
Mid-term Exam 2015 – Part 2

Introduction to Optimization lecture
at Université Paris-Saclay

Anne Auger and Dimo Brockhoff
firstname.lastname@inria.fr

October/November, 2015

Abstract

This document details the exercises for the mid-term exam of the
Introduction to Optimization lecture at Université Paris Saclay of
2015. The mid-term exam is published in two parts, one on discrete
optimization and one on continuous optimization. This second part is
published on October 30, 2015 and needs to be handed in two weeks
later on Friday, November 13 (before 11:59pm, Paris time).

In order to pass the final exam, 50% of the points of this mid-term
exam need to be reached. It furthermore counts 1/3 of the final grade
of the lecture.

Please hand in your solutions and in particular the source code
by sending an e-mail to one of the lecturers (e-mail above). Use the
keyword “mid-term exam” in the subject of the e-mail and do not
forget to mention your full name.

1 Line Search in Descent Algorithms (30 Points)

The purpose of this exercice is to understand the interest of implementing
a line search procedure in descent algorithms. Algorithm 1 (in Section 3)
reminds the general scheme for a descent algorithm. It calls for a line-search
procedure.

We start by considering a gradient descent algorithm where at each
iteration, the descent direction corresponds to minus the gradient of the

1



objective function f : Rn → R to be minimized, that is

dk = −∇f(xk) .

The result of the line-search procedure is called the step-size and is denoted
as σk, that is

σk = LineSearch(xk,dk)

such that the update of the current solution xk reads

xk+1 = xk + σkdk .

We consider first a degenerated line-search procedure that consists in taking a
constant step-size equal to σ. We will test the gradient descent algorithm
with constant step-size on the functions

fα(x) = α
n∑
i=1

x2
i , α > 0 .

1. What is the optimum of fα?

2. Compute the gradient of fα.

3. Implement a function falpha that takes as input a vector x of Rn,
α ∈ R and outputs fα(x) ; a function gradientFalpha that takes as
input x ∈ Rn, α ∈ R and outputs the gradient of fα.

4. Implement the gradient descent algorithm with fixed step-size. Save the
sequence xk. Implement as stopping criteria: a maximum of iterations
equal to 106 and ‖∇f(xk)‖ ≤ 10−12. We advise to write a function that
takes as input the objective function, the gradient function, the initial
search point, and the step-size σ and returns the sequence xk (and
implicitly the number of iterations to reach the stopping criterion).

5. Consider α = 1/2 and σ = 0.1. For n = 2, plot the trajectory of the
algorithm, that is, plot the evolution of the vectors xk in the 2D-plane.
We will consider two runs, the first one initialized at (10, 10) and the
second one at (−5, 10). Comment what you observe and explain.

6. For n = 10, σ = 0.1, consider the functions fα for α = 1/2, α =
1/20 and α = 1/200. Initialize the algorithm at x0 = (10, . . . , 10).

2



Report the number of iterations needed to reach the stopping criterion
of ‖∇f(xk)‖ ≤ 10−12. Perform the same experiments for σ = 0.01.
Comment the results.

7. Explain the result theoretically. You can start by investigating what is
the optimal step-size for the function fα.

We will now compare the result of the gradient descent algorithm with fixed
step-size and with the Armijo rule.

8. Implement the Armijo line search procedure. The Armijo rule is re-
minded in Algorithm 2 (in Section 3). Take β = θ = 1/2. For the
implementation, we suggest to return the found step-size σ and the
number of calls to the function f .

9. Implement the gradient descent algorithm with Armijo rule as line
search procedure.

10. Using the same settings as in Question 6, report the number of gradient
calls and function calls needed to reach a gradient with norm smaller
than 10−12. Compare to the gradient descent with fixed step-size, con-
clude.

2 Gradient versus Newton direction in de-

scent algorithms (20 Points)

We now consider the function

f elli
α =

1

2

n∑
i=1

10α(
i−1
n−1

)x2
i .

11. Compute the gradient and Hessian matrix of f elli
α .

12. Compute the condition number of the Hessian matrix of f elli
α (We re-

mind that the condition number of a matrix corresponds to the ratio
between the largest and smallest eigenvalue).

13. Implement the descent algorithm with the Newton direction as descent
direction, that is

dk = −Hess(f)−1∇f .

We will use the Armijo rule as line-search procedure.

3



14. Report for f elli
α , α ∈ {1, 2, 3}, dimension n = 10, initial search point

x0 = (10, . . . , 10)and initial stepsize of σ = 10 the number of gradi-
ent calls and the number of function calls to reach ‖∇f‖ ≤ 10−12 for
the descent algorithm with gradient and Newton as descent directions.
Explain the results.

3 Algorithms

Algorithm 1: General framework for a descent algorithm to optimize
f : Rn → R. The descent direction and the LineSearch procedure
depend on f .

Initialize x0 ∈ Rn, k = 0
while stopping criteria not met do

compute descent direction dk
xk+1 = xk + LineSearch(xk,dk)dk
k = k + 1

end

Algorithm 2: Armijo rule

Input: descent direction d, point x, objective function f(x) and its
gradient ∇f(x), parameters σ0 = 10, θ ∈ (0, 0.5) and β ∈ (0, 1)
Output: step-size σ

Initialize σ: σ ← σ0
while f(x + σd) > f(x) + θσ∇f(x)Td do

σ ← βσ
end

4


