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Date Topic

Fri, 7.10.2016 Introduction

Fri, 28.10.2016 D Introduction to Discrete Optimization + Greedy algorithms I

Fri, 4.11.2016 D Greedy algorithms II + Branch and bound

Fri, 18.11.2016 D Dynamic programming

Mon, 21.11.2016

in S103-S105

D Approximation algorithms and heuristics

Fri, 25.11.2016

in S103-S105

C Randomized Search Heuristics + Introduction to Continuous

Optimization I

Mon, 28.11.2016 C Introduction to Continuous Optimization II

Mon, 5.12.2016 C Gradient-based Algorithms

Fri, 9.12.2016 C Stochastic Optimization and Derivative Free Optimization I

Mon, 12.12.2016 C Stochastic Optimization and Derivative Free Optimization II

Fri, 16.12.2016 C Benchmarking Optimizers with the COCO platform

Wed, 4.1.2017 Exam

Course Overview

all classes last 3h15 and take place in S115-S117 (see exceptions)
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 finish discrete optimization part with topic "Randomized Search 

Heuristics"

 Randomized Local Search (RLS)

 Variable Neighborhood Search (VNS)

 Tabu Search (TS)

 Evolutionary Algorithms (EAs)

 present possible Master's and PhD thesis topics

 start of "Introduction to Continuous Optimization I"

Overview of Today's Lecture
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 (Randomized) Search Heuristics
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 often, problem complicated and not much time available to 

develop a problem-specific algorithm

 search heuristics are a good choice:

 relatively easy to implement

 easy to adapt/change/improve

 e.g. when the problem formulation changes in an early 

product design phase

 or when slightly different problems need to be solved 

over time

 search heuristics are also often "any-time", i.e. give a feasible 

solution early on which is then improved throughout the 

algorithm run  might be important in practice

Motivation General Search Heuristics
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For most (stochastic) search heuristics in discrete domain, we need 

to define a neighborhood structure

 which search points are close to each other?

Example: k-bit flip / Hamming distance k neighborhood

 search space: bitstrings of length n (Ω={0,1}n)

 two search points are neighbors if their Hamming 

distance is k

 in other words: x and y are neighbors if we can flip 

exactly k bits in x to obtain y

 0001001101 is neighbor of

0001000101 for k=1

0101000101 for k=2

1101000101 for k=3

Neighborhoods
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Example: possible neighborhoods for the knapsack problem

 search space again bitstrings of length n (Ω={0,1}n)

 Hamming distance 1 neighborhood:

 add an item or remove it from the packing

 replacing 2 items neighborhood:

 replace one chosen item with an unchosen one

 makes only sense in combination with other 

neighborhoods because the number of items stays 

constant

 Hamming distance 2 neighborhood on the contrary:

 allows to change 2 arbitrary items, e.g.

 add 2 new items

 remove 2 chosen items

 or replace one chosen item with an unchosen one

Neighborhoods II
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Idea behind (Randomized) Local Search:

 explore the local neighborhood of the current solution (randomly)

Pure Random Search:

 go to randomly chosen neighbor (not dependent on obj. function)

First Improvement Local Search, Randomized Local Search (RLS):

 go to first (randomly) chosen neighbor which is better

Best Improvement Strategy:

 always go to the best neighbor

 not random anymore

 computationally expensive if neighborhood large

Randomized Local Search (RLS)
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Main Idea: [Mladenovic and P. Hansen, 1997]

 change the neighborhood from time to time

 local optima are not the same for different neighborhood 

operators

 but often close to each other

 global optimum is local optimum for all neighborhoods

 rather a framework than a concrete algorithm

 e.g. deterministic and stochastic neighborhood changes

 typically combined with (i) first improvement, (ii) a random 

order in which the neighbors are visited and (iii) restarts 

N. Mladenovic and P. Hansen (1997). "Variable neighborhood search". Computers 

and Operations Research 24 (11): 1097–1100.

Variable Neighborhood Search
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Disadvantages of local searches (with or without varying 

neighborhoods)

 they get stuck in local optima

 have problems to traverse large plateaus of equal objective 

function value (“random walk”)

Tabu search addresses these by

 allowing worsening moves if all neighbors are explored

 introducing a tabu list of temporarily not allowed moves

 those restricted moves are

 problem-specific and

 can be specific solutions or not permitted “search 

directions” such as “don’t include this edge anymore” or 

“do not flip this specific bit”

 the tabu list is typically restricted in size and after a while, 

restricted moves are permitted again

Tabu Search
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One class of (bio-inspired) stochastic optimization algorithms: 

Evolutionary Algorithms (EAs)

 Class of optimization algorithms

originally inspired by the idea of

biological evolution

 selection, mutation, recombination

Stochastic Optimization Algorithms

1859
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Classical Optimization Evolutionary Computation

variables or parameters variables or chromosomes

candidate solution

vector of decision variables /      

design variables / object 

variables

individual, offspring, parent

set of candidate solutions population

objective function

loss function

cost function

error function

fitness function

iteration generation

Metaphors
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Generic Framework of an EA

Important:

representation (search space)

initialization

evaluation

evaluation

potential

parents

offspring

parents

crossover/

mutation

mating

selection

environmental

selection

stop?

best individual

stochastic operators

“Darwinism”

stopping criteria
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Genetic Algorithms (GA)

J. Holland 1975 and D. Goldberg (USA)

Evolution Strategies (ES)

I. Rechenberg and H.P. Schwefel, 1965 (Berlin)

Evolutionary Programming (EP)

L.J. Fogel 1966 (USA)

Genetic Programming (GP)

J. Koza 1990 (USA)

nowadays one umbrella term: evolutionary algorithms

The Historic Roots of EAs
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The genotype – phenotype mapping

 related to the question: how to come up with a fitness of 

each individual from the representation?

 related to DNA vs. actual animal (which then has a fitness)

Fitness of an individual not always = f(x)

 include constraints

 include diversity

 others

 but needed: always a total order on the solutions

Genotype – Phenotype mapping
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Several possible ways to handle constraints, e.g.:

 resampling until a new feasible point is found (“often bad idea”)

 penalty function approach: add constraint violation term 

(potentially scaled, see also the Lagrangian in the continuous 

part of the lecture)

 repair approach: after generation of a new point, repair it (e.g. 

with a heuristic) to become feasible again if infeasible

 continue to use repaired solution in the population or

 use repaired solution only for the evaluation?

 multiobjective approach: keep objective function and constraint 

functions separate and try to optimize all of them in parallel

 some more...

Handling Constraints
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Examples for some EA parts
(for discrete search spaces)



18Introduction to Optimization @ ECP, Nov. 25, 2016© Dimo Brockhoff, Inria 18

Selection is the major determinant for specifying the trade-off 

between exploitation and exploration

Selection is either

stochastic                                  or                     deterministic

e.g. fitness proportional

e.g. via a tournament

Mating selection (selection for variation): usually stochastic

Environmental selection (selection for survival): often deterministic

Selection

Disadvantage:

depends on

scaling of f

e.g. (µ+λ), (µ,λ)

best µ from 

offspring and

parents

best µ from 

offspring only



19Introduction to Optimization @ ECP, Nov. 25, 2016© Dimo Brockhoff, Inria 19

Variation aims at generating new individuals on the basis of those 

individuals selected for mating

Variation = Mutation and Recombination/Crossover

mutation: mut:

recombination: recomb:        where and 

 choice always depends on the problem and the chosen 

representation

 however, there are some operators that are applicable to a wide 

range of problems and tailored to standard representations such 

as vectors, permutations, trees, etc.

Variation Operators
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Two desirable properties for mutation operators:

 “exhaustiveness”: every solution can be generated from every 

other with a probability greater than 0

 “locality”:

Desirable property of recombination operators (“in-between-ness”):

Variation Operators: Guidelines
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Swap:

Scramble:

Invert:

Insert:

Examples of Mutation Operators on Permutations
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1-point crossover

n-point crossover

uniform crossover

Examples of Recombination Operators: {0,1}n

choose each bit

independently from

one parent or another
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Question:

What kind of mutation operators can you imagine on the search 

space of all bitstrings of length n?

 keep in mind exhaustiveness and locality!

Exercise: Mutation on Bitstrings
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Question:

What kind of mutation operators can you imagine on the search 

space of all bitstrings of length n?

 keep in mind exhaustiveness and locality!

Possible Answers:

 randomly flip a single bit (local but not exhaustive)

 randomly choose a number k of bits from 1 to n, then flip k 

randomly chosen bits

 operator exhaustive but not always local:

 not local if choice of k is uniform

 hence, choose smaller k's with larger probability

 standard bit flip mutation: flip each bit independently with 

probability 1/n

 exhaustive and local

Exercise: Mutation on Bitstrings
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 search space of all binary strings of length 𝑛, maximization

 uniform initialization

 generational cycle of the population:

 evaluation of solutions

 mating selection (e.g. roulette wheel)

 crossover (e.g. 1-point)

 environmental selection (e.g. plus-selection)

A Canonical Genetic Algorithm
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 EAs are generic algorithms (randomized search heuristics, 

meta-heuristics, ...) for black box optimization

no or almost no assumptions on the objective function

 They are typically less efficient than problem-specific 

(exact) algorithms (in terms of #funevals)

not the case in the continuous case (we will see later)

 Allow for an easy and rapid implementation and therefore 

to find good solutions fast

easy to incorporate problem-specific knowledge to improve 

the algorithm

Conclusions
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I hope it became clear...

...that approximation algorithms are often what we can hope for 

in practice (might be difficult to achieve guarantees though)

...that heuristics is what we typically can afford in practice (no 

guarantees and no proofs)

Conclusions
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 Potential Master's/PhD thesis 

projects
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Anne Auger, CR1, HDR Asma Atamna

team leader PhD student

single-obj. opt., theory,

algo. design, applications

Dimo Brockhoff, CR1 Adrien Renaud

multiobjective opt., engineer

algo. design, theory

Nikolaus Hansen, DR2, HDR Dejan Tušar

single-obj. opt., algo design, engineer

applications, theory

The RandOpt Team @ Inria/Ecole Polytechnique

= randomized/stochastic optimization
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http://randopt.gforge.inria.fr/thesisprojects/

Potential Research Topics for Master's/PhD Theses
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More projects without the involvement of companies:

 stopping criteria in multiobjective optimization

 large-scale variants of CMA-ES

 algorithms for expensive optimization based on CMA-ES

all above: relatively flexible between theoretical (e.g. proofs of 

convergence) and practical projects

Coco-related:

 implementing and benchmarking algorithms for expensive opt.

 data mining performance results

Potential Research Topics for Master's/PhD Theses

not all subjects online yet:

please contact us if you are interested!
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 Introduction to Continuous 

Optimization



34Introduction to Optimization @ ECP, Nov. 25, 2016© Dimo Brockhoff, Inria 34

Introduction to Continuous Optimization

 examples (from ML / black-box problems)

 typical difficulties in optimization (e.g. constraints)

Mathematical Tools to Characterize Optima

 reminders about differentiability, gradient, Hessian matrix

 unconstraint optimization

 first and second order conditions

 convexity

 constrained optimization

Gradient-based Algorithms

 quasi-Newton method (BFGS)

Learning in Optimization / Stochastic Optimization 

 stochastic adaptive algorithms (CMA-ES)

Benchmarking Numerical Blackbox Optimizers

Overview Continuous Optimization Part
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Computer simulation teaches itself to walk upright (virtual robots (of 

different shapes) learning to walk, through stochastic optimization

(CMA-ES)), by Utrecht University:

https://www.youtube.com/watch?v=yci5FuI1ovk

T. Geitjtenbeek, M. Van de Panne, F. Van der Stappen: "Flexible Muscle-Based

Locomotion for Bipedal Creatures", SIGGRAPH Asia, 2013.

First Example of a Continuous Optimization Problem
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 Optimize 𝑓:  
Ω ⊂ ℝ𝑛 → ℝ

𝑥 = 𝑥1, … , 𝑥𝑛 → 𝑓(𝑥1, … , 𝑥𝑛)

 Search space is continuous, i.e. composed of real vectors 𝑥 ∈ ℝ𝑛

 𝑛 =

Continuous Optimization

∈ ℝ unconstrained optimization

dimension of the problem

dimension of the search space ℝ𝑛 (as vector space)

1-D problem 2-D level sets
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Unconstrained optimization

inf 𝑓 𝑥 𝑥 ∈ ℝ𝑛}

Constrained optimization

 Equality constraints: inf {𝑓 𝑥 | 𝑥 ∈ ℝ𝑛, 𝑔𝑘 𝑥 = 0, 1 ≤ 𝑘 ≤ 𝑝}

 Inequality constraints: inf {𝑓 𝑥 | 𝑥 ∈ ℝ𝑛, 𝑔𝑘 𝑥 ≤ 0, 1 ≤ 𝑘 ≤ 𝑝}

where always 𝑔𝑘: ℝ
𝑛 → ℝ

Unconstrained vs. Constrained Optimization
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feasible

domain

min
𝑥∈ℝ

𝑓 𝑥 = 𝑥2 such that 𝑥 ≤ −1

Example of a Constraint
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Example: 1-D

𝑓1 𝑥 = 𝑎 𝑥 − 𝑥0
2 + 𝑏

where 𝑥, 𝑥0, 𝑏 ∈ ℝ, 𝑎 ∈ ℝ

Generalization:

convex quadratic function

𝑓2 𝑥 = 𝑥 − 𝑥0
𝑇𝐴 𝑥 − 𝑥0 + 𝑏

where 𝑥, 𝑥0 ∈ ℝ𝑛, 𝑏 ∈ ℝ, 𝐴 ∈ ℝ n×𝑛

and 𝐴 symmetric positive definite (SPD)

Ana,lytical Functions

Exercise:

What is the minimum of 𝑓2(𝑥)?
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Reminder: level sets of a function

𝐿𝑐 = 𝑥 ∈ ℝ𝑛 𝑓 𝑥 = 𝑐}

(similar to topography lines /

level sets on a map)

Levels Sets of Convex Quadratic Functions

Continuation of exercise:

What are the level sets of 𝑓2?
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 Probably too complicated in general, thus an example here

 Consider 𝐴 =
9 0
0 1

, 𝑏 = 0, 𝑛 = 2

a) Compute 𝑓2 𝑥 .

b) Plot the level sets of 𝑓2 𝑥 .

c) Optional: More generally, for 𝑛 = 2, if 𝐴 is SPD with

eigenvalues 𝜆1 = 9 and 𝜆2 = 1, what are the level sets of 

𝑓2 𝑥 ? 

Levels Sets of Convex Quadratic Functions

Continuation of exercise:

What are the level sets of 𝑓2?
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The general case of A being symmetric positive definite:

 level sets are ellipsoids as well, rotated and squeezed 

according to entries in A

 more precisely:

 axes of ellipsoid are the eigenvectors of A

 scaling is given by the eigenvalues

Answer for c)

𝐴 =
+5 −4
−4 +5

eigenvalues: 9 and 1 (axis ratio: 3)


