/n

= expected number of bits changed: 1

" butalso: lim (1 _ ,‘1j _ % -0.367879 i.e. no bit flipped with constant
probability

© Dimo Brockhoff, Inria qori plexity @ CentraleSupelec/ESSEC, Nov. 2, 20

Examples of Mutation Operators on Permutation

Swap:

Scramble:

Invert:

Insert:

112]3]4]5

N\

swap

112]3]4] 5
T 1

realrrange

112]3]4] 5
t t

reverse

also known as
2-opt

© Dimo Brockhoff, Inria

Examples of Recombination Operators on {0,1"

1-point crossover

1[o[1]0}0]1

n-point crossover
[1}1]o0]of1]0] 70

1:0[1]0}0][1

uniform crossover

0 . independently from
one parent or another

_ . . choose each bit J
s 0 0

© Dimo Brockhoff, Inria

o CentraleSupelec/ESSEC, Nov. 2, 2020

A Canonical Genetic Algorithm

= binary search space, maximization
= uniform initialization
= generational cycle:
= evaluation of solutions
= mating selection (e.qg. roulette wheel)
= crossover (e.g. 1-point)
= environmental selection (e.g. plus-selection)

-

N

You may ask: how does this fit
into the stochastic search template?
it does: population contained in state 6,
but update function difficult to write down
S P /

© Dimo Brockhoff, Inria gori plexity @ CentraleSupelec/ESSEC, No

FrEAK

If you want to play around a bit with these algorithms:
» https://sourceforge.net/projects/freak427/

| £ FrEAK — O *
File Edit Control Views Help

Average Fitness - Plotter o E M All Individuals - Individual Table

Bit String

47.0 Date of Birth Fitness -
OneMax 85 47.0 011111100 11.7..

46.0 -
Batch:

: 45.0 -

1

44.0 -
Run:
| 1= || 430
Generation: 430 4
- st —_—

[Allindividuals - Boolean Hypercube i o @ [X

40.0

29.0 A

28.0

7.0 A

36.0

350 T T T

128 250 78 &
{1}

1 51 101
L [oa | ouw [> | p | | specdlimit 4 10.00])

© Dimo Brockhoff, Inria Algorithms&Complexity @ CentraleSupelec/ESSEC, Nov. 2, 2020

Estimation of Distribution Algorithms

= Estimation of Distribution Algorithms (EDAS) fit more obviously
Into the search template

* here, example of the compact Genetic Algorithm (cGA)
= search space: Q = {0,1}"
= probability distribution: Bernoulli
= store for each bit a probabillity p; to sample a 1
= sample bit i with probability p; to 1 and with (1 —p;) to 0

© Dimo Brockhoff, Inria gori plexity @ CentraleSupelec/ESSEC, Nov. 2, 202

The Compact GA

Parameters: number of variables n, learning rate K (typically = n)
Init:
p = (%% %) € [0,1]™ # probabilities to sample new solutions
While happy:
create S = (s4, ..., Sp) by sampling each s; with probability p;
create S’ = (s4, ..., Sp) by sampling each s; with probability p;
evaluate S and S’ on f
if £(S) > f(5): # make sure that S is the better solution
S S <SS
update p parameter:
fori € {1,..,n}:
p; < min{max{p; + (s;—s;)/K,1/n},1 - 1/n}
return S

© Dimo Brockhoff, Inria gori plexity @ CentraleSupelec/ESSEC, Nov. 2

Conclusions

= EASs are generic algorithms (randomized search heuristics,
meta-heuristics, ...) for black box optimization

no or almost no assumptions on the objective function

= They are typically less efficient than problem-specific
(exact) algorithms in discrete domain (in terms of #funevals)

but competitive in the continuous case

= Allow for an easy and rapid implementation and therefore to
find good solutions fast

easy (recommended!) to incorporate problem-specific
knowledge to improve the algorithm

© Dimo Brockhoff, Inria gori plexity @ CentraleSupelec/ESSEC, Nov. 2, 20

Conclusions

| hope it became clear...

...that heuristics is what we typically can afford in practice (no
guarantees and no proofs)

...what are the main ideas behind evolutionary algorithms

...and that evolutionary algorithms and genetic algorithms are no
synonyms

© Dimo Brockhoff, Inria qori hlexity @ CentraleSupelec/ESSEC, Nov. 2, 2020

