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Date Topic

Fri, 18.9.2015 DB Introduction and Greedy Algorithms

Fri, 25.9.2015 DB Dynamic programming and Branch and Bound

Fri, 2.10.2015 DB Approximation Algorithms and Heuristics

Fri, 9.10.2015 AA Introduction to Continuous Optimization

Fri, 16.10.2015 AA End of Intro to Cont. Opt. + Gradient-Based Algorithms I

Fri, 30.10.2015 AA Gradient-Based Algorithms II

Fri, 6.11.2015 AA Stochastic Algorithms and Derivative-free Optimization

16 - 20.11.2015 Exam (exact date to be confirmed)

Course Overview

all classes + exam are from 14h till 17h15 (incl. a 15min break)

here in PUIO-D101/D103
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Introduction to Continuous Optimization

 examples (from ML / black-box problems)

 typical difficulties in optimization

Mathematical Tools to Characterize Optima

 reminders about differentiability, gradient, Hessian matrix

 unconstraint optimization

 first and second order conditions

 convexity

 constraint optimization

Gradient-based Algorithms

 quasi-Newton method (BFGS)

 DFO trust-region method

Learning in Optimization / Stochastic Optimization 

 CMA-ES (adaptive algorithms / Information Geometry)

 PhD thesis possible on this topic

method strongly related to ML / new promising research area 

interesting open questions

Further Details on Remaining Lectures



4TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 9, 2015© Anne Auger and Dimo Brockhoff, INRIA 4

Mastertitelformat bearbeiten

Computer simulation teaches itself to walk upright (virtual robots (of 

different shapes) learning to walk, through stochastic optimization

(CMA-ES)), by Utrecht University:

https://www.youtube.com/watch?v=yci5FuI1ovk

T. Geitjtenbeek, M. Van de Panne, F. Van der Stappen: "Flexible Muscle-Based

Locomotion for Bipedal Creatures", SIGGRAPH Asia, 2013.

First Example of a Continuous Optimization Problem
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 Optimize 𝑓:  
Ω ⊂ ℝ𝑛 → ℝ

𝑥 = 𝑥1, … , 𝑥𝑛 → 𝑓(𝑥1, … , 𝑥𝑛)

 Search space is continuous, i.e. composed of real vectors 𝑥 ∈ ℝ𝑛

 𝑛 =

Continuous Optimization

∈ ℝ unconstrained optimization

dimension of the problem

dimension of the search space ℝ𝑛 (as vector space)

1-D problem 2-D level sets
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Unconstrained optimization

inf 𝑓 𝑥 𝑥 ∈ ℝ𝑛}

Constrained optimization

 Equality constraints: inf {𝑓 𝑥 | 𝑥 ∈ ℝ𝑛, 𝑔𝑘 𝑥 = 0, 1 ≤ 𝑘 ≤ 𝑝}

 Inequality constraints: inf {𝑓 𝑥 | 𝑥 ∈ ℝ𝑛, 𝑔𝑘 𝑥 ≤ 0, 1 ≤ 𝑘 ≤ 𝑝}

where always 𝑔𝑘: ℝ𝑛 → ℝ

Unconstrained vs. Constrained Optimization
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feasible

domain

min
𝑥∈ℝ

𝑓 𝑥 = 𝑥2 such that 𝑥 ≤ −1

Example of a Constraint
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Example: 1-D

𝑓1 𝑥 = 𝑎 𝑥 − 𝑥0
2 + 𝑏

where 𝑥, 𝑥0, 𝑏 ∈ ℝ, 𝑎 ∈ ℝ

Generalization:

convex quadratic function

𝑓2 𝑥 = 𝑥 − 𝑥0
𝑇𝐴 𝑥 − 𝑥0 + 𝑏

where 𝑥, 𝑥0, 𝑏 ∈ ℝ𝑛, 𝐴 ∈ ℝ n×𝑛

and 𝐴 symmetric positive definite (SPD)

Analytical Functions

Exercise:

What is the minimum of 𝑓2(𝑥)?
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Reminder: level sets of a function

𝐿𝑐 = 𝑥 ∈ ℝ𝑛 𝑓 𝑥 = 𝑐}

(similar to topography lines /

level sets on a map)

Levels Sets of Convex Quadratic Functions

Continuation of exercise:

What are the level sets of 𝑓2?
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 Probably too complicated in general, thus an example here

 Consider 𝐴 =
9 0
0 1

, 𝑏 = 0, 𝑛 = 2

a) Compute 𝑓2 𝑥 .

b) Plot the level sets of 𝑓2 𝑥 .

c) More generally, for 𝑛 = 2, if 𝐴 is SPD with eigenvalues 𝜆1 =
9 and 𝜆2 = 1, what are the level sets of 𝑓2 𝑥 ? 

Levels Sets of Convex Quadratic Functions

Continuation of exercise:

What are the level sets of 𝑓2?



11TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 9, 2015© Anne Auger and Dimo Brockhoff, INRIA 11

Mastertitelformat bearbeiten

Objective

 Given a sequence of data points 𝒙𝑖 , 𝑦𝑖 ∈ ℝ𝑝 × ℝ, 𝑖 = 1, … , 𝑁, 

find a model "𝑦 = 𝑓(𝒙)" that explains the data

experimental measurements in biology, chemistry, ...

 In general, choice of a parametric model or family of functions 

𝑓𝜃 𝜃∈ℝ𝑛

use of expertise for choosing model or simple models

only affordable (linear, quadratic)

 Try to find the parameter 𝜃 ∈ ℝ𝑛 fitting best to the data

Fitting best to the data

Minimize the quadratic error:

min
𝜃∈ℝ𝑛

 

𝑖=1

𝑁

𝑓𝜃 𝒙𝑖 − 𝑦𝑖
2

Data Fitting – Data Calibration



12TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 9, 2015© Anne Auger and Dimo Brockhoff, INRIA 12

Mastertitelformat bearbeiten

Supervised Learning:

Predict 𝑦 ∈ 𝒴 from 𝒙 ∈ 𝒳, given a set of observations (examples) 

𝑦𝑖 , 𝒙𝑖 𝑖=1,…,𝑁

(Simple) Linear regression

Given a set of data: 𝑦𝑖 , 𝑥𝑖
1, … , 𝑥𝑖

𝑝

𝑖=1…𝑁

min
𝒘∈ℝ𝑝,𝛽∈ℝ

 

𝑖=1

𝑁

|  𝒘𝑇𝒙𝑖 + 𝛽 − 𝑦𝑖

2

 𝑿 ∈ ℝ𝑁×(𝑝+1),  𝒘 ∈ ℝ𝑝+1

same as data fitting with linear model, i.e. 𝑓 𝒘,𝛽 𝒙 = 𝒘𝑇𝒙 + 𝛽,

𝜃 ∈ ℝ𝑝+1

Optimization and Machine Learning: Lin. Regression

𝒙𝑖
𝑇

|| 𝑿 𝒘 − 𝐲||2
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Regression

 Data: 𝑁 observations 𝑦𝑖 , 𝑥𝑖 ∈ ℝ × 𝒳

 Φ 𝑥𝑖 ∈ ℝ𝑝 features of 𝑥𝑖

 prediction as a linear function of the feature  𝑦 =  𝜃, Φ(𝑥  )

 empirical risk minimization: find  𝜃 solution of

min
𝜃∈ℝ𝑝

1

𝑁
 

𝑖=1

𝑁

𝐼(𝑦𝑖 , 𝜃, Φ(𝑥𝑖) )

where 𝐼 is a loss function [example: quadratic loss 𝐼 𝑦,  𝑦 =
1/2 𝑦 −  𝑦 2 ]

Optimization and Machine Learning: Regression
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 dimensionality

(considerably) larger than three

 non-separability

dependencies between the objective variables

 ill-conditioning

 ruggedness

non-smooth, discontinuous, multimodal, and/or 

noisy function

What Makes a Function Difficult to Solve?

a narrow ridge

cut from 3D example, 

solvable with an 

evolution strategy
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 The term Curse of dimensionality (Richard Bellman) refers to 

problems caused by the rapid increase in volume associated 

with adding extra dimensions to a (mathematical) space.

 Example: Consider placing 100 points onto a real interval, say 

0,1 . To get similar coverage, in terms of distance between

adjacent points, of the 10-dimensional space 0,1 10 would

require 10010 = 1020 points. The original 100 points appear now

as isolated points in a vast empty space. 

 Consequently, a search policy (e.g. exhaustive search) that is 

valuable in small dimensions might be useless in moderate or 

large dimensional search spaces.

Curse of Dimensionality
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Definition (Separable Problem)

A function 𝑓 is separable if

argmin
(𝑥1,…,𝑥𝑛)

𝑓(𝑥1, … , 𝑥𝑛) = argmin
𝑥1

𝑓 𝑥1, … , … , argmin
𝑥𝑛

𝑓(… , 𝑥𝑛)

⟹ it follows that 𝑓 can be optimized in a sequence of

𝑛 independent 1-D optimization processes

Example:

Additively decomposable functions

𝑓 𝑥1, … , 𝑥𝑛 =  

𝑖=1

𝑛

𝑓𝑖(𝑥𝑖)

Rastrigin function
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Building a non-separable problem from a separable one [1,2]

Rotating the coordinate system

 𝑓: 𝒙 ⟼ 𝑓(𝒙) separable

 𝑓: 𝒙 ⟼ 𝑓(𝑅𝒙) non-separable

𝑅 rotation matrix

𝑅
⟶

[1] N. Hansen, A. Ostermeier, A. Gawelczyk (1995). "On the adaptation of arbitrary normal mutation distributions in 

evolution strategies: The generating set adaptation". Sixth ICGA, pp. 57-64, Morgan Kaufmann

[2] R. Salomon (1996). "Reevaluating Genetic Algorithm Performance under Coordinate Rotation of Benchmark 

Functions; A survey of some theoretical and practical aspects of genetic algorithms." BioSystems, 39(3):263-278
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Consider the convex-quadratic function

𝑓 𝒙 =
1

2
𝒙 − 𝒙∗ 𝑇𝐻 𝒙 − 𝒙∗ =

1

2
 

𝑖
ℎ𝑖,𝑖𝑥𝑖

2 +
1

2
 

𝑖,𝑗
ℎ𝑖,𝑗𝑥𝑖𝑥𝑗

H is Hessian matrix of 𝑓 and symmetric positive definite

Ill-conditioning means squeezed level sets (high curvature). 

Condition number equals nine here. Condition numbers up to 1010

are not unusual in real-world problems. 

If 𝐻 ≈ 𝐼 (small condition number of 𝐻) first order information (e.g. 

the gradient) is sufficient. Otherwise second order information 

(estimation of 𝐻−1) information necessary.

gradient direction −𝑓′ 𝑥 𝑇

Newton direction −𝐻−1𝑓′ 𝑥 𝑇
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Unconstrained case

 local vs. global

 local minimum 𝒙∗: ∃ a neighborhood 𝑉 of 𝒙∗ such that

∀𝒙 ∈ V: 𝑓(𝒙) ≥ 𝑓(𝒙∗)

 global minimum: ∀𝒙 ∈ Ω: 𝑓 𝒙 ≥ 𝑓 𝒙∗

 strict local minimum if the inequality is strict

Different Notions of Optimum
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Introduction to Continuous Optimization

 examples (from ML / black-box problems)

 typical difficulties in optimization

Mathematical Tools to Characterize Optima

 reminders about differentiability, gradient, Hessian matrix

 unconstraint optimization

 first and second order conditions

 convexity

 constraint optimization

Gradient-based Algorithms

 quasi-Newton method (BFGS)

 DFO trust-region method

Learning in Optimization / Stochastic Optimization 

 CMA-ES (adaptive algorithms / Information Geometry)

 PhD thesis possible on this topic

method strongly related to ML / new promising research area 

interesting open questions

Further Details on Remaining Lectures
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Objective: Derive general characterization of optima

Example: if 𝑓: ℝ → ℝ derivable,

𝑓′ 𝑥 = 0 at optimal points

 generalization to 𝑓: ℝ𝑛 → ℝ ?

 generalization to constrained problems?

Remark: notion of optimum independent of notion of derivability

Mathematical Characterization of Optima

optima of such function can be easily 

approached by certain type of methods
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 (𝐸, | |) will be a 𝐾-general vector space endowed with a norm

| | and a corpus 𝐾.

 If not familiar with this notion, think about 𝐸 = ℝ𝑛, 𝒙 ∈ ℝ𝑛, 𝐾 = ℝ, 

and ||𝒙|| =  𝑖=1
𝑛 𝑥𝑖

2 = 𝒙𝑇𝒙

Linear Mapping:

 𝑢: 𝐸 → 𝐸 is a linear mapping if 𝑢 𝜆𝑥 + 𝜇𝑦 = 𝜆𝑢 𝑥 + 𝜇𝑢(𝑦) for all 

𝜆, 𝜇 ∈ 𝐾 and for all 𝑥, 𝑦 ∈ 𝐸

A Few Reminders...

Exercise:

Let 𝐸 = ℝ𝑛, 𝐾 = ℝ and 𝐴 ∈ ℝ𝑛×n be a matrix.

Show that 𝑥 ⟼ 𝐴𝑥 is a linear mapping.


