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Date Topic

Fri, 18.9.2015 DB Introduction and Greedy Algorithms

Fri, 25.9.2015 DB Dynamic programming and Branch and Bound

Fri, 2.10.2015 DB Approximation Algorithms and Heuristics

Fri, 9.10.2015 AA Introduction to Continuous Optimization

Fri, 16.10.2015 AA End of Intro to Cont. Opt. + Gradient-Based Algorithms I

Fri, 30.10.2015 AA Gradient-Based Algorithms II

Fri, 6.11.2015 AA Stochastic Algorithms and Derivative-free Optimization

16 - 20.11.2015 Exam (exact date to be confirmed)

Course Overview

all classes + exam are from 14h till 17h15 (incl. a 15min break)

here in PUIO-D101/D103
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Introduction to Continuous Optimization

 examples (from ML / black-box problems)

 typical difficulties in optimization

Mathematical Tools to Characterize Optima

 reminders about differentiability, gradient, Hessian matrix

 unconstraint optimization

 first and second order conditions

 convexity

 constraint optimization

Gradient-based Algorithms

 quasi-Newton method (BFGS)

 DFO trust-region method

Learning in Optimization / Stochastic Optimization 

 CMA-ES (adaptive algorithms / Information Geometry)

 PhD thesis possible on this topic

method strongly related to ML / new promising research area 

interesting open questions

Further Details on Remaining Lectures
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𝑓: (𝐸, | |) ⟶ (𝐸, | |) is continuous in 𝑥 ∈ 𝐸 if

∀𝜖 > 0, ∃𝜂 > 0 such that ∀𝑦: |𝑥 − 𝑦| ≤ 𝜂; |𝑓 𝑥 − 𝑓(𝑦)| ≤ 𝜖

Continuity of a Function

continuous

function

not continuous

discontinuity

point
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, : 𝐸 × 𝐸 → ℝ is a scalar product if it is

 a bilinear application

 symmetric (i.e. 𝑥, 𝑦 = 𝑦, 𝑥

 positive (i.e. ∀𝑥 ∈ 𝐸: 𝑥, 𝑥 ≥ 0)

 definite (i.e. 𝑥, 𝑥 = 0 ⟹ 𝑥 = 0)

Given a scalar product , , |𝑥| = 𝑥, 𝑥 is a norm.

(home exercise) 

Example in ℝ𝑛: 𝑥, 𝑦 = 𝑥𝑇𝑦

Scalar Product
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𝑓:ℝ → ℝ is derivable in 𝑥 ∈ ℝ if

lim
ℎ→0

𝑓 𝑥+ℎ −𝑓(𝑥)

ℎ
exists, ℎ ∈ ℝ

Notation:

𝑓′ 𝑥 = lim
ℎ→0

𝑓 𝑥+ℎ −𝑓(𝑥)

ℎ

The derivative corresponds to the slope of the tangent in 𝑥.

Reminder: Derivability in 1D (n=1)
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Taylor Formula (Order 1)

If 𝑓 is derivable in 𝑥 then

𝑓 𝑥 + ℎ = 𝑓 𝑥 + 𝑓′ 𝑥 ℎ + 𝑜 ℎ

i.e. for ℎ small enough, ℎ ⟼ 𝑓 𝑥 + ℎ is approximated by ℎ ⟼
𝑓 𝑥 + 𝑓′(ℎ)

ℎ ⟼ 𝑓 𝑥 + 𝑓′ 𝑥 ℎ is a linear approximation of 𝑓 𝑥 + ℎ

ℎ ⟼ 𝑓 𝑥 + 𝑓′ 𝑥 ℎ is a first order approximation of 𝑓(𝑥 + ℎ)

Reminder: Derivability in 1D (n=1)

Exercise:

Why is it linear? 
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Geometrically:

The notion of derivative of a function defined on ℝ𝑛 is generalized

via this idea of a linear approximation of 𝑓(𝑥 + ℎ) for ℎ small

enough.

Reminder: Derivability in 1D (n=1)
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Given a normed vector space (𝐸, ||. ||) and complete (Banach 

space), consider 𝑓: 𝑈 ⊂ 𝐸 → ℝ with 𝑈 open set of 𝐸.

 f is differentiable in 𝒙 ∈ 𝑈 if there exists a continuous linear

mapping 𝐷𝑓(𝒙) such that

𝑓 𝒙 + 𝒉 = 𝑓 𝒙 + 𝐷𝑓 𝒙 𝒉 + 𝑜( 𝒉 )

𝐷𝑓(𝒙) is the differential of 𝑓 in 𝒙

Differentiability: Generalization from 1D

Exercise:

Consider 𝐸 = ℝ𝑛 with the scalar product 𝒙, 𝒚 = 𝒙𝑇𝒚. Let 𝒂 ∈ ℝ𝑛,

show that

𝑓 𝒙 = 𝒂, 𝒙

is differentiable and compute its differential.
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If the norm ||. || comes from a scalar product, i.e. ||𝒙|| = 𝒙, 𝒙 (the 

Banach space 𝐸 is then called a Hilbert space), the gradient of 𝑓 in 

𝒙 denoted 𝛻𝑓(𝒙) is defined as the element of 𝐸 such that

𝐷𝑓 𝒙 𝒉 = 𝛻𝑓 𝒙 , 𝒉

Riesz representation Theorem

Taylor formula – order one

Replacing the differential in the last slide by the above, we obtain 

the Taylor formula:

𝑓 𝒙 + 𝒉 = 𝑓 𝒙 + 𝛻𝑓 𝒙 , 𝒉 + 𝑜(||𝒉||)

Gradient
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Exercise:

Compute the gradient of the functions

 𝑓 𝒙 = 𝒂, 𝒙 .

 𝑓𝑛 𝜃 =
1

2
𝑦𝑛 − Φ 𝒙𝑛 , 𝜃 2.
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 In (ℝ𝑛, || ||2) where ||𝒙||2 = 𝒙, 𝒙 is the Euclidean norm

deriving from the scalar product 𝒙, 𝒚 = 𝒙𝑇𝒚

𝛻𝑓 𝑥 =

𝜕𝑓

𝜕𝑥1
⋮
𝜕𝑓

𝜕𝑥𝑛

 Reminder: partial derivative in 𝑥0
𝑦→

𝑓𝑖
𝑓 𝑥0

1, … , 𝑥0
𝑖−1, 𝑦, 𝑥0

𝑖+1, … , 𝑥0
𝑛

𝜕f

𝜕𝑥𝑖
𝑥0 = 𝑓𝑖′(𝑥0)

Gradient: Connection to Partial Derivatives
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 if 𝑓 𝒙 = 𝒂, 𝒙 , 𝛻𝑓 𝑥 = 𝒂

 in ℝ𝑛, if 𝑓 𝒙 = 𝒙𝑇𝐴𝒙, then 𝛻𝑓 𝒙 = (𝐴 + 𝐴𝑇)𝒙

 particular case if 𝑓 𝒙 = | 𝒙 |2, then 𝛻𝑓 𝒙 = 2𝒙

 in ℝ, 𝛻𝑓 𝒙 = 𝑓′(𝒙)

Gradient: More Examples
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More generally, the gradient of a differentiable function is orthogonal 

to its level sets.

Exercise:

Let 𝐿𝑐 = 𝒙 ∈ ℝ𝑛 𝑓 𝒙 = 𝑐} be again a level set of a function 𝑓 𝒙 .

Let 𝒙0 ∈ 𝐿𝑐 ≠ ∅.

Show for 𝑓 𝒙 = 𝒂, 𝒙 and 𝑓 𝒙 = | 𝒙 |2 that 𝛻𝑓 𝒙𝟎 is orthogonal

to the level sets in 𝑥0.
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 Let 𝑓:ℝ → ℝ be a derivable function and let 𝑓′: 𝑥 → 𝑓′(𝑥) be its 

derivative function.

 If 𝑓′ is derivable in 𝑥, then we denote its derivative as 𝑓′′ 𝑥

 𝑓′′(𝑥) is called the second order derivative of 𝑓.

Reminder: Second Order Derivability in 1D
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 If 𝑓:ℝ → ℝ is two times derivable then

𝑓 𝑥 + ℎ = 𝑓 𝑥 + 𝑓′ 𝑥 ℎ + 𝑓′′ 𝑥 ℎ2 + 𝑜 ||ℎ||2

i.e. for ℎ small enough, ℎ → 𝑓 𝑥 + ℎ𝑓′ 𝑥 + ℎ2𝑓′′(𝑥)
approximates ℎ + 𝑓(𝑥 + ℎ)

 ℎ → 𝑓 𝑥 + ℎ𝑓′ 𝑥 + ℎ2𝑓′′(𝑥) is a quadratic approximation (or 

order 2) of 𝑓 in a neighborhood of 𝑥

 The second derivative of 𝑓: ℝ → ℝ generalizes naturally to larger 

dimension.

Taylor Formula: Second Order Derivative
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 (first order) differential: gives a linear local approximation

 second order differential: gives a quadratic local approximation

Definition: second order differentiability

𝑓: 𝑈 ⊂ 𝐸 → ℝ is differentiable at the second order in 𝒙 ∈ 𝑈 if it is

differentiable in a neighborhood of 𝒙 and if 𝑢 ⟼ 𝐷𝑓(𝑢) is

differentiable in 𝒙

Second Order Differentiability
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Another Definition:

𝑓: 𝑈 ⊂ 𝐸 → ℝ is differentiable at the second order in 𝒙 ∈ 𝑈 iff there

exists a continuous linear application 𝐷𝑓 𝒙 and a bilinear

symmetric continuous application 𝐷2𝑓(𝒙) such that

𝑓 𝒙 + 𝒉 = 𝑓 𝒙 + 𝐷𝑓 𝒙 𝒉 +
1

2
𝐷2𝑓 𝒙 𝒉, 𝒉 + 𝑜(||𝒉||2)

In a Hilbert space 𝐸,

𝐷2𝑓 𝒙 𝒉, 𝒉 = 𝛻2𝑓 𝒙 𝒉 , 𝒉

where 𝛻2𝑓 𝒙 : 𝐸 → 𝐸 is a symmetric continuous operator.

Second Order Differentiability (Cont.)
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In ℝ𝑛, 𝑥, 𝑦 = 𝑥𝑇𝑦 , 𝛻2𝑓(𝑥) is represented by a symmetric matrix 

called the Hessian matrix. It can be computed as

𝛻2 𝑓 =

𝜕2𝑓

𝜕𝑥1
2

𝜕2𝑓

𝜕𝑥1𝜕𝑥2
…

𝜕2𝑓

𝜕𝑥1𝜕𝑥𝑛
𝜕2𝑓

𝜕𝑥2𝜕𝑥1

𝜕2𝑓

𝜕𝑥2
2 …

𝜕2𝑓

𝜕𝑥2𝜕𝑥𝑛
⋮ ⋮ ⋱ ⋮

𝜕2𝑓

𝜕𝑥𝑛𝜕𝑥1

𝜕2𝑓

𝜕𝑥𝑛𝜕𝑥2
…

𝜕2𝑓

𝜕𝑥𝑛
2

Hessian Matrix
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Exercise:

Let 𝑓 𝒙 = 𝒙𝑇𝐴 𝒙, 𝒙 ∈ ℝ𝑛, 𝐴 ∈ ℝ𝑛×𝑛.

Compute the Hessian matrix of 𝑓.

If it is too complex, consider 𝑓:  ℝ2 → ℝ
𝒙 → 𝒙𝑇𝐴 𝒙

with 𝐴 =
9 0
0 1
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We have seen that for a convex quadratic function

𝑓 𝑥 =
1

2
𝑥 − 𝑥0

𝑇𝐴 𝑥 − 𝑥0 + 𝑏 of 𝑥 ∈ ℝ𝑛, 𝐴 ∈ ℝ𝑛×𝑛, 𝐴 SPD, 𝑏 ∈ ℝ𝑛:

1) The level sets are ellipsoids. The eigenvalues of 𝐴 determine 

the lengths of the principle axes of the ellipsoid.

2) The Hessian matrix of 𝑓 equals to 𝐴.

Ill-conditioned convex quadratic problems are problems with large 

ratio between largest and smallest eigenvalue of 𝐴 which means large 

ratio between longest and shortest axis of ellipsoid.

This corresponds to having an ill-conditioned Hessian matrix.

Back to Ill-Conditioned Problems

For 𝑛 = 2, let 𝜆1, 𝜆2 be

the eigenvalues of 𝐴.
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For 1-dimensional optimization problems 𝒇: ℝ → ℝ

Assume 𝑓 is derivable

 𝒙∗ is a local extremum ⟹ 𝑓′ 𝒙∗ = 0

not a sufficient condition: consider 𝑓 𝒙 = 𝒙3

proof via Taylor formula: 𝑓 𝒙∗ + 𝒉 = 𝑓 𝒙∗ + 𝑓′ 𝒙∗ ℎ + 𝑜(||𝒉||)

 points 𝒚 such that 𝑓′ 𝒚 = 0 are called critical or stationary

points

Generalization to 𝒏-dimensional functions

If 𝑓:𝑈 ⊂ ℝ𝑛 ⟼ ℝ is differentiable

 necessary condition: If 𝒙∗ is a local extremum of 𝑓, then

𝐷𝑓 𝒙∗ = 0 and hence 𝛻𝑓 𝒙∗ = 0

proof via Taylor formula 

Optimality Conditions: First Order Necessary Cond.
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If 𝑓 is twice continuously differentiable

 Necessary condition: if 𝒙∗ is a local minimum, then 𝛻𝑓 𝒙∗ = 0
and 𝛻2𝑓(𝒙∗) is positive semi-definite

proof via Taylor formula at order 2

 Sufficient condition: if 𝛻𝑓 𝒙∗ = 0 and 𝛻2𝑓 𝒙∗ is positive definite, 

then 𝒙∗ is a strict local minimum

Proof for sufficient condition:

 Let 𝜆 > 0 be the smallest eigenvalue of 𝛻2𝑓(𝒙∗), using a second 

order Taylor expansion, we have for all 𝒉:

 𝑓 𝒙∗ + 𝒉 − 𝑓 𝒙∗ = 𝛻𝑓 𝒙∗ 𝑇𝒉 +
1

2
𝒉𝑇𝛻2𝑓 𝒙∗ 𝒉 + 𝑜(||𝒉||2)

>
𝜆

2
| 𝒉 |2 + o(||𝒉||2) =

𝜆

2
+
𝑜(||𝒉||2)

||𝒉||2
||𝒉||2

Second Order Necessary and Sufficient Opt. Cond.
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Let 𝑈 be a convex open of ℝ𝑛 and 𝑓:𝑈 → ℝ. The function 𝑓 is said

to be convex if for all 𝒙, 𝒚 ∈ 𝑈 and for all 𝑡 ∈ [0,1]

𝑓 1 − 𝑡 𝒙 + 𝑡𝒚 ≤ 1 − 𝑡 𝑓 𝒙 + 𝑡𝑓(𝒚)

Theorem

If 𝑓 is differentiable, then 𝑓 is convex if and only if for all 𝒙, 𝒚

𝑓 𝒚 − 𝑓 𝒙 ≥ 𝐷𝑓(𝒙)(𝒚 − 𝒙)

if 𝑛 = 1, the curve is on top of the tangent

If 𝑓 is twice continuously differentiable, then 𝑓 is convex if and only if 

𝐷2𝑓 satisfies ∀𝒙 ∈ 𝑈, 𝒉 ∈ ℝ𝑛: 𝐷2𝑓 𝒙 𝒉, 𝒉 ≥ 0 (or 𝛻2𝑓(𝒙) is positive 

semi-definite for all 𝑥)

Convex Functions
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Examples:

 𝑓 𝒙 = 𝑎, 𝒙 + 𝑏

 𝑓 𝒙 =
1

2
𝒙, 𝐴𝒙 + 𝑎, 𝒙 + 𝑏, 𝐴 positive definite symmetric

the opposite of the entropy function: 𝑓 𝒙 = − 𝑖=1
𝑛 𝒙𝑖 ln(𝒙𝒊) (the 

entropy function is then concave)

Why convexity? local minima are also global under convexity 

assumption.

Convex Functions: Why Convexity?

Exercise:

Let 𝑓:𝑈 → ℝ be a convex and differentiable function on a

convex open 𝑈.

Show that if 𝐷𝑓 𝒙∗ = 0, then 𝒙∗ is a global minimum of 𝑓


