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supplementary material to last week’s lecture 
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Remember: 

 construct MST by adding the node (greedily) which connects to the 

current tree and has minimal weight (without introducing a cycle) 
 

Question was: 

 isn’t the runtime better than for Kruskal’s algorithm? 

 reasoning was: we have to do “less global” things here 
 

Answer: 

 Kruskal: O(|E| log |E|) 

 Prim: O(|E| + |V| log |V|) 

 this is linear in |E| if |E| is large enough (if |E| = Ω(|V| log |V|)) 

 but also Kruskal can be made almost linear by using the union-

by-size heuristic and path compression (amortized time O(|E| 

log* |V|)) 

 log* n = min {s | log(log( ... log(n) ...)) ≤ 1} 

Prim’s Algorithm for Minimum Spanning Trees 

with simple data structures 

with Fibonacci heap and adjacency lists 

s times 



4 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 25, 2015 © Anne Auger and Dimo Brockhoff, INRIA 4 

Mastertitelformat bearbeiten 

Announcements 
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 we will have two larger home exercises 

 1st hand-out ready by today (discrete part, already online) 

 to be solved at home in addition to the lecture 

 hand-in by e-mail until Friday, October 16 (beginning of 

lecture) 

 second home exercise available soon (continuous part) 

 both are graded together: need 50% of points to pass, counts as 

1/3 of overall grade  

 

 

 

 

 

Mid-term Exam (aka “contrôle continu”) 

All information also available at  

 
http://researchers.lille.inria.fr/~brockhof/optimizationSaclay/ 

 

(exercise sheets, lecture slides, additional information, links, ...) 
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Presentation Blackbox Optimization Lecture 
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 Optional class “Black Box Optimization” 

 Taught also by Anne Auger and me 

 Advanced class, (even) closer to our actual research topic 

 

Goals: 

 present the latest knowledge on blackbox optimization 

algorithms and their foundations 

 offer hands-on exercises on difficult common optimization 

problems 

 give insights into what are current challenging research 

questions in the field of blackbox optimization (as preparation 

for a potential Master’s or PhD thesis in the field) 

 relatively young research field with many interesting 

research questions (in both theory and algorithm design) 

 related to real-world problems: also good for a job 

outside academia 

Presentation Black Box Optimization Lecture 
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Why are we interested in a black box scenario? 

 objective function F often noisy, non-differentiable, or 

sometimes not even understood or available 

 objective function F contains lecagy or binary code, is based 

on numerical simulations or real-life experiments 

 most likely, you will see such problems in practice... 

 

Objective: find x with small F(x) with as few function evaluations as 

possible 

assumption: internal calculations of algo irrelevant 

Black Box Scenario 

black box 
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 Search space too large 

 exhaustive search impossible 
 

 Non conventional objective function or search space 

 mixed space, function that cannot be computed 
 

 Complex objective function 

 non-smooth, non differentiable, noisy, ... 

 

 

What Makes an Optimization Problem Difficult? 

stochastic search algorithms 

well suited because they: 
 

• don’t make many assumptions on f 

• are invariant wrt. translation/rotation 

  of the search space, scaling of f, ... 

• are robust to noise 
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 Introduction to stochastic search algorithms, in particular 

 Evolutionary algorithms 

 Evolution Strategies and the CMA-ES algorithm 

 Algorithms for large-scale problems (“big data”) 

 Benchmarking black box algorithms 

 Multiobjective optimization 

 

 Again: combination of lectures & exercises, theory & practice 

 Connections with machine learning class of M. Sebag 

Planned Topics / Keywords 
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Date Topic 

Fri, 18.9.2015 DB Introduction and Greedy Algorithms 

Fri, 25.9.2015  DB Dynamic programming and Branch and Bound 

Fri, 2.10.2015 DB Approximation Algorithms and Heuristics 

Fri, 9.10.2015 AA Introduction to Continuous Optimization 

Fri, 16.10.2015 AA End of Intro to Cont. Opt. + Gradient-Based Algorithms I 

Fri, 30.10.2015 AA Gradient-Based Algorithms II 

Fri, 6.11.2015 AA Stochastic Algorithms and Derivative-free Optimization 

16 - 20.11.2015 Exam (exact date to be confirmed) 

Course Overview 

all classes + exam are from 14h till 17h15 (incl. a 15min break) 

here in PUIO-D101/D103  
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Dynamic Programming 

 shortest path problem 

 Dijkstra's algorithm 

 Floyd’s algorithm 

 exercise:  a dynamic programming algorithm for the 

knapsack problem (KP) 

 

Branch and Bound 

 applied to Integer Linear Programs 

 

 

Overview of Today’s Lecture 
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Dynamic Programming 
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Wikipedia: 

 “[...] dynamic programming is a method for solving a complex 

problem by breaking it down into a collection of simpler 

subproblems.” 

 

But that’s not all: 

 dynamic programming also makes sure that the subproblems 

are not solved too often but only once by keeping the solutions 

of simpler subproblems in memory (“trading space vs. time”) 

 it is an exact method, i.e. in comparison to the greedy approach, 

it always solves a problem to optimality 

Dynamic Programming 
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Optimal Substructure 

 A solution can be constructed  efficiently from optimal solutions 

of sub-problems  

 

Overlapping Subproblems 

 Wikipedia: “[...] a problem is said to have overlapping 

subproblems if the problem can be broken down into 

subproblems which are reused several times or a recursive 

algorithm for the problem solves the same subproblem over and 

over rather than always generating new subproblems.” 

 

 

Note: in case of optimal substructure but independent subproblems, 

often greedy algorithms are a good choice; in this case, dynamic 

programming is often called “divide and conquer” instead 

Two Properties Needed 
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Main idea: solve larger subproblems by breaking them down to 

smaller, easier subproblems in a recursive manner 

 

Typical Algorithm Design: 

 decompose the problem into subproblems and think about how 

to solve a larger problem with the solutions of its subproblems 

 specify how you compute the value of a larger problem 

recursively with the help of the optimal values of its subproblems 

(“Bellman equation”) 

 bottom-up solving of the subproblems (i.e. computing their 

optimal value), starting from the smallest by using a table 

structure to store the optimal values and the Bellman equality 

 (top-down approach also possible, but less common) 

 eventually construct the final solution (can be omitted if only the 

value of an optimal solution is sought) 

 

Main Idea Behind Dynamic Programming 
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 introduced by R. Bellman as “Principle of Optimality” in 1957 

 the basic equation underlying dynamic programming 

 necessary condition for optimality 

 

citing Wikipedia: 

 “Richard Bellman showed that a dynamic optimization problem in 

discrete time can be stated in a recursive, step-by-step form 

known as backward induction by writing down the relationship 

between the value function in one period and the value function 

in the next period. The relationship between these two value 

functions is called the "Bellman equation".” 

 The value function here is the objective function. 

 The Bellman equation exactly formalizes how to compute the 

optimal function value for a larger subproblem from the 

optimal function value of smaller subproblems. 

we will see examples later today... 

Bellman Equation (aka “Principle of Optimality”) 
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Why is it called “dynamic” and why “programming”? 

 R. Bellman worked at the time, when he “invented” the idea, at the 

RAND Corporation who were strongly connected with the Air Force 

 In order to avoid conflicts with the head of the Air Force at this 

time, R. Bellman decided against using terms like “mathematical” 

and he liked the word dynamic because it “has an absolutely 

precise meaning” and cannot be used “in a pejorative sense” 

 in addition, it had the right meaning: “I wanted to get across the 

idea that this was dynamic, this was multistage, this was time-

varying.” 

 Citing Wikipedia: “The word programming referred to the use of the 

method to find an optimal program, in the sense of a military 

schedule for training or logistics.” 

Historical Note 
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Shortest Path problem:  

 Given a graph G=(V,E) with edge weights wi for each edge ei. 

Find the shortest path from a vertex v to a vertex u, i.e., the path 

(v, e1={v, v1}, v1, ..., vk, ek={vk,u}, u) such that w1 + ... + wk is 

minimized. 

 

 

Note:  

 We can often assume that 

 the edge weights are stored 

 in a distance matrix D of 

 dimension |E|x|E| where 

 an entry Di,j gives the weight between nodes i and j and “non-

edges” are assigned a value of ∞ 

 

 

 

Reminder: Shortest Path Problem 

u v 

7 
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Optimal Substructure 

 The optimal path from u to v, if it contains another vertex p can 

be constructed by simply joining the optimal path from u to p with 

the optimal path from p to v. 

 

 

Overlapping Subproblems 

 Optimal shortest 

 sub-paths can be reused 

 when computing longer paths: 

 e.g. the optimal path from u to p 

 is contained in the optimal path from 

 u to q and in the optimal path from u to v. 

 

Opt. Substructure and Overlapping Subproblems 

u v q 
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ShortestPathDijkstra(G, D, source, target): 

Initialization: 

 dist(source) = 0 and for all v  V: dist(v)= ∞ 

 for all v  V: prev(v) = null              # predecessors on opt. path 

 U = V                                              # U: unexplored vertices 

Unless U empty or target visited do: 

 newNode = argminuU {dist(u)} 

 remove newNode from U 

 for each neighbor v of newNode do: 

 altDist = dist(newNode) + DnewNode,v 

 if altDist < dist(v): 

 dist(v) = altDist 

 prev(v) = u 

 

The Algorithm of E. Dijkstra (1956) 
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Question: 

Is Dijkstra’s algorithm a dynamic programming algorithm? 

 

 

Answer: 

 that is a tricky question ;-) 

 it has greedy elements, but also stores the answers to 

subproblems without recomputing them 

 so, actually, it is a dynamic programming algorithm with a 

greedy selection of the next subproblem to be computed 

Very Short Exercise 
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Idea: 

 if we knew that the shortest path between source and target 

goes through node v, we would be able to construct the 

optimal path from the shorter paths “sourcev” and “vtarget” 

 subproblem P(k): compute all shortest paths where the 

intermediate nodes can be chosen from v1, ..., vk 

 

ShortestPathFloyd(G, D, source, target) [= AllPairsShortestPath(G)] 

 Init: for all 1 ≤ i,j ≤ |V|: dist(i,j) = Di,j 

 For k = 1 to |V|       # solve subproblems P(k) 

 for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|):  

 dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) } 

 

Note: This algorithm has the advantage that it can handle negative 

weights as long as no cycle with negative total weight exists 

The Algorithm of R. Floyd (1962) 
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k=0 1 2 3 4 5 
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1 ∞ 2 ∞ ∞ ∞ 
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allow 1 as intermediate node 
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5 ∞ ∞ 5 ∞ ∞ 



32 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 25, 2015 © Anne Auger and Dimo Brockhoff, INRIA 32 

Mastertitelformat bearbeiten Example 

1 

3 

5 

4 

2 

7 

2 

-1 

-1 
3 

5 
9 

allow 1 & 2 as intermediate nodes 
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5 ∞ ∞ 5 ∞ ∞ 
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1 ∞ 2 11 1 ∞ 

2 ∞ ∞ 9 -1 ∞ 

3 7 9 18 8 ∞ 

4 -1 1 10 0 3 

5 ∞ ∞ 5 ∞ ∞ 



36 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 25, 2015 © Anne Auger and Dimo Brockhoff, INRIA 36 

Mastertitelformat bearbeiten Example 

1 

3 

5 

4 

2 

7 

2 

-1 

-1 
3 

5 
9 

allow {1,2,3} as intermediate nodes 
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1 18 2 11 1 ∞ 

2 16 18 9 -1 ∞ 

3 7 9 18 8 ∞ 
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1 18 2 11 1 ∞ 

2 16 18 9 -1 ∞ 

3 7 9 18 8 ∞ 

4 -1 1 10 0 3 

5 12 14 5 13 ∞ 

allow {1,2,3,4} as intermediate nodes 
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allow {1,2,3,4} as intermediate nodes 
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allow {1,2,3,4} as intermediate nodes 
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4 -1 1 10 0 3 

5 12 14 5 13 16 



41 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 25, 2015 © Anne Auger and Dimo Brockhoff, INRIA 41 

Mastertitelformat bearbeiten Example 

1 

3 

5 

4 

2 

7 

2 

-1 

-1 
3 

5 
9 

allow all nodes as intermediate nodes 
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1 0 2 11 1 4 

2 -2 0 9 -1 2 

3 7 9 18 8 11 

4 -1 1 10 0 3 

5 12 14 5 13 16 
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O(|V|3) easy to show 

 O(|V|2) many distances need to be updated O(|V|) times 

 

 

Correctness 

 given by the Bellman equation 

 dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) } 

 only correct if cycles do not have negative total weight (can 

be checked in final distance matrix if diagonal elements are 

negative) 

 

Runtime Considerations and Correctness 
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 Construct matrix of predecessors P alongside distance matrix 

 Pi,j = predecessor of node j on path from i to j 

 no extra costs (asymptotically) 

 

 

But How Can We Actually Construct the Paths? 
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Exercise: 

The Knapsack Problem and Dynamic Programming 

 

http://researchers.lille.inria.fr/ 

~brockhof/optimizationSaclay/ 
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Branch and Bound 
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 Systematic enumeration of candidate solutions in terms of a 

rooted tree 

 Each tree node corresponds to a set of solutions; the whole 

search space on the root 

 At each tree node, the corresponding subset of the search space 

is split into (non-overlapping) sub-subsets: 

 the optimum of the larger problem must be contained in at 

least one of the subproblems 

 If tree nodes correspond to small enough subproblems, they are 

solved exhaustively. 

 The smart part of the algorithm is the estimation of upper and 

lower bounds on the optimal function value achieved by 

solutions in the tree nodes 

 the exploration of a tree node is stopped if a node’s upper 

bound is already lower than the lower bound of an already 

explored node (assuming maximization) 

Branch and Bound: General Ideas 
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Needed for successful application of branch and bound: 

 optimization problem 

 finite set of solutions 

 clear idea of how to split problem into smaller subproblems 

 efficient calculation of the following modules: 

 upper bound calculation 

 lower bound calculation 

Applying Branch and Bound 
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Assume w.l.o.g. maximization of f(x) here 

 

Lower Bounds 

 any actual feasible solution will give a lower bound (which will be 

exact if the solution is the optimal one for the subproblem) 

 hence, sampling a (feasible) solution can be one strategy 

 using a heuristic to solve the subproblem another one 

 

Upper Bounds 

 upper bounds can be achieved by solving a relaxed version of 

the problem formulations (i.e. by either loosening or removing 

constraints) 

 

Note: the better/tighter the bounds, the quicker the branch and 

bound tree can be pruned 

Computing Bounds (Maximization Problems) 
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 Exact, global solver 

 Can be slow; only exponential worst-case runtime 

 due to the exhaustive search behavior if no pruning of the 

search tree is possible 

 but might work well in some cases 

 

Advantages: 

 can be stopped if lower and upper bound are “close enough” in 

practice (not necessarily exact anymore then) 

 can be combined with other techniques, e.g. “branch and cut” 

(not covered here) 

Properties of Branch and Bound Algorithms 
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0-1 problems: 

 choose unfixed variable xi 

 one subproblem defined by setting xi to 0 

 one subproblem defined by setting xi to 1 
 

General integer problem: 

 choose unfixed variable xi 

 choose a value c that xi can take 

 one subproblem defined by restricting xi ≤ c 

 one subproblem defined by restricting xi > c 
 

Combinatorial Problems: 

 branching on certain discrete choices, e.g. an edge/vertex is 

chosen or not chosen 
 

The branching decisions are then induced as additional constraints 

when defining the subproblems. 

Example Branching Decisions 
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Several strategies (again assuming maximization): 

 choose the subproblem with highest upper bound 

 gain the most in reducing overall upper bound 

 if upper bound not the optimal value, this problem needs to 

be branched upon anyway sooner or later 

 choose the subproblem with lowest lower bound 

 simple DFS or BFS 

 problem-specific approach most likely to be a good choice 

Which Tree Node to Branch on? 
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Concrete steps when designing a branch and bound algorithm: 

 How to split a problem into subproblems (“branching”)? 

 How to compute upper bounds (assuming maximization)? 

 Optional: how to compute lower bounds? 

 How to decide which next tree node to split? 

4 Steps Towards a Branch and Bound Algorithm 

now: example of integer linear programming 

mid-term exam: application to knapsack problem 
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The ILP formalization covers many problems such as 

 Traveling Salesperson Person (TSP) 

 Vertex Cover and other covering problems 

 Set packing and other packing problems 

 Boolean satisfiability (SAT) 

 

 

Application to ILPs 
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 Do not restrict the solutions to integers and round the solution 

found of the relaxed problem (=remove the integer constraints) 

by a continuous solver (i.e. solving the so-called LP relaxation) 

 no guarantee to be exact 

 Exploiting the instance property of A being total unimodular: 

 feasible solutions are guaranteed to be integer in this case 

 algorithms for continuous relaxation  can be used (e.g. the 

simplex algorithm) 

 Using heuristic methods (typically without any quality guarantee) 

 we’ll see these type of algorithms in next week’s lecture 

 Using exact algorithms such as branch and bound 

Ways of Solving an ILP 
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Here, we just give an idea instead of a concrete algorithm... 

 

 How to split a problem into subproblems (“branching”)? 

 How to compute upper bounds (assuming maximization)? 

 Optional: how to compute lower bounds? 

 How to decide which next tree node to split? 

 

Branch and Bound for ILPs 
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Here, we just give an idea instead of a concrete algorithm... 

 

 How to compute upper bounds (assuming maximization)? 

 How to split a problem into subproblems (“branching”)? 

 Optional: how to compute lower bounds? 

 How to decide which next tree node to split? 

 

Branch and Bound for ILPs 
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How to compute upper bounds (assuming maximization)? 

 drop the integer constraints and solve the so-called LP-

relaxation 

 can be done by standard LP algorithms such as 
scipy.optimize.linprog  or Matlab’s linprog 

 

What’s then? 

 The LP has no feasible solution. Fine. Prune. 

 We found an integer solution. Fine as well. Might give us a 

new lower bound to the overall problem.  

 The LP problem has an optimal solution which is worse than 

the highest lower bound over all already explored 

subproblems. Fine. Prune. 

 Otherwise: Branch on this subproblem: e.g. if optimal 

solution has xi=2.7865, use xi≤2 and xi≥3 as new constraints 

Branch and Bound for ILPs 
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How to split a problem into subproblems (“branching”)? 

 mainly needed if the solution of the LP-relaxation is not 

integer 

 branch on a variable which is rational 

 

Not discussed here in depth due to time: 

 Optional: how to compute lower bounds? 

 How to decide which next tree node to split? 

 seems to be good choice: subproblem with largest upper 

bound of LP-relaxation 

Branch and Bound for ILPs 
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I hope it became clear... 

 

 ...what the algorithm design ideas of dynamic programming and 

branch and bound are 

 ...for which problem types they are supposed to be suitable 

 ...and how to apply the dynamic programming idea to the 

knapsack problem 

Conclusions 




