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Course Overview

Fri, 18.9.2015 DB
Fri, 25.9.2015 DB
Fri, 2.10.2015 DB
Fri, 9.10.2015 AA
Fri, 16.10.2015 AA

Fri, 30.10.2015 AA
Fri, 6.11.2015 AA

16 - 20.11.2015

Date | JTopo

Introduction and Greedy Algorithms

Dynamic programming and Branch and Bound
Approximation Algorithms and Heuristics

Introduction to Continuous Optimization

End of Intro to Cont. Opt. + Gradient-Based Algorithms |

Gradient-Based Algorithms Il
Stochastic Algorithms and Derivative-free Optimization

Exam (exact date to be confirmed)

all classes + exam are from 14h till 17h15 (incl. a 15min break)

here in PUIO-D101/D103
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Further Detalls on Remaining Lectures

Introduction to Continuous Optimization
= examples (from ML / black-box problems)
= typical difficulties in optimization

Mathematical Tools to Characterize Optima
= reminders about differentiability, gradient, Hessian matrix
* unconstraint optimization
= first and second order conditions
= convexity
» constraint optimization

Gradient-based Algorithms
= guasi-Newton method (BFGS)
= DFO trust-region method

Learning in Optimization / Stochastic Optimization
= CMA-ES (adaptive algorithms / Information Geometry)
= PhD thesis possible on this topic
method strongly related to ML / new promising research area
Interesting open questions
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Continuity of a Function

f:(E, |l |D— (E,]| |])iscontinuousinx € E if
Ve > 0,3n > 0suchthatvy: |[|[x —y|| < |lf(x) = fFW)I|| < €

not continuous
continuous
function discontinuity

< point
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Scalar Product

(,):EXE — Risascalar productifitis
= a bilinear application

= symmetric (i.e. (x,y) = (y, x)

= positive (i.e. Vx € E: (x,x) = 0)

= definite (i.e. (x,x) = 0 = x = 0)

Given a scalar product { , ), ||x|| = +/{x, x) is a norm.
(home exercise)

Example in R™: (x,y) = xTy
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Reminder: Derivability in 1D (n=1)

f:R - Ris derivable in x € R if

lim L&MW qists h e R
h—-0 h
Notation:
/ o f(x+h)—f(x)
f1e0 = fim =

()4

\

The derivative corresponds to the slope of the tangent in x.
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Reminder: Derivability in 1D (n=1)

Taylor Formula (Order 1)
If £ is derivable in x then

fl+h) = fx) + f'G)h +o(|IRl])

l.e. for h small enough, h — f(x + h) is approximated by h —

f&) + f'(h)

h— f(x)+ f'(x)his a linear approximation of f(x + h)

Exercise:
Why is it linear?

h— f(x)+ f'(x)his a first order approximation of f(x + h)
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Reminder: Derivability in 1D (n=1)

Geometrically:

The notion of derivative of a function defined on R" is generalized
via this idea of a linear approximation of f(x + h) for h small
enough.
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Differentiability: Generalization from 1D

Given a normed vector space (E, ||.||]) and complete (Banach
space), consider f: U c E — R with U open set of E.

= fis differentiable in x € U If there exists a continuous linear
mapping Df (x) such that

f(x+h) = f(x) + Df (x)(h) + o([|hI|)

Df (x) is the differential of f in x

Exercise:

Consider E = R™ with the scalar product {(x,y) = x’y. Let a € R",
show that

f(x) = {(a, x)

Is differentiable and compute its differential.
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If the norm [|. || comes from a scalar product, i.e. ||x]|| = /{x, x) (the
Banach space E is then called a Hilbert space), the gradient of f in
x denoted Vf (x) is defined as the element of E such that

Df(x)(h) = (Vf(x), h)

Riesz representation Theorem

Taylor formula — order one

Replacing the differential in the last slide by the above, we obtain
the Taylor formula:

f(x+h) = f(x) +(Vf(x),h)+ o(||h|])

© Anne Auger and Dimo Brockhoff, INRIA TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 16, 201



Exercise: Gradients
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Gradient: Connection to Partial Derivatives

= In(R" || ||,) where ||x|], = +/{x, x) is the Euclidean norm
deriving from the scalar product (x,y) = xTy

daf
=

Vi) =

)

0x,

» Reminder: partial derivative in x,

y 71) f(x%, v xSy bt L x}})

of
— (x0) = fi'(%0)

axi
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Gradient: More Examples

= iff(x)=({ax)Vf(x)=a
= inR"if f(x) =xTAx, then Vf(x) = (A + AD)x
= particular case if f(x) = ||x||?, then Vf(x) = 2x

" InR,Vf(x) = f'(x)
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Gradient: Geometrical Interpretation

Exercise:

Let L, = {x € R"| f(x) = c} be again a level set of a function f(x).
Let xo € L. # .

Show for f(x) = {(a, x) and f(x) = ||x||? that Vf(x,) is orthogonal
to the level sets in x,.

More generally, the gradient of a differentiable function is orthogonal
to its level sets.
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Reminder: Second Order Derivability in 1D

= Let f:R — R be a derivable function and let f": x —» f'(x) be its
derivative function.

= |If f"is derivable in x, then we denote its derivative as "' (x)
= f"(x) is called the second order derivative of f.
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Taylor Formula: Second Order Derivative

= |f f:R — Ristwo times derivable then
fGx+h)=fx)+f'h+f"(x)h? + o(]|h|]?)
i.e. for h small enough, h - f(x) + hf'(x) + h?f"(x)
approximates h + f(x + h)

= h- f(x)+hf'(x) + h%f"(x) is a quadratic approximation (or
order 2) of f in a neighborhood of x

! RS (AT ANNILIS

{(x)

s Jo)th ()

4

= The second derivative of f: R - R generalizes naturally to larger
dimension.
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Second Order Differentiability

= (first order) differential: gives a linear local approximation
= second order differential: gives a quadratic local approximation

Definition: second order differentiability

f:U c E - R s differentiable at the second orderinx € U if it is
differentiable in a neighborhood of x and if u — Df (u) IS
differentiable in x
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Second Order Differentiability (Cont.)

Another Definition:

f:U c E - R s differentiable at the second order in x € U iff there
exists a continuous linear application Df (x) and a bilinear
symmetric continuous application D?f(x) such that

1
flx+h) = f(x) + Df () (h) + 5 D*f (x)(h, ) + o([| k] |*)

In a Hilbert space (E,{ ))
D?f(x)(h,h) = (V*f(x)(h), h)

where V4f(x): E - E is a symmetric continuous operator.
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In (R™, (x,y) = xTy), V2f(x) is represented by a symmetric matrix
called the Hessian matrix. It can be computed as

oy o 0%f

6_x12 0x10x,  0x10x,
02f  9f 02 f

V2(f) = |ox,0x, axz 7 0x,0x,
02f  9f 02 f

9x,0x; 0x,0x, ~~  0xZ |
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Exercise on Hessian Matrix
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Back to llI-Conditioned Problems

We have seen that for a convex quadratic function
f(x) = %(x —x9)TA(x —xy) + b of x € R™, A € R™", A SPD, b € R™:

1) The level sets are ellipsoids. The eigenvalues of A determine
the lengths of the principle axes of the ellipsoid.

or n=2,letA, A, be
the eigenvalues of A.
N

2) The Hessian matrix of f equals to A.

lll-conditioned convex quadratic problems are problems with large
ratio between largest and smallest eigenvalue of A which means large
ratio between longest and shortest axis of ellipsoid.

This corresponds to having an ill-conditioned Hessian matrix.

TC2: Introduction to Optimization, U. Paris-Saclay, Oct.
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Optimality Conditions: First Order Necessary |

For 1-dimensional optimization problems f: R - R
Assume f is derivable
= x*isalocal extremum = f'(x*) =0
not a sufficient condition: consider f(x) = x3
proof via Taylor formula: f(x* + h) = f(x*) + f'(x*)h + o(||h|])

= points y such that f'(y) = 0 are called critical or stationary
points

Generalization to n-dimensional functions
If f:U c R™ — R is differentiable
= necessary condition: If x* is a local extremum of f, then
Df(x*) = 0and hence V'f(x*) =0
proof via Taylor formula
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Second Order Necessary and Sufficient Opt

If £ is twice continuously differentiable
= Necessary condition: if x* is a local minimum, then V'f(x*) =0
and V4f (x*) is positive semi-definite
proof via Taylor formula at order 2
= Sufficient condition: if 7f(x*) = 0 and 74f(x*) is positive definite,
then x* is a strict local minimum

Proof for sufficient condition:

= Let A > 0 be the smallest eigenvalue of V2 f(x*), using a second
order Taylor expansion, we have for all h:

= f(x"+h)- f(x*) = Vf(x) h+ hTV2f (xR + o(||hII?)

—IIhI|2+o(IIhII ) = (2 (llllhllllz )) ||R]]?
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Convex Functions

Let U be a convex open of R™ and f: U — R. The function f is said
to be convex if for all x,y € U and for all t € [0,1]

flA-Dx+ty) <A -Ofx) +tf(y)

Theorem
If £ Is differentiable, then f is convex if and only if for all x, y

fy) = fx) =2 Df(x)(y — x)

If n = 1, the curve is on top of the tangent

If f is twice continuously differentiable, then f is convex if and only if
D?f satisfies Vx € U,h € R™:D*f(x)(h,h) = 0 (or V?f(x) is positive
semi-definite for all x)
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Convex Functions: Why Convexity?

Examples:
" f(x)=(a,x)+D
= f(x) = %(x, Ax) + (a, x) + b, A positive definite symmetric

the opposite of the entropy function: f(x) = — YL, x; In(x;) (the
entropy function is then concave)

Exercise:

Let f: U — R be a convex and differentiable function on a

convex open U.
Show that if Df (x*) = 0, then x* is a global minimum of f

Why convexity? local minima are also global under convexity
assumption.
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