Algorithms & Complexity

September 13, 2021
CentraleSupélec / ESSEC Business School

Dimo Brockhoff

Inria Saclay — lle-de-France

TTTTTTTTTTTTTTTTTTTTTTTTTTT

INSTITUT

YT
@O\ TEc,
° 1
~ ‘ [%])
:
A '

» POLYTECHNIQUE -
'%,“qe' DE PARIS W2 1P PARIS

Algorithms & Complexity

September 13, 2021
CentraleSupélec / ESSEC Business School

Dimo Brockhoff

Inria Saclay — lle-de-France

TTTTTTTTTTTTTTTTTTTTTTTTTTT

INSTITUT PourTECHNIQUE

YT
QO T,
° %
~ ‘ °
-
= ’

" POLYTECHNIQUE
Y& DE PARIS B 1p pamis

t worse

o
o
L
)
=

19 Update

Paris (departement 75, 2.15 million people)

Weekly Cov

‘sjuel

10000

3000

Yoam Jad ajdoad 000‘00T 42d Jaquinu

1000

300
100

o o
m —

18
3

S0/60/120
22Z/80/120

14
1
}

U] MIgNd 02/9
qmn C } 54 : g —

== = tests conducted

= tested positive

=== hospitalized

= admitted to intensive care
== deceased

= Vaccinations

=== weekly change of positi\ies factor (0.81=-18%)

80/80/120
SZ/L0/120
11/L0/120

LT/90/120
€1/90/120

‘,e de

,Tl..gwu_) RIos[Ndilod SBULISROD ¢

|3 /90| s100pul uado

LU B B D |

Yoam Jad ajdoad 000‘00T 42d Joaqwinu

-hospitalieres

— 0€£/S0/120
91/50/120
20/S0/120
81/¥0/120
t0/v0/120
12/€0/120
L0/€0/120
1Z/zZ0/120
L0/20/120
+¥2/10/120

— 0T/10/120

— £Z/Z1/020
€1/21/020
62/11/020
ST/11/020
T0/1T/020
81/0T/020
¥0/01/0Z0

— 02/60/020

— 90/60/0Z0
€2/80/020

— 60/80/020

92/L0/0Z0

Z1/L0/020

82/90/0Z0

+1/90/020
1€/50/0Z0

L1/50/0Z0

€0/50/020

61/¥0/020

S0/%0/020

2Z/€0/020

&

)
<
(@)
1__
S

>

o

O
S~~~

c

Q

n

-

©
<

0

>
<

o
=

c

l
=~

-
=

o

>
g
c
e

(&}

o}
>
o

=3
Qo
©

S

o
=

o
=
e

i
N
o
I
™
i
o
()
N
O
L
N
N
w
~
(S
9
©
Q
)
9]
i
<
]
=
=
3]
O

© Dimo Brockhoff, Inria 2019-2021

Why Algorithms & Complexity?

Algorithm

(noun.)

Word used by programmers when they
do not want to explain what they did.

© Dimo Brockhoff, Inria 2019-2021 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 13, 2021

Why Algorithms & Complexity?

d by programmers
not want to explain what they

[...] an algorithm is a set of instructions, typically to
solve a class of problems or perform a computation.
[from wikipedia]

Algorithms widespread in almost every aspect of the “real-world”
= (automatic) problem solving
= sorting
* accessing data in data structures

© Dimo Brockhoff, Inria 2019-2021 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep.

Mnemonic: Algorithm = Recipe

Recipe: Algorithm:
= Cook cooks a meal = A computer solves a problem

Euclid's algorithm for the
greatest common divisor (gcd)
of two numbers

INPUT A, B

o]

*:‘ : no
BA 2V El
Peng @

no (< or =)

(4] B+<B-A |

(5] GoTOo2 |
—

(6] | A<A-B |

| cotoz |
|

[
PRINT A -
3] @ Somepics

© Dimo Brockhoff, Inria 2019-2021

Mnemonic: Algorithm = Recipe

Recipe: Algorithm:
= Cook cooks a meal = A computer solves a problem

= Independent of cook, type of = Independent of programmer,
pan, type of stove/oven/... computer, programming
language, ...
= Actually, a computer is
running an implementation of
an algorithm

© Dimo Brockhoff, Inria 2019-2021 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 13, 202

Mnemonic: Algorithm = Recipe

Recipe: Algorithm:
= Cook cooks a meal = A computer solves a problem

= Independent of cook, type of = Independent of programmer,

pan, type of stove/oven/... computer, programming

language, ...
= Actually, a computer is

running an implementation of
an algorithm
...similarly like a cook is
following a recipe on a
concrete stove with a certain
pan, etc.

© Dimo Brockhoff, Inria 2019-2021 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 13, 2C

Example: Sorting

Aim: Sort a set of cards/words/data

[Google, for example, has to sort all webpages
according to the relevance of your search]

Re-formulation: minimize the “unsortedness”

EFCADB
BACFDE 1 sortedness increases

ABCDEF

© Dimo Brockhoff, Inria 2019-2021 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 13, 2021

Example: Sorting

Classical Questions:
* What is the underlying algorithm?
(How do | solve a problem?)
= How long does it run to solve the problem?

(How long does it take? Which guarantees can | give? How
fast is the algorithm progressing?)

* |s there a better algorithm or did I find the optimal one?
related to the complexity part of the lecture

© Dimo Brockhoff, Inria 2019-2021 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 13, 2C

Caution:
This is not an “algorithms for data scientists” lecture (!)

= we do not cover algorithms for regression, regularization,
dimensionality reduction, clustering, deep learning, ...

= _..but cover much more basic things:
= data structures
= data sorting
= fundamental algorithm design ideas
= how to analyze an algorithm
= how to prove lower runtime bounds for hard problems

» the actual data science related topics are taught in later
lectures

© Dimo Brockhoff, Inria 2019-2021 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 13

Be Aware |l

“Algorithms” is a very wide topic, maybe as wide as “vegetables” ©
we can only touch the surface of “algorithms”

- | am here to guide you a bit
- and to give some hints of what might be useful later in your job

© Dimo Brockhoff, Inria 2019-2021 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 13, 2021

What we plan to do in the A&C lecture

Learning Goals:

@ know basic design principles behind good algorithms
(“building blocks to help solving “your own” problems”)

® Dbe able to analyze theoretically some algorithms
= give strong bounds on their “effectiveness”

» understand the ideas of (worst case) algo complexity
("Am | too dumb to find a quick algorithm or can nobody
do better?")

® Dbe able to use and understand existing algorithms
(“practice, practice, practice!”)

© Dimo Brockhoff, Inria 2019-2021 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep.

What we plan to do in the A&C lecture

How are we going to do that?

* |ook at a lot of examples of algorithms

= mixture of lectures and small exercises

»= practice and theory

= additionally 3 graded home exercises until mid November

Please ask questions
If things are unclear throughout the course!

© Dimo Brockhoff, Inria 2019-2021 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep

Course Overview

Thu

Mon, 13.09.2021
Mon, 20.09.2021
Mon, 27.09.2021
Mon, 11.10.2021
Mon, 18.10.2021
Mon, 25.10.2021
Mon, 08.11.2021
Mon, 15.11.2021

Mon, 13.12.2021

AM
AM
AM
AM
AM
AM
AM
AM

PM

__Topic

Introduction, Combinatorics, O-notation, data structures
Data structures Il, Sorting algorithms |

Sorting algorithms I, recursive algorithms

Greedy algorithms

Dynamic programming

Randomized Algorithms and Blackbox Optimization
Complexity theory |

Complexity theory Il

Exam

© Dimo Brockhoff, Inria 2019-2021

Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 13

Remarks on Exercises |

= expected to be done on paper or in python

* hence, please make sure you have python installed on your
laptop until the second lecture

= Anaconda is the recommended way to get there:
https://www.anaconda.com/distribution/

» (basic) example solutions will be made available afterwards

© Dimo Brockhoff, Inria 2019-2021 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 13, 202

Remarks on Exercises |l

In addition:
= 3 home exercises with 20 points each
= Counts 1/3 to overall grade (exam is the other 2/3)

© Dimo Brockhoff, Inria 2019-2021 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 13, 2021

Remarks on

Achieved points

In addition: >9=p =60 20 1
= 3 home exerc "8=p <> o !
56 < p < 58 18 2
= Counts 1/3 to 54 < p < 56 T -
= Graded as: 51 < p < 54 16 3
48 <p <51 15 3
45 <p < 48 14 3
42 < p <45 13 3
38 <p < 42 12 4
34 <p < 38 11 4
30 < p < 34 10 4
26 <p <30 9 4
22 <p <26 8 4
18 < p < 22 7 4
15<p<18 6 3
2.5 3,3,33,3

0<p<3 1 3

© Dimo Brockhoff, Inria 2019-2021

Remarks on Exercises |l

In addition:
= 3 home exercises with 20 points each
= Counts 1/3 to overall grade (exam is the other 2/3)
» (Graded as explained before
= Group submissions of 5 students allowed (and highly encouraged!)
= But: always with different students
= two students should be together on one solution max!

© Dimo Brockhoff, Inria 2019-2021 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 13, 202

Remarks on Exercises Il

Abstract

Please send your solutions by email to Dimo Brockhoff in PDF for-
mat (with a clear indication of your full name(s) in the email and the
PDEF file name. see below) until the submission deadline on October

(4, 2021 (a Monday). Groups of 5 students are explicitly allowed and
encouraged. In the case of group submissions, please make sure that
ou submit only once with the same student! >
Important: Please name your PDF file according to your last names
(sorted in alphabetical order and separated by an underscore), for

_example like Monet Renoir Toulouse-Lautrec.pdf.)

~\

A kind request for Taolue and Yagqi: please also add your firstnameJ

© Dimo Brockhoff, Inria 2019-2021 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 13, 2021

Remarks on Exercises IV

Exercises will be available on Mondays
= 20.9,,11.10. and 25.10.
Deadline for submission by email two weeks later
= 4.10.,25.10. and 8.11. (tight = 23h59 Paris time)
= | will try to have them corrected by the next lecture
» such that solutions can be discussed during the lecture

© Dimo Brockhoff, Inria 2019-2021 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 13, 202

Course Overview

Thu

Mon, 13.09.2021
Mon, 20.09.2021
Mon, 27.09.2021
Mon, 04.10.2021
Mon, 11.10.2021
Mon, 18.10.2021
Mon, 25.10.2021

Mon, 01.11.2021
Mon, 08.11.2021
Mon, 15.11.2021

Mon, 13.12.2021

AM
AM
AM
AM
AM
AM

AM
AM

PM

__Topic

Introduction, Combinatorics, O-notation, data structures
Data structures Il, Sorting algorithms | 1st exercise out
Sorting algorithms Il, recursive algorithms

Deadline 1st exercise

Greedy algorithms 2nd exercise out

Dynamic programming

Randomized Algorithms and Blackbox Optimization
3rd exercise out
Deadline 2nd exercise

Complexity theory | Deadline 3rd exercise
Complexity theory Il

Exam

© Dimo Brockhoff, Inria 2019-2021

Algorithms & Complexity, CentraleSupélec/ESSEC, Sep.

= Monday, 13" December 2021 in the afternoon (3 hours)
= (most likely) multiple-choice with 20-30 questions

= (most likely) on-site + online [detalils to be shared later]
= open book: use as much material as you want

= |n previous years: no electronic devices allowed that connect to
the internet [we’ll also see for this one ©)]

All information available at

http://www.cmap.polytechnique. fr/~dimo.brockhoff/
algorithmsandcomplexity/2021/

and also on EDUNAO
(exercise sheets, lecture slides, additional information, links, ...)

© Dimo Brockhoff, Inria 2019-2021

http://www.cmap.polytechnique.fr/~dimo.brockhoff/algorithmsandcomplexity/2021/

any questions?

© Dimo Brockhoff, Inria 2019-2021 i ity, CentraleSupélec/ESSEC, Sep

Overview of Today’s Lecture

Basics

= Fundamental combinatorics

= notations such as the O-notation

= algorithms on basic data structures

= arrays
= |ists
= f{rees

© Dimo Brockhoff, Inria 2019-2021 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 13, 2021

Basics I: Combinatorics

For this and the next parts, a nice-to-read reference is
https://www.math.upenn.edu/~wilf/AlgoComp.pdf

© Dimo Brockhoff, Inria 2019-2021 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 13, 2021

https://www.math.upenn.edu/~wilf/AlgoComp.pdf

Combinatorics = Counting

counting combinations and counting permutations

Why combinatorics?

= |n order to compute probabilities
#favorable outcomes

P(event) =
() #possible outcomes

= Related to graph theory (later)
» Related to combinatorial optimization (later)

© Dimo Brockhoff, Inria 2019-2021 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 13, 2021

Number of Permutations

Permutation: a sequence/order of members of a set

How many different orders exist on [n] := 1,...,n?

= First integer: choice among n
= Second integer: choice among n-1
= Last integer: no choice among 1

= Intotaln-(n—1)-..-1 =: n!

@ Watchduck (a.k.a. Tilman Piesk)

© Dimo Brockhoff, Inria 2019-2021 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 13, 2021

How to Generate a Random Permutation?

ldea: generate a random vector, sort it and use the generated
sorting order as the permutation

import numpy as np

n =4

random array = np.random.rand(n)
random perm = np.argsort(random array)

More elegant way:

random perm = np.random.permutation(n) ©

© Dimo Brockhoff, Inria 2019-2021 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 13, 2C

Combinations Without Replacement (k-co

How many combinations of set members of a given size k exist?

Example: number of different poker hands
= 52*51*50*49*48 = 311,875,200 ways
to hand 5 cards out of 52
= put: order does not matter here!
= There are 5! =120 orders of 5 cards

= Hence, there are DR
311,875,200/120 = 2,598,960 distinct pokers hands in total

In general, the number of k-combinations of n items (without
replacements) is

!
(1) = k!(nn— 0!

© Dimo Brockhoff, Inria 2019-2021 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep

Combinations with replacement

What if we want to allow duplicates?
= combinations with replacement

also known as k-combination with repetitions or k-multicombination

Example:

© Dimo Brockhoff, Inria 2019-2021

Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 13, 2021

I et M AT

Combinations with repl

WestportWiki

© Dimo Brockhoff, Inria 2019-2021 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep.

Combinations with replacement

What if we want to allow duplicates?
= combinations with replacement

also known as k-combination with repetitions or k-multicombination

Example:

eat 3 donuts from a choice of 4 different ones

© Dimo Brockhoff, Inria 2019-2021

Algorithms & Complexity, CentraleSupélec/ESSEC, Sep

Combinations with replacement

What if we want to allow duplicates?
= combinations with replacement

also known as k-combination with repetitions or k-multicombination

Example:

eat 3 donuts from a choice of 4 different ones

Number of k-combinations with replacement:
n+k—-1\((n+k-1
k B n—1
Here with n = 4, k = 3: (**37') = () = 20 combinations

© Dimo Brockhoff, Inria 2019-2021

Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 13, 202

Why That? The Stars and Bars Method

Stars and Bars: A useful counting method popularized by W. Feller*

How many combinations to put k objects into n bins?
= oObjects: stars
* bins: separated by bars

= Example of n =5 bins and k = 7 objects: % * |%*|| * * % | *
= Donut example: n = 4 bins/donut types, k = 3 objects

Number of combinations to put k objects into n bins

= number of combinations to place k objects onn + k — 1 places -:»("”,z_l)
= number of combinations to place n — 1 barsonn + k — 1 places =>(”;ZEI1

* Feller, William (1950). An Introduction to Probability Theory and Its Applications (2nd ed.). Wiley.

© Dimo Brockhoff, Inria 2019-2021 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 13

How to Generate a Random k-Combination?

Naive way:
from itertools import combinations
import numpy as np

n =14

k = 2

all k-combinations of [0, 1, .., n-1]:
comb = list(combinations (np.arange(n), k))

pick one at random
random k combination =
comb [np.random.randint (len (comb))]

Works only for small enough n and k:
len (comb)is 15,890,700 forn =50and k = 6

and 99,884,400 forn =50and k =7

© Dimo Brockhoff, Inria 2019-2021 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 13

How to Generate a Random k-Combination?

More efficient way:

» jterate across each element of {1, ...,n}
» pick each element with a dynamically changing probability of

k — #samples chosen

n — #samples visited

until k elements are picked.

© Dimo Brockhoff, Inria 2019-2021 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 13, 2021

Exercise

a) In how many different ways can the 15 balls
of a pool billiard be placed (on a line)?

b) How many different combinations of five
coins (Euros) can you have in your pocket?

c) How likely is it to get your bike stolen with
the lock on the right?

© Dimo Brockhoff, Inria 2019-2021

a) 15! (we look for the number of permutations of 15 distinct balls)

b) (8+5-1) choose 5 = 792 (8 different coins, choose 5 with
repetition)

C) it's pretty safe: the probability to find the right number is

1

T 10~°, assuming that a random number out of all 10 - 10 - 10 -

10 - 10 = 10° lock numbers is tried. It takes >10min to try out 1%
of all 10° numbers if you try 2 lock combinations per second.

© Dimo Brockhoff, Inria 2019-2021

Basics |l: The O-Notation

© Dimo Brockhoff, Inria 2019-2021 i ity, CentraleSupélec/ESSEC, Sep

Excursion: The O-Notation

Motivation:

= we often want to characterize how quickly a function f(x) grows
asymptotically

= e.g. we might want to say that an algorithm takes quadratically
many steps (in n) to find the optimum of a problem with n
(binary) variables

even if it is never exactly n?, but maybe n? + 1 or (n + 1)?

Big-O Notation
should be known, here mainly restating the definition:

Definition 1 We write f(x) = 0(g(x)) iff there exists a constant
¢ > 0 and an xy >0 such that |f(x)| < ¢ - g(x) holds for all x > x,

we also view O(g(x)) as the set of all functions growing at most
as quickly as g(x) and write f(x) eO(g(x))

© Dimo Brockhoff, Inria 2019-2021 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 1

Big-O: Examples

= f(x) +c=0(f(x)) [aslong as f(x) does not converge to zero]
= c-f(x) = O(f(X))

= f(x) - 9(x) = O(f(x) - 9(x))
= 3n*+n?-7=0(n%

Intuition of the Big-O:

= if f(x) = O(g(x)) then g(x) gives an upper bound (asymptotically)
for f

= constants don't play a role
= with Big-O, you should have ‘<’ in mind

© Dimo Brockhoff, Inria 2019-2021 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 13, 202

Excursion: The O-Notation

Further definitions to generalize from ‘<’ to 2" and ‘="

= 1(x) =Q(g(x)) 1t g(x) = O(f(x))
= f(x) = 0(g(x)) If f(x) = O(g(x)) and g(x) = O(f(x))

Note: Definitions equivalent to ‘< and >’ exist as well, but are not
needed in this course

© Dimo Brockhoff, Inria 2019-2021

Exercise O-Notation

Please order the following functions in terms of their asymptotic
behavior (from smallest to largest):

= exp(n®)

= Jogn

* Inn/Ininn
" n

= nlogn

= exp(n)

= In(n!)

Give for two of the relations a formal proof.

© Dimo Brockhoff, Inria 2019-2021

Exercise O-Notation (Solution)

Correct ordering:

|
n log n = O(In(n!)) In(n!)= O(e") e" = O(e"?)

but for example e"? # O(e")

One exemplary proof:

In(n) |
in(in(n)) ~ ©0g n):
In(n) log(n) 3log(n)
In(In(n))| |log(e) In(In(n)) = = 3 log(n)

T In(In(n)) T

forn>1 forn> 15

© Dimo Brockhoff, Inria 2019-2021

Exercise O-Notation (Solution)

One more proof: In n! =O(n log n)
= Stirling’s approximation: n! ~V2mn(n/e)" or even

Vornt1/2e™m < pl < enntl/2e™m

n+= 1
* |nn!<In(en "2e7™") =1+ (n+§) Inn—n

logn

=c-nlogn

1
< (n+—)lnn <2nlnn=2n
2 loge

okay forc = 2/loge and alln e N

= nlnn=0(nn!) proven in a similar vein

© Dimo Brockhoff, Inria 2019-2021

If it’s not clear yet: Youtube

= https://www.youtube.com/watch?v=__ vX2sjlpXU

© Dimo Brockhoff, Inria 2019-2021 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 13, 2021

basic data structures

© Dimo Brockhoff, Inria 2019-2021 i ity, CentraleSupélec/ESSEC, Sep

Why Data Structures? What are those?

A data structure is a data organization, management, and storage
format that enables efficient access and modification.

More precisely, a data structure is a collection of data values, the

relationships among them, and the functions or operations that can
be applied to the data.

from wikipedia

Why important to know?

= Only with knowledge of data structures can you program well
= Knowledge of them is important to design efficient algorithms

© Dimo Brockhoff, Inria 2019-2021

Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 13, 2C

Data Structures and Algorithm Complexity

Depending on how data is stored, it is more or less efficient to
= Add data
= Remove data
= Search for data

Common Complexities

Complexity | RunningTime |

constant 0(1) independent of data size
logarithmic 0 (log(n)) often base 2, grows relatively slowly with data
size
linear 0(n) nearly same amount of steps than data points
O(nlog(n)) Common, still efficient in practice if n not huge
guadratic 0(n?) Often not any more efficient with large data sets

exponential 0(2™),0(n!),... Should be avoided ©

see also: https://introprogramming.info/english-intro-csharp-book/read-online/chapter-19-data-structures-and-algorithm-complexity

© Dimo Brockhoff, Inria 2019-2021 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep.

https://introprogramming.info/english-intro-csharp-book/read-online/chapter-19-data-structures-and-algorithm-complexity

Best, Worst and Average Cases

Algorithm complexity can be given as best, worst or average cases:

Worst case:
= Assumes the worst possible scenario
= Algorithm can never perform worse

= Corresponds to an upper bound (on runtime, space requirements, ...)
= Most common

Best case:
= Best possible scenario
= Algorithm is never quicker/better/more efficient/...

Average case:

= Complexity averaged over all possible scenarios
= Often difficult to analyze

© Dimo Brockhoff, Inria 2019-2021 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 13

Array: a fixed chunk of memory of constant size that can contain a
given number of n elements of a given type

= think of a vector or a table
= |n python:
= import numpy as np
= a = np.array([1l, 2, 3])
= a[1l] returns 2 [python counts from 0!]

Discuss with your neighbors:

1) How long does it take to access a given item at position i?
2) What about but removing the ith entry?

3) How long does it take to know for certain that a given value x
IS In the array (or not)?

© Dimo Brockhoff, Inria 2019-2021

Array: a fixed chunk of memory of constant size that can contain a
given number of n elements of a given type

= think of a vector or a table
= In python:
= import numpy as np
= a = np.array([1l, 2, 3])
= a[1] returns 2 [python counts from 0!]

Common operations and their complexity:
= Get(i) and Update(i) in constant time

= but Remove(i), Move | in between positions i and i+1, ...
are not possible in constant time, because necessary
memory alterations not local

* To know whether a given item is in the array: linear time

© Dimo Brockhoff, Inria 2019-2021

Searching in Sorted Arrays

= Assume a sorted array a[l1] < a[2] < .. < a[n].
= How long will it take to find the smallest element > k?
(Best case, worse case, average case)

© Dimo Brockhoff, Inria 2019-2021 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 13, 2021

Searching in Sorted Arrays

= Assume a sorted array a[l1] < a[2] < .. < a[n].

= How long will it take to find the smallest element > k?
Or to decide whether a value a is in the array?
(best case, worse case, average case)

Linear search
= go through array from a[1] to a[n] until entry found
= still @(n) in the worst case

= average case the same (if we assume that each item is queried
with equal probability)

© Dimo Brockhoff, Inria 2019-2021 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 13, 2

Searching in Sorted Arrays

Binary search
= Look at position [n/2] first

= s it the sought after entry? If yes, stop

= |f not: search recursively in left or right interval, depending on
whether the middle entry is larger or smaller than the sought

after entry

Runtimes
= PBestcase: 1
= \Worst case:

= sought after entry not in array
= simple case: n = 2% — 1 array elements

= array-part where entry could be located is of length 2%~1 — 1

= by induction: maximally k comparisons needed

* k= 0(log(n))

© Dimo Brockhoff, Inria 2019-2021

Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 13

Linked Lists

= Dynamic data structure of varying length
= Allows to add and remove entries (remember: arrays don't)
= However, also not stored in contiguous memory anymore

Ildea of a Linear List

|

data pointer

© Dimo Brockhoff, Inria 2019-2021 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep

Linked Lists

= Dynamic data structure of varying length
= Allows to add and remove entries (remember: arrays don't)
= However, also not stored in contiguous memory anymore

Ildea of a Linear List

" list _~

of

" words

nil /
null /
None

© Dimo Brockhoff, Inria 2019-2021

Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 13, 2

Linked Lists

= Dynamic data structure of varying length
= Allows to add and remove entries (remember: arrays don't)
= However, also not stored in contiguous memory anymore

Ildea of a Linear List

4,7, 1, ...] in memory could be for example:

memory 87 | 88 91 | 92 | 93
address

memory
content

© Dimo Brockhoff, Inria 2019-2021 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 13, 2021

Linked Lists

= Dynamic data structure of varying length
= Allows to add and remove entries (remember: arrays don't)
= However, also not stored in contiguous memory anymore

Ildea of a Linear List

?
[4X1 ...] in memory could be for example:

memory 87 | 88 91 | 92 | 93
address

memory
content

© Dimo Brockhoff, Inria 2019-2021 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 13, 2021

Linked Lists

= Dynamic data structure of varying length
= Allows to add and remove entries (remember: arrays don't)
= However, also not stored in contiguous memory anymore

Ildea of a Linear List

[4X1 ...] in memory could be for example:

lﬂm-
address

memory
content

= go through list until 7 is found
= always keep track of last pointer (the one finally to 7)
= move this pointer to the former pointer of entry 7

© Dimo Brockhoff, Inria 2019-2021

Linked Lists

= removal of element in constant time 0(1)

= very similar for adding: 0(1)

= adding into a sorted list: 0(n)

= but now searching is more difficult, even if sorted
= reason: we don’t have access to the “middle” element
= search for element i: O(i) if list is sorted

we need a different data structure if we want to search, insert, and
delete efficiently

© Dimo Brockhoff, Inria 2019-2021 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 13, 2C

Brian Green

© Dimo Brockhoff, Inria 20 i ity, CentraleSupélec/ESSEC, Sep.

PUBLIC
DOMAIN

© Dimo Brockhoff, Inria 2019-2021 i ity, CentraleSupélec/ESSEC, Sep

root

— data

— POINter(s)
not necessarily < 2

parent

children

leaves

© Dimo Brockhoff, Inria 2019-2021 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 13, 2021

Trees are Special Graphs

For a more formal definition, we need to introduce the concept of
graphs...

© Dimo Brockhoff, Inria 2019-2021 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 13, 2021

Basic Concepts of Graph Theory

[following for example http://math.tut.fi/~ruohonen/GT_English.pdf]

© Dimo Brockhoff, Inria 2019-2021 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 13, 2021

Definition 1 An undirected graph G is a tupel G = (V, E) of edges e = {u,v} €
E over the vertex set V (i.e., u,v € V).

= vertices = nodes

= edges =lines

= Note: edges cover two unordered vertices (undirected graph)
= |f they are ordered, we call G a directed graph

© Dimo Brockhoff, Inria 2019-2021 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 13, 202

Graphs: Basic Definitions

= G s called empty if E empty

= uandyv are end vertices of an edge {u,v} D
» Edges are adjacent if they share an end vertex
= Vertices u and v are adjacent if {u,v}isin E

» The degree of a vertex is the number of times it is an end vertex
= A complete graph contains all possible edges (once):

Cote &% &
@ o—@

a loop

© Dimo Brockhoff, Inria 2019-2021 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 13, 2

Walks, Paths, and Circuits

Definition 1 A walk in a graph G = (V, E) is a sequence

alternating vertices and adjacent edges of G.

A walk iIs

Vigs iy = (Vig, Viy)5 Viys €iy = (Viy, Vig)s -+ 5 €y, Vi

closed if first and last node coincide
a trail if each edge traversed at most once
a path if each vertex is visited at most once

a closed path is a circuit or cycle
a closed path involving all vertices of G is a Hamiltonian cycle

© Dimo Brockhoff, Inria 2019-2021 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 13, 20

Graphs: Connectedness

= Two vertices are called connected if there is a walk between
themin G

= |f all vertex pairs in G are connected, G is called connected

= The connected components of G are the (maximal) subgraphs
which are connected.

o(0®

© Dimo Brockhoff, Inria 2019-2021 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 13, 2C

Trees and Forests

= A forestis a cycle-free graph
= Atree is a connected forest

root children parent

A spanning tree of a connected graph G is a tree in G which
contains all vertices of G

© Dimo Brockhoff, Inria 2019-2021 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 13, 2

Depth-First Search (DFS)

Sometimes, we need to traverse a graph, e.g. to find certain vertices
Depth-first search and breadth-first search are two algorithms to do so

Depth-first Search (for undirected/acyclic and connected graphs)
O start at any node x; set i=0
® as long as there are unvisited edges {X,y}-

= choose the next unvisited edge {x,y} to a vertex y and mark x
as the parent of y

» if y has not been visited so far: i=i+1, give y the number i, and
continue the search at x=y in step 2

= else continue with next unvisited edge of x

©® if all edges {x,y} are visited, we continue with x=parent(x) at step 2
or stop if x==v0

© Dimo Brockhoff, Inria 2019-2021 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 1

DFS: Stage Exercise

Exercise the DFS algorithm on the following graph!

© Dimo Brockhoff, Inria 2019-2021 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 1

Breadth-First Search (BFS)

Breadth-first Search (for undirected/acyclic and connected graphs)
O start at any node x, set i=0, and label x with value |

® as long as there are unvisited edges {x,y} which are adjacent to a
vertex x that is labeled with value i:

= |abel all vertices y with value i+1
® seti=i+1 and go to step 2

© Dimo Brockhoff, Inria 2019-2021 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 13

Back to Trees as Data Structure

Binary Search Tree
= atree with degree < 2

= children sorted such that the left subtree always contains values
smaller than the corresponding root and the right subtree only
values larger

© Dimo Brockhoff, Inria 2019-2021 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 13, 202

Class Exercise: Filling a Binary Search Tree

© Dimo Brockhoff, Inria 2019-2021 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 13, 2021

Binary Search Tree: Complexities

Search

= similar to binary search in array (go left or right until found)
= O(log (n)) if tree is well balanced

= O(n) In worst case (linear list)

Insertion
= first like search to determine the parent of the new node
= thenaddin 0(1) [we are always at a leaf]

Remove (more tricky)
» |f node has no child, remove it
= if node has a single child, replace node by its child

= |f node has two children: find left-most tree entry L larger than
the to-be-removed node, copy its value to the to-be-removed
node, and remove L according to the two above rules

= cost: O(tree depth), In worst case: O(n)

© Dimo Brockhoff, Inria 2019-2021 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep.

Binary Trees: Can We Do Better?

Binary Search Tree

average case (random inserts) worst case
O(log(n)) O(log(n)) O(log(n)) O(n) O(n) O(n)

Guarantee a balanced tree:
e AVL trees

« B trees

 Red-Black trees

average case (random inserts) worst case

search insert delete search insert delete

O(log(n)) O(log(n)) O(log(n)) O(log(n)) O(log(n)) O(log(n))

© Dimo Brockhoff, Inria 2019-2021 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 13, 2021

Can We Do Even Better on Average?

Balanced Trees

average case (random inserts) worst case

search insert delete search insert delete

O(log(n)) O(log(n)) O(log(m)) O(log(n)) O(log(n)) O(log(n))

?
average case (random inserts) worst case
0(1) 0(1) 0(1) O(n) O(n) 0(n)

© Dimo Brockhoff, Inria 2019-2021 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 13, 2021

Dictionaries

In python:
my dict = {‘'Joe': 113, ‘Pete': 7, ‘Alan': '110'}
print("my dict[‘'Joe']: ™ + my dict[‘Joe'])
gives my dict[‘Joe’]: 113 as output

» the immutables *Joe’, ‘Pete’, and ‘Alan’ are the keys
= 113, 7, and 110 are the values (or the stored data)

Next: Why dictionaries and how are they implemented?

© Dimo Brockhoff, Inria 2019-2021 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 13, 20

Dictionaries

— — —l 1
S S——
S w— A e

| 4

[—— S S ——

L
l —==11
4 r\
- L A L
————e—— — — —
-
|
/| T
Y 72 .
= . |

Where Is Alan?

- —
— —— = -
— — =
—— m—— w— L sa
. i* —— — -
. =5 E==
 roce - W——
t " — ——
J | == P
= —— — : ‘ ' ' ‘
—] | S—— 3 I l
== = == ' ” '
—~—— : — l N T— e —— ’ \
- — \ '} b '\ &3 L P
—— \ . rem— ‘ Gu - — —~——
i e C : =
S (1 —_— g PUBLIC
| DOMAIN

© Dimo Brockhoff, Inria 2019-2021 Algorithms & Complexity, Centrale

Where is Alan?

= Go through all offices one by one?
like in list and array

= No, you would ask the receptionist for the office number

@m Evan Bench

S EY

© Dimo Brockhoff, Inria 2019-2021

Dictionaries Implemented as Hashtables

© Dimo Brockhoff, Inria 2019-2021 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 13, 2021

Dictionaries Implemented as Hashtables

Hash

Alan function f

Joe

Pete 110
111
112
113

Possible hash function: h =z mod n

© Dimo Brockhoff, Inria 2019-2021 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 13, 2021

Hash Functions

...should be
» deterministic: find data again

= uniform: use allocated memory space well
[more tricky with variable length keys such as strings]

Problems to address in practice:

= how to deal with collisions (e.g. via multiple hash functions)

= deleting needs to insert dummy keys when a collision appeared
= what if the hash table is full? - resizing

All this gives a constant average performance in practice

Not more details here, but if you are interested:

For more details on python’s dictionary:
https://www.youtube.com/watch?v=C4Kc8xzcAG6S8

© Dimo Brockhoff, Inria 2019-2021 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep.

What Have We Learned Today?

= Combinatorics: basic ways of counting things
= O-notation: how to formalize classes of asymptotic function growth
= Basic data structures and their operations

= arrays

= |ists

= (binary search) trees

= dictionaries / hash tables

see also https://www.bigocheatsheet.com/

= And along the way: graph theory, DFS, and BFS

© Dimo Brockhoff, Inria 2019-2021 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 13, 202

