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Date Topic

Mon, 21.9.2015 Introduction

Mon, 28.9.2015 D Basic Flavors of Complexity Theory

Mon, 5.10.2015 D Greedy algorithms

Mon, 12.10.2015 D Branch and bound (switched w/ dynamic programming)

Mon, 2.11.2015 D Dynamic programming [salle Proto]

Fri, 6.11.2015 D Approximation algorithms and heuristics [S205/S207]

Mon, 9.11.2015 C Introduction to Continuous Optimization I [S118]

Fri, 13.11.2015 C Introduction to Continuous Optimization II

[from here onwards always: S205/S207]

Fri, 20.11.2015 C Gradient-based Algorithms

Fri, 27.11.2015 C End of Gradient-based Algorithms + Linear Programming

Stochastic Optimization and Derivative Free Optimization I

Fri, 4.12.2015 C Stochastic Optimization and Derivative Free Optimization II

Tue, 15.12.2015 Exam

Course Overview
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Introduction to Continuous Optimizaation

 examples (from ML / black-box problems)

 typical difficulties in optimization (e.g. constraints)

Mathematical Tools to Characterize Optima

 reminders about differentiability, gradient, Hessian matrix

Overview of Today’s Lecture
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Introduction to Continuous Optimization

 examples (from ML / black-box problems)

 typical difficulties in optimization (e.g. constraints)

Mathematical Tools to Characterize Optima

 reminders about differentiability, gradient, Hessian matrix

 unconstraint optimization

 first and second order conditions

 convexity

 constrained optimization

Gradient-based Algorithms

 quasi-Newton method (BFGS)

Learning in Optimization / Stochastic Optimization 

 CMA-ES (adaptive algorithms / Information Geometry)

 PhD thesis possible on this topic
strongly related to ML, new promising research area, interesting open questions

Further Details on Remaining Lectures
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Computer simulation teaches itself to walk upright (virtual robots (of 

different shapes) learning to walk, through stochastic optimization

(CMA-ES)), by Utrecht University:

https://www.youtube.com/watch?v=yci5FuI1ovk

T. Geitjtenbeek, M. Van de Panne, F. Van der Stappen: "Flexible Muscle-Based

Locomotion for Bipedal Creatures", SIGGRAPH Asia, 2013.

First Example of a Continuous Optimization Problem
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 Optimize 𝑓:  
Ω ⊂ ℝ𝑛 → ℝ

𝑥 = 𝑥1, … , 𝑥𝑛 → 𝑓(𝑥1, … , 𝑥𝑛)

 Search space is continuous, i.e. composed of real vectors 𝑥 ∈ ℝ𝑛

 𝑛 =

Continuous Optimization

∈ ℝ unconstrained optimization

dimension of the problem

dimension of the search space ℝ𝑛 (as vector space)

1-D problem 2-D level sets
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Unconstrained optimization

inf 𝑓 𝑥 𝑥 ∈ ℝ𝑛}

Constrained optimization

 Equality constraints: inf {𝑓 𝑥 | 𝑥 ∈ ℝ𝑛, 𝑔𝑘 𝑥 = 0, 1 ≤ 𝑘 ≤ 𝑝}

 Inequality constraints: inf {𝑓 𝑥 | 𝑥 ∈ ℝ𝑛, 𝑔𝑘 𝑥 ≤ 0, 1 ≤ 𝑘 ≤ 𝑝}

where always 𝑔𝑘: ℝ
𝑛 → ℝ

Unconstrained vs. Constrained Optimization
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feasible

domain

min
𝑥∈ℝ

𝑓 𝑥 = 𝑥2 such that 𝑥 ≤ −1

Example of a Constraint
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Example: 1-D

𝑓1 𝑥 = 𝑎 𝑥 − 𝑥0
2 + 𝑏

where 𝑥, 𝑥0, 𝑏 ∈ ℝ, 𝑎 ∈ ℝ

Generalization:

convex quadratic function

𝑓2 𝑥 = 𝑥 − 𝑥0
𝑇𝐴 𝑥 − 𝑥0 + 𝑏

where 𝑥, 𝑥0, 𝑏 ∈ ℝ𝑛, 𝐴 ∈ ℝ n×𝑛

and 𝐴 symmetric positive definite (SPD)

Analytical Functions

Exercise:

What is the minimum of 𝑓2(𝑥)?
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Reminder: level sets of a function

𝐿𝑐 = 𝑥 ∈ ℝ𝑛 𝑓 𝑥 = 𝑐}

(similar to topography lines /

level sets on a map)

Levels Sets of Convex Quadratic Functions

Continuation of exercise:

What are the level sets of 𝑓2?
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 Probably too complicated in general, thus an example here

 Consider 𝐴 =
9 0
0 1

, 𝑏 = 0, 𝑛 = 2

a) Compute 𝑓2 𝑥 .

b) Plot the level sets of 𝑓2 𝑥 .

c) Optional: More generally, for 𝑛 = 2, if 𝐴 is SPD with

eigenvalues 𝜆1 = 9 and 𝜆2 = 1, what are the level sets of 

𝑓2 𝑥 ? 

Levels Sets of Convex Quadratic Functions

Continuation of exercise:

What are the level sets of 𝑓2?
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Example Problems



14Introduction to Optimization @ ECP, Nov. 9, 2015© Dimo Brockhoff, INRIA 14

Objective

 Given a sequence of data points 𝒙𝑖 , 𝑦𝑖 ∈ ℝ𝑝 × ℝ, 𝑖 = 1,… ,𝑁, 

find a model "𝑦 = 𝑓(𝒙)" that explains the data

experimental measurements in biology, chemistry, ...

 In general, choice of a parametric model or family of functions 

𝑓𝜃 𝜃∈ℝ𝑛

use of expertise for choosing model or simple models

only affordable (linear, quadratic)

 Try to find the parameter 𝜃 ∈ ℝ𝑛 fitting best to the data

Fitting best to the data

Minimize the quadratic error:

min
𝜃∈ℝ𝑛

 

𝑖=1

𝑁

𝑓𝜃 𝒙𝑖 − 𝑦𝑖
2

Data Fitting – Data Calibration
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Supervised Learning:

Predict 𝑦 ∈ 𝒴 from 𝒙 ∈ 𝒳, given a set of observations (examples) 

𝑦𝑖 , 𝒙𝑖 𝑖=1,…,𝑁

(Simple) Linear regression

Given a set of data: 𝑦𝑖 , 𝑥𝑖
1, … , 𝑥𝑖

𝑝

𝑖=1…𝑁

min
𝒘∈ℝ𝑝,𝛽∈ℝ

 

𝑖=1

𝑁

𝒘𝑇𝒙𝑖 + 𝛽 − 𝑦𝑖
2

 𝑿 ∈ ℝ𝑁×(𝑝+1),  𝒘 ∈ ℝ𝑝+1

same as data fitting with linear model, i.e. 𝑓𝒘,𝛽 𝒙 = 𝒘𝑇𝒙 + 𝛽,

𝜃 ∈ ℝ𝑝+1

Optimization and Machine Learning: Lin. Regression

𝒙𝑖
𝑇

|| 𝑿 𝒘 − 𝐲||2



16Introduction to Optimization @ ECP, Nov. 9, 2015© Dimo Brockhoff, INRIA 16

A Real-World Problem in Petroleum Engineering
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Function Difficulties
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 dimensionality

(considerably) larger than three

 non-separability

dependencies between the objective variables

 ill-conditioning

 ruggedness

non-smooth, discontinuous, multimodal, and/or 

noisy function

What Makes a Function Difficult to Solve?

a narrow ridge

cut from 3D example, 

solvable with an 

evolution strategy
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 The term Curse of dimensionality (Richard Bellman) refers to 

problems caused by the rapid increase in volume associated 

with adding extra dimensions to a (mathematical) space.

 Example: Consider placing 100 points onto a real interval, say 

0,1 . To get similar coverage, in terms of distance between

adjacent points, of the 10-dimensional space 0,1 10 would

require 10010 = 1020 points. The original 100 points appear now

as isolated points in a vast empty space. 

 Consequently, a search policy (e.g. exhaustive search) that is 

valuable in small dimensions might be useless in moderate or 

large dimensional search spaces.

Curse of Dimensionality
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Separable Problems

Definition (Separable Problem)

A function 𝑓 is separable if

argmin
(𝑥1,…,𝑥𝑛)

𝑓(𝑥1, … , 𝑥𝑛) = argmin
𝑥1

𝑓 𝑥1, … , … , argmin
𝑥𝑛

𝑓(… , 𝑥𝑛)

⟹ it follows that 𝑓 can be optimized in a sequence of

𝑛 independent 1-D optimization processes

Example:

Additively decomposable functions

𝑓 𝑥1, … , 𝑥𝑛 =  

𝑖=1

𝑛

𝑓𝑖(𝑥𝑖)

Rastrigin function
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Non-Separable Problems

Building a non-separable problem from a separable one [1,2]

Rotating the coordinate system

 𝑓: 𝒙 ⟼ 𝑓(𝒙) separable

 𝑓: 𝒙 ⟼ 𝑓(𝑅𝒙) non-separable

𝑅 rotation matrix

𝑅
⟶

[1] N. Hansen, A. Ostermeier, A. Gawelczyk (1995). "On the adaptation of arbitrary normal mutation distributions in 

evolution strategies: The generating set adaptation". Sixth ICGA, pp. 57-64, Morgan Kaufmann

[2] R. Salomon (1996). "Reevaluating Genetic Algorithm Performance under Coordinate Rotation of Benchmark 

Functions; A survey of some theoretical and practical aspects of genetic algorithms." BioSystems, 39(3):263-278
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Ill-Conditioned Problems: Curvature of Level Sets

Consider the convex-quadratic function

𝑓 𝒙 =
1

2
𝒙 − 𝒙∗ 𝑇𝐻 𝒙 − 𝒙∗ =

1

2
 

𝑖
ℎ𝑖,𝑖𝑥𝑖

2 +
1

2
 

𝑖,𝑗
ℎ𝑖,𝑗𝑥𝑖𝑥𝑗

H is Hessian matrix of 𝑓 and symmetric positive definite

Ill-conditioning means squeezed level sets (high curvature).

Condition number of SPD matrix A = ratio between largest and smallest 

eigenvalue 

Condition number equals nine here (kind of well-conditioned). Condition 

numbers up to 1010 are not unusual in real-world problems. 

gradient direction −𝑓′ 𝑥 𝑇

Newton direction −𝐻−1𝑓′ 𝑥 𝑇
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Mathematical Tools to Characterize Optima
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Unconstrained case

 local vs. global

 local minimum 𝒙∗: ∃ a neighborhood 𝑉 of 𝒙∗ such that

∀𝒙 ∈ V: 𝑓(𝒙) ≥ 𝑓(𝒙∗)

 global minimum: ∀𝒙 ∈ Ω: 𝑓 𝒙 ≥ 𝑓 𝒙∗

 strict local minimum if the inequality is strict

Different Notions of Optimum
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Objective: Derive general characterization of optima

Example: if 𝑓:ℝ → ℝ differentiable,

𝑓′ 𝑥 = 0 at optimal points

 generalization to 𝑓:ℝ𝑛 → ℝ ?

 generalization to constrained problems?

Remark: notion of optimum independent of notion of differentiability

Mathematical Characterization of Optima

optima of such function can be easily 

approached by certain type of methods
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𝑓: (𝑉, | | 𝑉) ⟶ (𝑊, | | 𝑊) is continuous in 𝑥 ∈ 𝑉 if

∀𝜖 > 0, ∃𝜂 > 0 such that ∀𝑦 ∈ 𝑉: |𝑥 − 𝑦| 𝑉 ≤ 𝜂; ||𝑓 𝑥 − 𝑓(𝑦)||𝑊 ≤ 𝜖

Reminder: Continuity of a Function

continuous

function

not continuous

discontinuity

point
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𝑓:ℝ → ℝ is differentiable in 𝑥 ∈ ℝ if

lim
ℎ→0

𝑓 𝑥+ℎ −𝑓(𝑥)

ℎ
exists, ℎ ∈ ℝ

Notation:

𝑓′ 𝑥 = lim
ℎ→0

𝑓 𝑥+ℎ −𝑓(𝑥)

ℎ

The derivative corresponds to the slope of the tangent in 𝑥.

Reminder: Differentiability in 1D (n=1)
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Taylor Formula (Order 1)

If 𝑓 is differentiable in 𝑥 then

𝑓 𝑥 + ℎ = 𝑓 𝑥 + 𝑓′ 𝑥 ℎ + 𝑜 |ℎ|

i.e. for ℎ small enough, ℎ ⟼ 𝑓 𝑥 + ℎ is approximated by ℎ ⟼
𝑓 𝑥 + 𝑓′(ℎ)

ℎ ⟼ 𝑓 𝑥 + 𝑓′ 𝑥 ℎ is called a first order approximation of 𝑓(𝑥 + ℎ)

Reminder: Differentiability in 1D (n=1)
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Geometrically:

The notion of derivative of a function defined on ℝ𝑛 is generalized

via this idea of a linear approximation of 𝑓(𝑥 + ℎ) for ℎ small

enough.

Reminder: Differentiability in 1D (n=1)
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 In (ℝ𝑛, || ||2) where ||𝒙||2 = 𝒙, 𝒙 is the Euclidean norm

deriving from the scalar product 𝒙, 𝒚 = 𝒙𝑇𝒚

𝛻𝑓 𝑥 =

𝜕𝑓

𝜕𝑥1
⋮
𝜕𝑓

𝜕𝑥𝑛

 Reminder: partial derivative in 𝑥0
fi: 𝑦→ 𝑓 𝑥0

1, … , 𝑥0
𝑖−1, 𝑦, 𝑥0

𝑖+1, … , 𝑥0
𝑛

𝜕𝑓

𝜕𝑥𝑖
𝑥0 = 𝑓𝑖′(𝑥0)

Gradient Definition Via Partial Derivatives
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Exercise: Gradients

Exercise:

Compute the gradients of 

a) 𝑓 𝑥 = 𝑥1 with 𝑥 ∈ ℝ𝑛

b) 𝑓 𝑥 = 𝑎𝑇𝑥 with a, 𝑥 ∈ ℝ𝑛

c) 𝑓 𝑥 = 𝑥𝑇𝑥 (= |x| 2) with 𝑥 ∈ ℝ𝑛



32Introduction to Optimization @ ECP, Nov. 9, 2015© Dimo Brockhoff, INRIA 32

Some more examples:

 in ℝ𝑛, if 𝑓 𝒙 = 𝒙𝑇𝐴𝒙, then 𝛻𝑓 𝒙 = (𝐴 + 𝐴𝑇)𝒙

 in ℝ, 𝛻𝑓 𝒙 = 𝑓′(𝒙)

Exercise: Gradients

Exercise:

Compute the gradients of 

a) 𝑓 𝑥 = 𝑥1 with 𝑥 ∈ ℝ𝑛

b) 𝑓 𝑥 = 𝑎𝑇𝑥 with a, 𝑥 ∈ ℝ𝑛

c) 𝑓 𝑥 = 𝑥𝑇𝑥 (= |x| 2) with 𝑥 ∈ ℝ𝑛
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More generally, the gradient of a differentiable function is orthogonal 

to its level sets.

Gradient: Geometrical Interpretation

Exercise:

Let 𝐿𝑐 = 𝒙 ∈ ℝ𝑛 𝑓 𝒙 = 𝑐} be again a level set of a function 𝑓 𝒙 .

Let 𝒙0 ∈ 𝐿𝑐 ≠ ∅.

Plot the level sets for 𝑓 𝒙 = 𝒂𝑇𝒙 and 𝑓 𝒙 = | 𝒙 |2, compute

the gradient in a chosen point 𝑥0 and observe that 𝛻𝑓 𝒙𝟎 is

orthogonal to the level set in 𝑥0.
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Taylor Formula – Order One

𝑓 𝒙 + 𝒉 = 𝑓 𝒙 + 𝛻𝑓 𝒙
𝑇
𝒉 + 𝑜(||𝒉||)

Reminder: Differentiability in ℝ𝒏
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 Let 𝑓:ℝ → ℝ be a differentiable function and let 𝑓′: 𝑥 → 𝑓′(𝑥) be 

its derivative.

 If 𝑓′ is differentiable in 𝑥, then we denote its derivative as 𝑓′′ 𝑥

 𝑓′′(𝑥) is called the second order derivative of 𝑓.

Reminder: Second Order Differentiability in 1D
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 If 𝑓:ℝ → ℝ is two times differentiable then

𝑓 𝑥 + ℎ = 𝑓 𝑥 + 𝑓′ 𝑥 ℎ + 𝑓′′ 𝑥 ℎ2 + 𝑜 ||ℎ||2

i.e. for ℎ small enough, ℎ → 𝑓 𝑥 + ℎ𝑓′ 𝑥 + ℎ2𝑓′′(𝑥)
approximates ℎ + 𝑓(𝑥 + ℎ)

 ℎ → 𝑓 𝑥 + ℎ𝑓′ 𝑥 + ℎ2𝑓′′(𝑥) is a quadratic approximation (or 

order 2) of 𝑓 in a neighborhood of 𝑥

 The second derivative of 𝑓: ℝ → ℝ generalizes naturally to larger 

dimension.

Taylor Formula: Second Order Derivative
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In ℝ𝑛, 𝑥, 𝑦 = 𝑥𝑇𝑦 , 𝛻2𝑓(𝑥) is represented by a symmetric matrix 

called the Hessian matrix. It can be computed as

𝛻2 𝑓 =

𝜕2𝑓

𝜕𝑥1
2

𝜕2𝑓

𝜕𝑥1𝜕𝑥2
…

𝜕2𝑓

𝜕𝑥1𝜕𝑥𝑛
𝜕2𝑓

𝜕𝑥2𝜕𝑥1

𝜕2𝑓

𝜕𝑥2
2 …

𝜕2𝑓

𝜕𝑥2𝜕𝑥𝑛
⋮ ⋮ ⋱ ⋮

𝜕2𝑓

𝜕𝑥𝑛𝜕𝑥1

𝜕2𝑓

𝜕𝑥𝑛𝜕𝑥2
…

𝜕2𝑓

𝜕𝑥𝑛
2

Hessian Matrix
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Exercise on Hessian Matrix

Exercise:

Let 𝑓 𝒙 =
1

2
𝒙𝑇𝐴 𝒙, 𝒙 ∈ ℝ𝑛, and 𝐴 ∈ ℝ𝑛×𝑛 symmetric.

Compute the Hessian matrix of 𝑓.

If it is too complex, consider 𝑓:  
ℝ2 → ℝ

𝒙 →
1

2
𝒙𝑇𝐴 𝒙

with 𝐴 =
9 0
0 1
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Taylor Formula – Order Two

𝑓 𝒙 + 𝒉 = 𝑓 𝒙 + 𝛻𝑓 𝒙
𝑇
𝒉 +

1

2
𝒉𝑇 𝛻2𝑓 𝒙 𝒉 + 𝑜( |𝒉| 2)

Second Order Differentiability in ℝ𝒏
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We have seen that for a convex quadratic function

𝑓 𝑥 =
1

2
𝑥 − 𝑥0

𝑇𝐴 𝑥 − 𝑥0 + 𝑏 of 𝑥 ∈ ℝ𝑛, 𝐴 ∈ ℝ𝑛×𝑛, 𝐴 SPD, 𝑏 ∈ ℝ𝑛:

1) The level sets are ellipsoids. The eigenvalues of 𝐴 determine 

the lengths of the principle axes of the ellipsoid.

2) The Hessian matrix of 𝑓 equals to 𝐴.

Ill-conditioned convex quadratic problems are problems with large 

ratio between largest and smallest eigenvalue of 𝐴 which means large 

ratio between longest and shortest axis of ellipsoid.

This corresponds to having an ill-conditioned Hessian matrix.

Back to Ill-Conditioned Problems

For 𝑛 = 2, let 𝜆1, 𝜆2 be

the eigenvalues of 𝐴.
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Gradient direction: ∇𝑓(𝒙)

Newton direction: 𝐻 𝒙
−1

⋅ ∇𝑓 𝒙

with 𝐻(𝒙) = ∇2(𝒙) being the Hessian at 𝒙

Gradient Direction Vs. Newton Direction

Exercise:

Let again 𝑓 𝒙 =
1

2
𝒙𝑇𝐴 𝒙, 𝒙 ∈ ℝ2, 𝐴 =

9 0
0 1

∈ ℝ2×2.

Plot the gradient and Newton direction of 𝑓 in a point 𝑥 ∈ ℝ𝑛

of your choice (which should not be on a coordinate axis) into

the same plot with the level sets, we created before.
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I hope it became clear...

...what are the difficulties to cope with when solving numerical 

optimization problems

in particular dimensionality, non-separability and ill-conditioning

...what are gradient and Hessian

...what is the difference between gradient and Newton direction

Conclusions


