
Exercise: Dynamic Programming for the
Knapsack Problem

Introduction to Optimization lecture
at Université Paris-Saclay

Anne Auger and Dimo Brockhoff
firstname.lastname@inria.fr

September 25, 2015

Abstract

In the lecture, we have seen the general concept of dynamic pro-
gramming and it is the purpose of this exercise to apply it to the
knapsack problem. We are going to not only formally define the al-
gorithm but also implement it. The choice of the programming lan-
guage you use is up to you, but please make sure that we can read
and understand your code. To this end, we recommend to use a stan-
dard programming language such as python (preferred), MATLAB,
R, C/C++, or Java whereas the former are preferred because of their
easier interactive handling when developing and testing in a scien-
tific environment. Please refrain from using exotic languages such as
Assembler or Postscript.

1 Part I: Implementing the Knapsack Prob-

lem

Given a set of n items with weights wi ∈ R and profit pi ∈ R (1 ≤ i ≤ n)
and a weight restriction W ∈ R, the knapsack problem asks for a packing of
items into the knapsack which (a) total weight does not exceed the weight
restriction and (b) has the maximum profit. Here, we are focusing on the

1



0-1 knapsack problem variant where each item is allowed only once (or not
at all) in the knapsack:

max. f(x) =
n∑

j=1

pjxj with xj ∈ {0, 1}

s.t.
n∑

j=1

wjxj ≤ W

Questions and Tasks

a) Start with implementing the objective function. Given a 0-1 vector of
length n, it shall give back the f-value for a given knapsack problem
instance, specified in a text file.

b) To this end, write the code which initializes the objective function by
reading in the weights and profits of the items from a file of the format:

n = 100 # number of items

W = 78 # maximum weight of knapsack (capacity)

w_1 p_1

w_2 p_2

.

.

.

w_n p_n

with the w_i and p_i being the weights and profits of the item i re-
spectively. The separators between weights and profits can be assumed
to be blanks.

c) Then write a function for the constraint in the same manner.

2



2 Part II: Dynamic Programming for the Knap-

sack Problem

In the second part of the exercise, we want to develop and implement an exact
algorithm for the knapsack problem based on the idea of dynamic program-
ming. Before you actually implement the algorithm, answer the following
questions about the dynamic programming formulation of the problem first:

a) What are potential subproblems here?

b) How do you solve the smallest problems (initialization)?

c) How do you construct larger subproblems from already solved smaller
subproblems? Write down the Bellman equation.

Finally, implement the algorithm for the knapsack problem and test it. To
this end, follow the tasks below.

d) Implement your dynamic programming algorithm and test it on a
few example instances which you can find via the lecture’s web page
at researchers.lille.inria.fr/~brockhof/optimizationSaclay/

knapsackinstances/.

e) In order to double-check that your algorithm is doing the right thing,
write a simple brute-force algorithm which tests all potential solutions
and returns the best (feasible) solution it has seen.

f) Compare the output of the two algorithms on the knapsack instances
provided on the lecture’s web page. In particular check whether both
the brute-force and the dynamic programming approach result in the
same optima (and in particular the same optimal values). Why is the
latter more important to test?

g) Finally also compare the times, the algorithms take to solve the pro-
vided instances. When looking at the influence of the problem dimen-
sion (i.e. the number of items), can you make predictions about larger,
yet un-tested instances? See also Part III.b).

3



3 Part III: Optional

The following questions and tasks are optional but can be taken as additional
exercises to prepare for the exam.

a) Write a random search algorithm which randomly picks a new assign-
ment of items to the knapsack at each step and keeps track of the best-
so-far f-value. It should have the number of iterations (or the number
of times, it samples the objective function) as an input parameter.

b) Compare all algorithms on instances with increasing difficulties in order
to see the scaling with the input length. For example, create random
instances with different numbers of items and plot the runtime to reach
the optimal solution over this “measure” of problem difficulty. Do you
observe differences between runs on the same instance? How large are
the variances between instances of the same dimension? How large
between different dimensions? In case you observe differences, think
about what you actually display best to keep the most information.

4


