
Introduction to Optimization

Lecture 2: Dynamic Programming and
Branch&Bound

Dimo Brockhoff

INRIA Lille – Nord Europe

September 25, 2015

TC2 - Optimisation

Université Paris-Saclay, Orsay, France

Anne Auger

INRIA Saclay – Ile-de-France

2 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 25, 2015 © Anne Auger and Dimo Brockhoff, INRIA 2

Mastertitelformat bearbeiten

supplementary material to last week’s lecture

3 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 25, 2015 © Anne Auger and Dimo Brockhoff, INRIA 3

Mastertitelformat bearbeiten

Remember:

 construct MST by adding the node (greedily) which connects to the

current tree and has minimal weight (without introducing a cycle)

Question was:

 isn’t the runtime better than for Kruskal’s algorithm?

 reasoning was: we have to do “less global” things here

Answer:

 Kruskal: O(|E| log |E|)

 Prim: O(|E| + |V| log |V|)

 this is linear in |E| if |E| is large enough (if |E| = Ω(|V| log |V|))

 but also Kruskal can be made almost linear by using the union-

by-size heuristic and path compression (amortized time O(|E|

log* |V|))

 log* n = min {s | log(log(... log(n) ...)) ≤ 1}

Prim’s Algorithm for Minimum Spanning Trees

with simple data structures

with Fibonacci heap and adjacency lists

s times

4 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 25, 2015 © Anne Auger and Dimo Brockhoff, INRIA 4

Mastertitelformat bearbeiten

Announcements

5 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 25, 2015 © Anne Auger and Dimo Brockhoff, INRIA 5

Mastertitelformat bearbeiten

 we will have two larger home exercises

 1st hand-out ready by today (discrete part, already online)

 to be solved at home in addition to the lecture

 hand-in by e-mail until Friday, October 16 (beginning of

lecture)

 second home exercise available soon (continuous part)

 both are graded together: need 50% of points to pass, counts as

1/3 of overall grade

Mid-term Exam (aka “contrôle continu”)

All information also available at

http://researchers.lille.inria.fr/~brockhof/optimizationSaclay/

(exercise sheets, lecture slides, additional information, links, ...)

6 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 25, 2015 © Anne Auger and Dimo Brockhoff, INRIA 6

Mastertitelformat bearbeiten

Presentation Blackbox Optimization Lecture

7 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 25, 2015 © Anne Auger and Dimo Brockhoff, INRIA 7

Mastertitelformat bearbeiten

 Optional class “Black Box Optimization”

 Taught also by Anne Auger and me

 Advanced class, (even) closer to our actual research topic

Goals:

 present the latest knowledge on blackbox optimization

algorithms and their foundations

 offer hands-on exercises on difficult common optimization

problems

 give insights into what are current challenging research

questions in the field of blackbox optimization (as preparation

for a potential Master’s or PhD thesis in the field)

 relatively young research field with many interesting

research questions (in both theory and algorithm design)

 related to real-world problems: also good for a job

outside academia

Presentation Black Box Optimization Lecture

8 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 25, 2015 © Anne Auger and Dimo Brockhoff, INRIA 8

Mastertitelformat bearbeiten

Why are we interested in a black box scenario?

 objective function F often noisy, non-differentiable, or

sometimes not even understood or available

 objective function F contains lecagy or binary code, is based

on numerical simulations or real-life experiments

 most likely, you will see such problems in practice...

Objective: find x with small F(x) with as few function evaluations as

possible

assumption: internal calculations of algo irrelevant

Black Box Scenario

black box

9 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 25, 2015 © Anne Auger and Dimo Brockhoff, INRIA 9

Mastertitelformat bearbeiten

 Search space too large

 exhaustive search impossible

 Non conventional objective function or search space

 mixed space, function that cannot be computed

 Complex objective function

 non-smooth, non differentiable, noisy, ...

What Makes an Optimization Problem Difficult?

stochastic search algorithms

well suited because they:

• don’t make many assumptions on f

• are invariant wrt. translation/rotation

 of the search space, scaling of f, ...

• are robust to noise

10 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 25, 2015 © Anne Auger and Dimo Brockhoff, INRIA 10

Mastertitelformat bearbeiten

 Introduction to stochastic search algorithms, in particular

 Evolutionary algorithms

 Evolution Strategies and the CMA-ES algorithm

 Algorithms for large-scale problems (“big data”)

 Benchmarking black box algorithms

 Multiobjective optimization

 Again: combination of lectures & exercises, theory & practice

 Connections with machine learning class of M. Sebag

Planned Topics / Keywords

11 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 25, 2015 © Anne Auger and Dimo Brockhoff, INRIA 11

Mastertitelformat bearbeiten

Date Topic

Fri, 18.9.2015 DB Introduction and Greedy Algorithms

Fri, 25.9.2015 DB Dynamic programming and Branch and Bound

Fri, 2.10.2015 DB Approximation Algorithms and Heuristics

Fri, 9.10.2015 AA Introduction to Continuous Optimization

Fri, 16.10.2015 AA End of Intro to Cont. Opt. + Gradient-Based Algorithms I

Fri, 30.10.2015 AA Gradient-Based Algorithms II

Fri, 6.11.2015 AA Stochastic Algorithms and Derivative-free Optimization

16 - 20.11.2015 Exam (exact date to be confirmed)

Course Overview

all classes + exam are from 14h till 17h15 (incl. a 15min break)

here in PUIO-D101/D103

12 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 25, 2015 © Anne Auger and Dimo Brockhoff, INRIA 12

Mastertitelformat bearbeiten

Dynamic Programming

 shortest path problem

 Dijkstra's algorithm

 Floyd’s algorithm

 exercise: a dynamic programming algorithm for the

knapsack problem (KP)

Branch and Bound

 applied to Integer Linear Programs

Overview of Today’s Lecture

13 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 25, 2015 © Anne Auger and Dimo Brockhoff, INRIA 13

Mastertitelformat bearbeiten

Dynamic Programming

14 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 25, 2015 © Anne Auger and Dimo Brockhoff, INRIA 14

Mastertitelformat bearbeiten

Wikipedia:

 “[...] dynamic programming is a method for solving a complex

problem by breaking it down into a collection of simpler

subproblems.”

But that’s not all:

 dynamic programming also makes sure that the subproblems

are not solved too often but only once by keeping the solutions

of simpler subproblems in memory (“trading space vs. time”)

 it is an exact method, i.e. in comparison to the greedy approach,

it always solves a problem to optimality

Dynamic Programming

15 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 25, 2015 © Anne Auger and Dimo Brockhoff, INRIA 15

Mastertitelformat bearbeiten

Optimal Substructure

 A solution can be constructed efficiently from optimal solutions

of sub-problems

Overlapping Subproblems

 Wikipedia: “[...] a problem is said to have overlapping

subproblems if the problem can be broken down into

subproblems which are reused several times or a recursive

algorithm for the problem solves the same subproblem over and

over rather than always generating new subproblems.”

Note: in case of optimal substructure but independent subproblems,

often greedy algorithms are a good choice; in this case, dynamic

programming is often called “divide and conquer” instead

Two Properties Needed

16 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 25, 2015 © Anne Auger and Dimo Brockhoff, INRIA 16

Mastertitelformat bearbeiten

Main idea: solve larger subproblems by breaking them down to

smaller, easier subproblems in a recursive manner

Typical Algorithm Design:

 decompose the problem into subproblems and think about how

to solve a larger problem with the solutions of its subproblems

 specify how you compute the value of a larger problem

recursively with the help of the optimal values of its subproblems

(“Bellman equation”)

 bottom-up solving of the subproblems (i.e. computing their

optimal value), starting from the smallest by using a table

structure to store the optimal values and the Bellman equality

 (top-down approach also possible, but less common)

 eventually construct the final solution (can be omitted if only the

value of an optimal solution is sought)

Main Idea Behind Dynamic Programming

17 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 25, 2015 © Anne Auger and Dimo Brockhoff, INRIA 17

Mastertitelformat bearbeiten

 introduced by R. Bellman as “Principle of Optimality” in 1957

 the basic equation underlying dynamic programming

 necessary condition for optimality

citing Wikipedia:

 “Richard Bellman showed that a dynamic optimization problem in

discrete time can be stated in a recursive, step-by-step form

known as backward induction by writing down the relationship

between the value function in one period and the value function

in the next period. The relationship between these two value

functions is called the "Bellman equation".”

 The value function here is the objective function.

 The Bellman equation exactly formalizes how to compute the

optimal function value for a larger subproblem from the

optimal function value of smaller subproblems.

we will see examples later today...

Bellman Equation (aka “Principle of Optimality”)

18 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 25, 2015 © Anne Auger and Dimo Brockhoff, INRIA 18

Mastertitelformat bearbeiten

Why is it called “dynamic” and why “programming”?

 R. Bellman worked at the time, when he “invented” the idea, at the

RAND Corporation who were strongly connected with the Air Force

 In order to avoid conflicts with the head of the Air Force at this

time, R. Bellman decided against using terms like “mathematical”

and he liked the word dynamic because it “has an absolutely

precise meaning” and cannot be used “in a pejorative sense”

 in addition, it had the right meaning: “I wanted to get across the

idea that this was dynamic, this was multistage, this was time-

varying.”

 Citing Wikipedia: “The word programming referred to the use of the

method to find an optimal program, in the sense of a military

schedule for training or logistics.”

Historical Note

19 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 25, 2015 © Anne Auger and Dimo Brockhoff, INRIA 19

Mastertitelformat bearbeiten

Shortest Path problem:

 Given a graph G=(V,E) with edge weights wi for each edge ei.

Find the shortest path from a vertex v to a vertex u, i.e., the path

(v, e1={v, v1}, v1, ..., vk, ek={vk,u}, u) such that w1 + ... + wk is

minimized.

Note:

 We can often assume that

 the edge weights are stored

 in a distance matrix D of

 dimension |E|x|E| where

 an entry Di,j gives the weight between nodes i and j and “non-

edges” are assigned a value of ∞

Reminder: Shortest Path Problem

u v

7

7

4

1

2

9
4

1

1

2

3
1

7
7

3

5

3 1 1

20 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 25, 2015 © Anne Auger and Dimo Brockhoff, INRIA 20

Mastertitelformat bearbeiten

Optimal Substructure

 The optimal path from u to v, if it contains another vertex p can

be constructed by simply joining the optimal path from u to p with

the optimal path from p to v.

Overlapping Subproblems

 Optimal shortest

 sub-paths can be reused

 when computing longer paths:

 e.g. the optimal path from u to p

 is contained in the optimal path from

 u to q and in the optimal path from u to v.

Opt. Substructure and Overlapping Subproblems

u v q

7

7

4

1

2

9
4

1

1

2

3
1

7
7

3

5

3 1 1
p

21 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 25, 2015 © Anne Auger and Dimo Brockhoff, INRIA 21

Mastertitelformat bearbeiten

ShortestPathDijkstra(G, D, source, target):

Initialization:

 dist(source) = 0 and for all v V: dist(v)= ∞

 for all v V: prev(v) = null # predecessors on opt. path

 U = V # U: unexplored vertices

Unless U empty or target visited do:

 newNode = argminuU {dist(u)}

 remove newNode from U

 for each neighbor v of newNode do:

 altDist = dist(newNode) + DnewNode,v

 if altDist < dist(v):

 dist(v) = altDist

 prev(v) = u

The Algorithm of E. Dijkstra (1956)

22 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 25, 2015 © Anne Auger and Dimo Brockhoff, INRIA 22

Mastertitelformat bearbeiten

Question:

Is Dijkstra’s algorithm a dynamic programming algorithm?

Answer:

 that is a tricky question ;-)

 it has greedy elements, but also stores the answers to

subproblems without recomputing them

 so, actually, it is a dynamic programming algorithm with a

greedy selection of the next subproblem to be computed

Very Short Exercise

23 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 25, 2015 © Anne Auger and Dimo Brockhoff, INRIA 23

Mastertitelformat bearbeiten

Idea:

 if we knew that the shortest path between source and target

goes through node v, we would be able to construct the

optimal path from the shorter paths “sourcev” and “vtarget”

 subproblem P(k): compute all shortest paths where the

intermediate nodes can be chosen from v1, ..., vk

ShortestPathFloyd(G, D, source, target) [= AllPairsShortestPath(G)]

 Init: for all 1 ≤ i,j ≤ |V|: dist(i,j) = Di,j

 For k = 1 to |V| # solve subproblems P(k)

 for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|):

 dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }

Note: This algorithm has the advantage that it can handle negative

weights as long as no cycle with negative total weight exists

The Algorithm of R. Floyd (1962)

24 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 25, 2015 © Anne Auger and Dimo Brockhoff, INRIA 24

Mastertitelformat bearbeiten Example

k=0 1 2 3 4 5

1

2

3

4

5

1

3

5

4

2

7

2

-1

-1
3

5
9

25 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 25, 2015 © Anne Auger and Dimo Brockhoff, INRIA 25

Mastertitelformat bearbeiten Example

k=0 1 2 3 4 5

1 ∞ 2 ∞ ∞ ∞

2 ∞ ∞ 9 -1 ∞

3 7 ∞ ∞ ∞ ∞

4 -1 ∞ ∞ ∞ 3

5 ∞ ∞ 5 ∞ ∞

1

3

5

4

2

7

2

-1

-1
3

5
9

26 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 25, 2015 © Anne Auger and Dimo Brockhoff, INRIA 26

Mastertitelformat bearbeiten Example

k=0 1 2 3 4 5

1 ∞ 2 ∞ ∞ ∞

2 ∞ ∞ 9 -1 ∞

3 7 ∞ ∞ ∞ ∞

4 -1 ∞ ∞ ∞ 3

5 ∞ ∞ 5 ∞ ∞

1

3

5

4

2

7

2

-1

-1
3

5
9

k=1 1 2 3 4 5

1

2

3

4

5

allow 1 as intermediate node

27 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 25, 2015 © Anne Auger and Dimo Brockhoff, INRIA 27

Mastertitelformat bearbeiten Example

k=0 1 2 3 4 5

1 ∞ 2 ∞ ∞ ∞

2 ∞ ∞ 9 -1 ∞

3 7 ∞ ∞ ∞ ∞

4 -1 ∞ ∞ ∞ 3

5 ∞ ∞ 5 ∞ ∞

1

3

5

4

2

7

2

-1

-1
3

5
9

k=1 1 2 3 4 5

1

2

3

4

5

allow 1 as intermediate node

28 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 25, 2015 © Anne Auger and Dimo Brockhoff, INRIA 28

Mastertitelformat bearbeiten Example

k=0 1 2 3 4 5

1 ∞ 2 ∞ ∞ ∞

2 ∞ ∞ 9 -1 ∞

3 7 ∞ ∞ ∞ ∞

4 -1 ∞ ∞ ∞ 3

5 ∞ ∞ 5 ∞ ∞

1

3

5

4

2

7

2

-1

-1
3

5
9

k=1 1 2 3 4 5

1

2

3

4

5

allow 1 as intermediate node

29 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 25, 2015 © Anne Auger and Dimo Brockhoff, INRIA 29

Mastertitelformat bearbeiten Example

k=0 1 2 3 4 5

1 ∞ 2 ∞ ∞ ∞

2 ∞ ∞ 9 -1 ∞

3 7 ∞ ∞ ∞ ∞

4 -1 ∞ ∞ ∞ 3

5 ∞ ∞ 5 ∞ ∞

1

3

5

4

2

7

2

-1

-1
3

5
9

k=1 1 2 3 4 5

1

2

3 9

4 1

5

allow 1 as intermediate node

30 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 25, 2015 © Anne Auger and Dimo Brockhoff, INRIA 30

Mastertitelformat bearbeiten Example

k=0 1 2 3 4 5

1 ∞ 2 ∞ ∞ ∞

2 ∞ ∞ 9 -1 ∞

3 7 ∞ ∞ ∞ ∞

4 -1 ∞ ∞ ∞ 3

5 ∞ ∞ 5 ∞ ∞

1

3

5

4

2

7

2

-1

-1
3

5
9

k=1 1 2 3 4 5

1 ∞ 2 ∞ ∞ ∞

2 ∞ ∞ 9 -1 ∞

3 7 9 ∞ ∞ ∞

4 -1 1 ∞ ∞ 3

5 ∞ ∞ 5 ∞ ∞

allow 1 as intermediate node

31 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 25, 2015 © Anne Auger and Dimo Brockhoff, INRIA 31

Mastertitelformat bearbeiten Example

1

3

5

4

2

7

2

-1

-1
3

5
9

allow 1 & 2 as intermediate nodes

k=2 1 2 3 4 5

1 ∞ 2 ∞ ∞ ∞

2 ∞ ∞ 9 -1 ∞

3 7 9 ∞ ∞ ∞

4 -1 1 ∞ ∞ 3

5 ∞ ∞ 5 ∞ ∞

k=1 1 2 3 4 5

1 ∞ 2 ∞ ∞ ∞

2 ∞ ∞ 9 -1 ∞

3 7 9 ∞ ∞ ∞

4 -1 1 ∞ ∞ 3

5 ∞ ∞ 5 ∞ ∞

32 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 25, 2015 © Anne Auger and Dimo Brockhoff, INRIA 32

Mastertitelformat bearbeiten Example

1

3

5

4

2

7

2

-1

-1
3

5
9

allow 1 & 2 as intermediate nodes

k=2 1 2 3 4 5

1 ∞ 2 ∞ ∞ ∞

2 ∞ ∞ 9 -1 ∞

3 7 9 ∞ ∞ ∞

4 -1 1 ∞ ∞ 3

5 ∞ ∞ 5 ∞ ∞

k=1 1 2 3 4 5

1 ∞ 2 ∞ ∞ ∞

2 ∞ ∞ 9 -1 ∞

3 7 9 ∞ ∞ ∞

4 -1 1 ∞ ∞ 3

5 ∞ ∞ 5 ∞ ∞

33 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 25, 2015 © Anne Auger and Dimo Brockhoff, INRIA 33

Mastertitelformat bearbeiten Example

1

3

5

4

2

7

2

-1

-1
3

5
9

allow 1 & 2 as intermediate nodes

k=2 1 2 3 4 5

1 ∞ 2 11 1 ∞

2 ∞ ∞ 9 -1 ∞

3 7 9 18 8 ∞

4 -1 1 10 0 3

5 ∞ ∞ 5 ∞ ∞

k=1 1 2 3 4 5

1 ∞ 2 ∞ ∞ ∞

2 ∞ ∞ 9 -1 ∞

3 7 9 ∞ ∞ ∞

4 -1 1 ∞ ∞ 3

5 ∞ ∞ 5 ∞ ∞

34 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 25, 2015 © Anne Auger and Dimo Brockhoff, INRIA 34

Mastertitelformat bearbeiten Example

1

3

5

4

2

7

2

-1

-1
3

5
9

allow {1,2,3} as intermediate nodes

k=3 1 2 3 4 5

1 ∞ 2 11 1 ∞

2 ∞ ∞ 9 -1 ∞

3 7 9 18 8 ∞

4 -1 1 10 0 3

5 ∞ ∞ 5 ∞ ∞

k=2 1 2 3 4 5

1 ∞ 2 11 1 ∞

2 ∞ ∞ 9 -1 ∞

3 7 9 18 8 ∞

4 -1 1 10 0 3

5 ∞ ∞ 5 ∞ ∞

35 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 25, 2015 © Anne Auger and Dimo Brockhoff, INRIA 35

Mastertitelformat bearbeiten Example

1

3

5

4

2

7

2

-1

-1
3

5
9

allow {1,2,3} as intermediate nodes

k=3 1 2 3 4 5

1 11 ∞

2 9 ∞

3 7 9 18 8 ∞

4 10 3

5 5 ∞

k=2 1 2 3 4 5

1 ∞ 2 11 1 ∞

2 ∞ ∞ 9 -1 ∞

3 7 9 18 8 ∞

4 -1 1 10 0 3

5 ∞ ∞ 5 ∞ ∞

36 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 25, 2015 © Anne Auger and Dimo Brockhoff, INRIA 36

Mastertitelformat bearbeiten Example

1

3

5

4

2

7

2

-1

-1
3

5
9

allow {1,2,3} as intermediate nodes

k=3 1 2 3 4 5

1 18 2 11 1 ∞

2 16 18 9 -1 ∞

3 7 9 18 8 ∞

4 -1 1 10 0 3

5 12 14 5 13 ∞

k=2 1 2 3 4 5

1 ∞ 2 11 1 ∞

2 ∞ ∞ 9 -1 ∞

3 7 9 18 8 ∞

4 -1 1 10 0 3

5 ∞ ∞ 5 ∞ ∞

37 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 25, 2015 © Anne Auger and Dimo Brockhoff, INRIA 37

Mastertitelformat bearbeiten Example

1

3

5

4

2

7

2

-1

-1
3

5
9

k=4 1 2 3 4 5

1 18 2 11 1 ∞

2 16 18 9 -1 ∞

3 7 9 18 8 ∞

4 -1 1 10 0 3

5 12 14 5 13 ∞

k=3 1 2 3 4 5

1 18 2 11 1 ∞

2 16 18 9 -1 ∞

3 7 9 18 8 ∞

4 -1 1 10 0 3

5 12 14 5 13 ∞

allow {1,2,3,4} as intermediate nodes

38 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 25, 2015 © Anne Auger and Dimo Brockhoff, INRIA 38

Mastertitelformat bearbeiten Example

1

3

5

4

2

7

2

-1

-1
3

5
9

k=4 1 2 3 4 5

1 1

2 -1

3 8

4 -1 1 10 0 3

5 13

k=3 1 2 3 4 5

1 18 2 11 1 ∞

2 16 18 9 -1 ∞

3 7 9 18 8 ∞

4 -1 1 10 0 3

5 12 14 5 13 ∞

allow {1,2,3,4} as intermediate nodes

39 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 25, 2015 © Anne Auger and Dimo Brockhoff, INRIA 39

Mastertitelformat bearbeiten Example

1

3

5

4

2

7

2

-1

-1
3

5
9

k=4 1 2 3 4 5

1 0 2 11 1 4

2 -2 0 9 -1 2

3 7 9 18 8 11

4 -1 1 10 0 3

5 12 14 5 13 16

k=3 1 2 3 4 5

1 18 2 11 1 ∞

2 16 18 9 -1 ∞

3 7 9 18 8 ∞

4 -1 1 10 0 3

5 12 14 5 13 ∞

allow {1,2,3,4} as intermediate nodes

40 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 25, 2015 © Anne Auger and Dimo Brockhoff, INRIA 40

Mastertitelformat bearbeiten Example

1

3

5

4

2

7

2

-1

-1
3

5
9

allow all nodes as intermediate nodes

k=5 1 2 3 4 5

1 0 2 11 1 4

2 -2 0 9 -1 2

3 7 9 18 8 11

4 -1 1 10 0 3

5 12 14 5 13 16

k=4 1 2 3 4 5

1 0 2 11 1 4

2 -2 0 9 -1 2

3 7 9 18 8 11

4 -1 1 10 0 3

5 12 14 5 13 16

41 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 25, 2015 © Anne Auger and Dimo Brockhoff, INRIA 41

Mastertitelformat bearbeiten Example

1

3

5

4

2

7

2

-1

-1
3

5
9

allow all nodes as intermediate nodes

k=5 1 2 3 4 5

1 0 2 9 1 4

2 -2 0 7 -1 2

3 7 9 16 8 11

4 -1 1 8 0 3

5 12 14 5 13 16

k=4 1 2 3 4 5

1 0 2 11 1 4

2 -2 0 9 -1 2

3 7 9 18 8 11

4 -1 1 10 0 3

5 12 14 5 13 16

42 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 25, 2015 © Anne Auger and Dimo Brockhoff, INRIA 42

Mastertitelformat bearbeiten

O(|V|3) easy to show

 O(|V|2) many distances need to be updated O(|V|) times

Correctness

 given by the Bellman equation

 dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }

 only correct if cycles do not have negative total weight (can

be checked in final distance matrix if diagonal elements are

negative)

Runtime Considerations and Correctness

43 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 25, 2015 © Anne Auger and Dimo Brockhoff, INRIA 43

Mastertitelformat bearbeiten

 Construct matrix of predecessors P alongside distance matrix

 Pi,j = predecessor of node j on path from i to j

 no extra costs (asymptotically)

But How Can We Actually Construct the Paths?

44 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 25, 2015 © Anne Auger and Dimo Brockhoff, INRIA 44

Mastertitelformat bearbeiten

Exercise:

The Knapsack Problem and Dynamic Programming

http://researchers.lille.inria.fr/

~brockhof/optimizationSaclay/

46 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 25, 2015 © Anne Auger and Dimo Brockhoff, INRIA 46

Mastertitelformat bearbeiten

Branch and Bound

47 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 25, 2015 © Anne Auger and Dimo Brockhoff, INRIA 47

Mastertitelformat bearbeiten

 Systematic enumeration of candidate solutions in terms of a

rooted tree

 Each tree node corresponds to a set of solutions; the whole

search space on the root

 At each tree node, the corresponding subset of the search space

is split into (non-overlapping) sub-subsets:

 the optimum of the larger problem must be contained in at

least one of the subproblems

 If tree nodes correspond to small enough subproblems, they are

solved exhaustively.

 The smart part of the algorithm is the estimation of upper and

lower bounds on the optimal function value achieved by

solutions in the tree nodes

 the exploration of a tree node is stopped if a node’s upper

bound is already lower than the lower bound of an already

explored node (assuming maximization)

Branch and Bound: General Ideas

48 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 25, 2015 © Anne Auger and Dimo Brockhoff, INRIA 48

Mastertitelformat bearbeiten

Needed for successful application of branch and bound:

 optimization problem

 finite set of solutions

 clear idea of how to split problem into smaller subproblems

 efficient calculation of the following modules:

 upper bound calculation

 lower bound calculation

Applying Branch and Bound

49 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 25, 2015 © Anne Auger and Dimo Brockhoff, INRIA 49

Mastertitelformat bearbeiten

Assume w.l.o.g. maximization of f(x) here

Lower Bounds

 any actual feasible solution will give a lower bound (which will be

exact if the solution is the optimal one for the subproblem)

 hence, sampling a (feasible) solution can be one strategy

 using a heuristic to solve the subproblem another one

Upper Bounds

 upper bounds can be achieved by solving a relaxed version of

the problem formulations (i.e. by either loosening or removing

constraints)

Note: the better/tighter the bounds, the quicker the branch and

bound tree can be pruned

Computing Bounds (Maximization Problems)

50 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 25, 2015 © Anne Auger and Dimo Brockhoff, INRIA 50

Mastertitelformat bearbeiten

 Exact, global solver

 Can be slow; only exponential worst-case runtime

 due to the exhaustive search behavior if no pruning of the

search tree is possible

 but might work well in some cases

Advantages:

 can be stopped if lower and upper bound are “close enough” in

practice (not necessarily exact anymore then)

 can be combined with other techniques, e.g. “branch and cut”

(not covered here)

Properties of Branch and Bound Algorithms

51 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 25, 2015 © Anne Auger and Dimo Brockhoff, INRIA 51

Mastertitelformat bearbeiten

0-1 problems:

 choose unfixed variable xi

 one subproblem defined by setting xi to 0

 one subproblem defined by setting xi to 1

General integer problem:

 choose unfixed variable xi

 choose a value c that xi can take

 one subproblem defined by restricting xi ≤ c

 one subproblem defined by restricting xi > c

Combinatorial Problems:

 branching on certain discrete choices, e.g. an edge/vertex is

chosen or not chosen

The branching decisions are then induced as additional constraints

when defining the subproblems.

Example Branching Decisions

52 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 25, 2015 © Anne Auger and Dimo Brockhoff, INRIA 52

Mastertitelformat bearbeiten

Several strategies (again assuming maximization):

 choose the subproblem with highest upper bound

 gain the most in reducing overall upper bound

 if upper bound not the optimal value, this problem needs to

be branched upon anyway sooner or later

 choose the subproblem with lowest lower bound

 simple DFS or BFS

 problem-specific approach most likely to be a good choice

Which Tree Node to Branch on?

53 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 25, 2015 © Anne Auger and Dimo Brockhoff, INRIA 53

Mastertitelformat bearbeiten

Concrete steps when designing a branch and bound algorithm:

 How to split a problem into subproblems (“branching”)?

 How to compute upper bounds (assuming maximization)?

 Optional: how to compute lower bounds?

 How to decide which next tree node to split?

4 Steps Towards a Branch and Bound Algorithm

now: example of integer linear programming

mid-term exam: application to knapsack problem

54 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 25, 2015 © Anne Auger and Dimo Brockhoff, INRIA 54

Mastertitelformat bearbeiten

The ILP formalization covers many problems such as

 Traveling Salesperson Person (TSP)

 Vertex Cover and other covering problems

 Set packing and other packing problems

 Boolean satisfiability (SAT)

Application to ILPs

55 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 25, 2015 © Anne Auger and Dimo Brockhoff, INRIA 55

Mastertitelformat bearbeiten

 Do not restrict the solutions to integers and round the solution

found of the relaxed problem (=remove the integer constraints)

by a continuous solver (i.e. solving the so-called LP relaxation)

 no guarantee to be exact

 Exploiting the instance property of A being total unimodular:

 feasible solutions are guaranteed to be integer in this case

 algorithms for continuous relaxation can be used (e.g. the

simplex algorithm)

 Using heuristic methods (typically without any quality guarantee)

 we’ll see these type of algorithms in next week’s lecture

 Using exact algorithms such as branch and bound

Ways of Solving an ILP

56 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 25, 2015 © Anne Auger and Dimo Brockhoff, INRIA 56

Mastertitelformat bearbeiten

Here, we just give an idea instead of a concrete algorithm...

 How to split a problem into subproblems (“branching”)?

 How to compute upper bounds (assuming maximization)?

 Optional: how to compute lower bounds?

 How to decide which next tree node to split?

Branch and Bound for ILPs

57 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 25, 2015 © Anne Auger and Dimo Brockhoff, INRIA 57

Mastertitelformat bearbeiten

Here, we just give an idea instead of a concrete algorithm...

 How to compute upper bounds (assuming maximization)?

 How to split a problem into subproblems (“branching”)?

 Optional: how to compute lower bounds?

 How to decide which next tree node to split?

Branch and Bound for ILPs

58 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 25, 2015 © Anne Auger and Dimo Brockhoff, INRIA 58

Mastertitelformat bearbeiten

How to compute upper bounds (assuming maximization)?

 drop the integer constraints and solve the so-called LP-

relaxation

 can be done by standard LP algorithms such as
scipy.optimize.linprog or Matlab’s linprog

What’s then?

 The LP has no feasible solution. Fine. Prune.

 We found an integer solution. Fine as well. Might give us a

new lower bound to the overall problem.

 The LP problem has an optimal solution which is worse than

the highest lower bound over all already explored

subproblems. Fine. Prune.

 Otherwise: Branch on this subproblem: e.g. if optimal

solution has xi=2.7865, use xi≤2 and xi≥3 as new constraints

Branch and Bound for ILPs

59 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 25, 2015 © Anne Auger and Dimo Brockhoff, INRIA 59

Mastertitelformat bearbeiten

How to split a problem into subproblems (“branching”)?

 mainly needed if the solution of the LP-relaxation is not

integer

 branch on a variable which is rational

Not discussed here in depth due to time:

 Optional: how to compute lower bounds?

 How to decide which next tree node to split?

 seems to be good choice: subproblem with largest upper

bound of LP-relaxation

Branch and Bound for ILPs

60 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 25, 2015 © Anne Auger and Dimo Brockhoff, INRIA 60

Mastertitelformat bearbeiten

I hope it became clear...

 ...what the algorithm design ideas of dynamic programming and

branch and bound are

 ...for which problem types they are supposed to be suitable

 ...and how to apply the dynamic programming idea to the

knapsack problem

Conclusions

