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Date | Topic

Introduction

Basic Flavors of Complexity Theory

Greedy algorithms

Branch and bound (switched w/ dynamic programming)

Dynamic programming [salle Proto]
Approximation algorithms and heuristics [S205/S207]
Introduction to Continuous Optimization | [S118]

Introduction to Continuous Optimization |l
[from here onwards always: S205/S207]

Gradient-based Algorithms
| of Gradient| | Alaorit : :

Stochastic Optimization and Derivative Free Optimization |
Stochastic Optimization and Derivative Free Optimization I
Exam
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Overview of Today’s Lecture

Introduction to Continuous Optimizaation
= examples (from ML / black-box problems)
= typical difficulties in optimization (e.g. constraints)

Mathematical Tools to Characterize Optima
* reminders about differentiability, gradient, Hessian matrix
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Further Detalls on Remaining Lectures

Introduction to Continuous Optimization
= examples (from ML / black-box problems)
= typical difficulties in optimization (e.g. constraints)

Mathematical Tools to Characterize Optima
= reminders about differentiability, gradient, Hessian matrix
* unconstraint optimization
= first and second order conditions
= convexity
= constrained optimization

Gradient-based Algorithms
» quasi-Newton method (BFGS)

Learning in Optimization / Stochastic Optimization
= CMA-ES (adaptive algorithms / Information Geometry)
= PhD thesis possible on this topic

strongly related to ML, new promising research area, interesting open questions
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First Example of a Continuous Optimization Probie

Computer simulation teaches itself to walk upright (virtual robots (of
different shapes) learning to walk, through stochastic optimization
(CMA-ES)), by Utrecht University:

We present a control system based on 3D muscle actuation

https://www.youtube.com/watch?v=yci5Fullovk

T. Geitjtenbeek, M. Van de Panne, F. Van der Stappen: "Flexible Muscle-Based
Locomotion for Bipedal Creatures"”, SIGGRAPH Asia, 2013.
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Continuous Optimization

QcR*" >R
X = (X1, ., Xp) = f(X1, eer, Xp)

eER

=  Optimize f: {
unconstrained optimization

= Search space is continuous, i.e. composed of real vectors x € R"

. _ | dimension of the problem
"= dimension of the search space R™ (as vector space)

7 1D problem 2-D level sets

=/ M
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Unconstrained vs. Constrained Optimization

Unconstrained optimization
inf{f(x) | x € R"}

Constrained optimization
» Equality constraints: inf {f(x) | x € R*, gx(x) = 0,1 < k < p}

= |nequality constraints: inf{f(x) | x € R", gx(x) < 0,1 < k < p}

where always g;: R" - R
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Example of a Constraint

min f(x) = x? such that x < —1
XER
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Analytical Functions

Example: 1-D
filx) = alx —xp)*+b
where x,xo,b €E R,a €R

Generalization:
convex quadratic function

fz(x) - (x — xo)TA (x — xo) + b
where x,x,,b € R", A € R
and A symmetric positive definite (SPD)

Exercise:
What is the minimum of f,(x)?
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Levels Sets of Convex Quadratic Functions

Continuation of exercise:
What are the level sets of f,?

g

Reminder: level sets of a function
Le={x€eR"| f(x) =c}

(similar to topography lines /
level sets on a map)

PUBLIC
DOMAIN
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Levels Sets of Convex Quadratic Functions

Continuation of exercise:
What are the level sets of f,?

= Probably too complicated in general, thus an example here

= Consider A = (g g)b =0,n=2

a) Compute £, (x).
b) Plot the level sets of £, (x).

c) Optional: More generally, forn = 2, if A is SPD with
eigenvalues 4, = 9 and 4, = 1, what are the level sets of

f2(x)?
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Example Problems
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Data Fitting — Data Calibration

Objective

= Given a sequence of data points (x;,y;) € RP X R,i =1, ..., N,
find a model "y = f(x)" that explains the data
experimental measurements in biology, chemistry, ...

= In general, choice of a parametric model or family of functions
(fo)oern

use of expertise for choosing model or simple models
only affordable (linear, quadratic)

= Try to find the parameter 6 € R" fitting best to the data

Fitting best to the data
Minimize the quadratic error:

N
min z|fe(xi) — yil?
=1

OERM
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Optimization and Machine Learning: Lin. Regre

Supervised Learning:
Predict y € Y from x € X, given a set of observations (examples)
Wi xitiz1,.N

(Simple) Linear regression
: . 1 p
Given a set of data: {yi,‘xi : ""xi’}i=1...N

!
4

WERP,LER ¢
\

N
min ZIWTxi + B — y;|?
=1 ]

|

| XW — y||* X € RVX®+1) i e RP+1

same as data fitting with linear model, i.e. fi, 5 (x) = w'x + B,
6 € RPH1
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A Real-World Problem in Petroleum Engineering

Well Placement Problem

g 8

Expected NPV ($MM)
<

: Fluid flow

Oil flowsme (m3/day)

Time (days)
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Function Difficulties
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What Makes a Function Difficult to Solve?

= dimensionality
(considerably) larger than three
= non-separability
dependencies between the objective variables
* jll-conditioning
" ruggedness

non-smooth, discontinuous, multimodal, and/or
noisy function

cut from 3D example,
solvable with an
evolution strategy
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Curse of Dimensionality

= The term Curse of dimensionality (Richard Bellman) refers to
problems caused by the rapid increase in volume associated
with adding extra dimensions to a (mathematical) space.

= Example: Consider placing 100 points onto a real interval, say
10,1]. To get similar coverage, in terms of distance between
adjacent points, of the 10-dimensional space [0,1]*° would
require 1001° = 102 points. The original 100 points appear now
as isolated points in a vast empty space.

= Consequently, a search policy (e.g. exhaustive search) that is
valuable in small dimensions might be useless in moderate or
large dimensional search spaces.
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Separable Problems

Definition (Separable Problem)
A function f is separable if

argmin f(xq, ..., x,) = (argmin f(xq,...),...,argmin f (..., xn))
(X1,Xn) X1 Xn

= it follows that f can be optimized in a sequence of
n independent 1-D optimization processes

3 NN N

Example: % %6
Additively decomposable functions 2.0 OGO © «

= 2\  e)))
fGoaetn) = ) i) 00O OO0 ¢

Rastrigin function © © . © 0 0 ©
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Non-Separable Problems

Building a non-separable problem from a separable one [1,2]

Rotating the coordinate system
= f:x+— f(x) separable
= f:x+— f(Rx) non-separable
R rotation matrix

R DA 2\ N A\ T A =Ty =T

= T/
= N A N/ AN SR (O SO =4
© © © 6 O © Do 290 ~90 ¢

2 © O @ © © | ¥ U~ 0on 2@
@@E@O@(@ @) ® @ O © ~ @) =
=N / A — (N0 SN OIR) =

Y _© @ @ @ Q G R Q) ~ = ’@" S @ m)
(0) O I (s 0 ) ORI = 2
@), ((C L0 (9 = (©) MO A0S

7 N\ 7 W= \\\// 2 AR o SN =

» © OO0 O & PO 0. ~O¢
(o) O DX (O (o) N MOV 2O A

b0 ©O© O — Al O IC

1P N\ N\ - -1 = Yo R Xz 0IR) =

2p) © O © © © & B~ QornXop .
© © @ © _ ©0 © =~ Vo= Q) Rl

a = = A — A bt A - ~ R ‘/_\ et/ kO/‘ = [\9 ) 4;-{)| —

k11 | 1//aa\\IR 2N = It

X5 =2 33 0 1 2 3 3 9 =9 0 1 2 3

[1] N. Hansen, A. Ostermeier, A. Gawelczyk (1995). "On the adaptation of arbitrary normal mutation distributions in
evolution strategies: The generating set adaptation”. Sixth ICGA, pp. 57-64, Morgan Kaufmann

[2] R. Salomon (1996). "Reevaluating Genetic Algorithm Performance under Coordinate Rotation of Benchmark
Functions; A survey of some theoretical and practical aspects of genetic algorithms." BioSystems, 39(3):263-278
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llI-Conditioned Problems: Curvature of Leve

Consider the convex-quadratic function
1 1 z 1 z
f(X) = — (x — x*)TH(x — x*) = — hi l'Xiz + — hl]xlx]
2 2 i 2 i ’

H is Hessian matrix of f and symmetric positive definite

gradient direction —f'(x)?
Newton direction —H~1f"(x)!

lll-conditioning means squeezed level sets (high curvature).

Condition number of SPD matrix A = ratio between largest and smallest
eigenvalue

Condition number equals nine here (kind of well-conditioned). Condition
numbers up to 1019 are not unusual in real-world problems.
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Mathematical Tools to Characterize Optima
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Different Notions of Optimum

Unconstrained case
= Jocal vs. global
= |ocal minimum x*: 3 a neighborhood V of x* such that
vx eV:f(x) = f(x¥)
= global minimum: vx € Q: f(x) = f(x*)
= strict local minimum if the inequality is strict
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Mathematical Characterization of Optima

Objective: Derive general characterization of optima

Example: if f: R — R differentiable,
f'(x) = 0 at optimal points

= generalizationto f:R" > R ?
= generalization to constrained problems?

Remark: notion of optimum independent of notion of differentiability

optima of such function can be easily
approached by certain type of methods
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Reminder: Continuity of a Function

£V Hy) — (WL | Tw) is continuous in x € V if
Ve > 0,dn >0suchthatvy e V: |[x —y|ly <n; If(x) — fOD|lw < €

not continuous

continuous
function discontinuity
«  point
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Reminder: Differentiability in 1D (n=1)

f:R — R is differentiable in x € R if

lim L&MW qists h e R
h—-0 h
Notation:
/ o f(x+h)—f(x)
f1e0 = fim =

()4

\

The derivative corresponds to the slope of the tangent in x.
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Reminder: Differentiability in 1D (n=1)

Taylor Formula (Order 1)
If £ is differentiable in x then

fix+h) = fx)+ f (x)h+o(h]])

l.e. for h small enough, h — f(x + h) is approximated by h +—

fG)+f(h)

h+— f(x)+ f'(x)h is called a first order approximation of f(x + h)
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Reminder: Differentiability in 1D (n=1)

Geometrically:

The notion of derivative of a function defined on R" is generalized
via this idea of a linear approximation of f(x + h) for h small
enough.
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Gradient Definition Via Partial Derivatives

= In(R" || ||,) where ||x|], = +/{x, x) is the Euclidean norm
deriving from the scalar product (x,y) = xTy

daf
o

Vi) =

Y,

0x,
» Reminder: partial derivative in x,

fir y = f(25, 0, b7y, %, 2F)

d
a_»]; (x0) = £/ (%)
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Exercise: Gradients
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Exercise: Gradients

Exercise:

Compute the gradients of

a) f(x)=x, withx e R"

b) f(x) =a’x witha,x € R"

c) f(x)=x"x(=]|x||?) with x € R"

Some more examples:
= inR",if f(x) = xTAx, then Vf(x) = (A + AD)x
= InR, Vf(x) = f'(x)
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Gradient: Geometrical Interpretation

Exercise:

Let L, = {x € R"| f(x) = c} be again a level set of a function f(x).
Let xy € L. + @.

Plot the level sets for f(x) = a’x and f(x) = ||x||*, compute
the gradient in a chosen point x, and observe that Vf (xq) is
orthogonal to the level set in x,.

More generally, the gradient of a differentiable function is orthogonal
to its level sets.
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Reminder: Differentiability in R"™

Taylor Formula — Order One

fx+h) = f@) + (V@) h+o(h]])
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Reminder: Second Order Differentiability in 1D

= Let f:R — R be a differentiable function and let f":x — f'(x) be
its derivative.

= If f"is differentiable in x, then we denote its derivative as "' (x)
= f"(x) is called the second order derivative of f.
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Taylor Formula: Second Order Derivative

= |f f:R - Ristwo times differentiable then
fGx+h)=fx)+f'h+f"(x)h? + o(]|h|]?)
i.e. for h small enough, h - f(x) + hf'(x) + h?f"(x)
approximates h + f(x + h)

= h- f(x)+hf'(x) + h%f"(x) is a quadratic approximation (or
order 2) of f in a neighborhood of x

! RS (AT ANNILIS

{(x)

s Jo)th ()

4

= The second derivative of f: R - R generalizes naturally to larger
dimension.
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In (R™, (x,y) = xTy), V2f(x) is represented by a symmetric matrix
called the Hessian matrix. It can be computed as

oy o 0%f

c’)_x12 0x10x,  0x10x,
02f  9f 02 f

V2(f) = |ox,0x, axz 7 0x,0x,
02f  9f 02 f

9x,0x; 0x,0x, ~~  0xZ |
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Exercise on Hessian Matrix

Exercise:

Let f(x) = %xTA x, x € R", and A € R™" symmetric.
Compute the Hessian matrix of f.

. : R* > R
If it is too complex, consider f: x o 1

— ExTA ; 0)

0 1 |
4

xmmA=(
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Second Order Differentiability in R™

Taylor Formula — Order Two

1
fa+h) = f@)+ (7)) h+5hT(72f(0) h+o(IRI?)
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Back to llI-Conditioned Problems

We have seen that for a convex quadratic function
f(x) = %(x —x9)TA(x —xy) + b of x € R™, A € R™", A SPD, b € R™:

1) The level sets are ellipsoids. The eigenvalues of A determine
the lengths of the principle axes of the ellipsoid.

or n=2,letA, A, be
the eigenvalues of A.
N

2) The Hessian matrix of f equals to A.

lll-conditioned convex quadratic problems are problems with large
ratio between largest and smallest eigenvalue of A which means large
ratio between longest and shortest axis of ellipsoid.

This corresponds to having an ill-conditioned Hessian matrix.
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Gradient Direction Vs. Newton Direction

Gradient direction: Vf(x)

Newton direction: (H(x))_1 - VF(x)
with H(x) = V?(x) being the Hessian at x

Exercise:

Let again f(x) = %xTA x,x ER? A= (g 2) e R%*2.

Plot the gradient and Newton direction of f in a point x € R"
of your choice (which should not be on a coordinate axis) into
the same plot with the level sets, we created before.
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Conclusions

| hope it became clear...

...what are the difficulties to cope with when solving numerical
optimization problems

In particular dimensionality, non-separability and ill-conditioning
...what are gradient and Hessian
...what Is the difference between gradient and Newton direction
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