Introduction to Optimization Lecture 3: Continuous Optimization I

September 30, 2016
TC2 - Optimisation
Université Paris-Saclay

Anne Auger
Inria Saclay - Ile-de-France

Dimo Brockhoff
Inria Saclay - Ile-de-France

Course Overview

1	Fri, 16.9.2016	Introduction to Optimization
	Wed, 21.9.2016	groups defined via wiki
	Thu, 22.9.2016	everybody went (actively!) through the Getting Started part of github.com/numbbo/coco
2	Fri, 23.9.2016	Lecture: Benchmarking; final adjustments of groups everybody can run and postprocess the example experiment ($\sim 1 \mathrm{~h}$ for final questions/help during the lecture)
3	Fri, 30.9.2016	Today's lecture: Continuous Optimization I
4	Fri, 7.10.2016	Lecture: Continuous Optimization II
	Mon, 10.10.2016	deadline for intermediate wiki report: what has been done and what remains to be done?
5	Fri, 14.10.2016	Lecture
6	Tue, 18.10.2016	Lecture All deadlines:
	Tue, 18.10.2016	deadline for submitting data sets 23:59pm Paris time
	Fri, 21.10.2016	deadline for paper submission
		vacation
7	Fri, 4.11.2016	Final lecture
	7.-11.11.2016	oral presentations (individual time slots)
	14-18.11.2016	Exam (exact date to be confirmed)

Details on Continuous Optimization Lectures

Introduction to Continuous Optimization

- examples (from ML / black-box problems)
- typical difficulties in optimization

Mathematical Tools to Characterize Optima

- reminders about differentiability, gradient, Hessian matrix
- unconstraint optimization
- first and second order conditions
- convexity
- constraint optimization

Gradient-based Algorithms

- quasi-Newton method (BFGS)
- DFO trust-region method

Learning in Optimization / Stochastic Optimization

- CMA-ES (adaptive algorithms / Information Geometry)
- PhD thesis possible on this topic
method strongly related to ML / new promising research area interesting open questions

Mathematical Characterization of Optima

Objective: Derive general characterization of optima
Example: if $f: \mathbb{R} \rightarrow \mathbb{R}$ differentiable, $f^{\prime}(x)=0$ at optimal points

- generalization to $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$?
- generalization to constrained problems?

Remark: notion of optimum independent of notion of derivability

optima of such function can be easily approached by certain type of methods

A Few Reminders...

- ($E,\| \|)$ will be a K-general vector space endowed with a norm \| \| and a corpus K.
- If not familiar with this notion, think about $E=\mathbb{R}^{n}, \boldsymbol{x} \in \mathbb{R}^{n}, K=\mathbb{R}$, and $\|x\|=\sqrt{\sum_{i=1}^{n} x_{i}^{2}}=\sqrt{\boldsymbol{x}^{T} \boldsymbol{x}}$

Linear Mapping:

- $u: E \rightarrow E$ is a linear mapping if $u(\lambda x+\mu y)=\lambda u(x)+\mu u(y)$ for all $\lambda, \mu \in K$ and for all $x, y \in E$

Exercise:

Let $E=\mathbb{R}^{n}, K=\mathbb{R}$ and $A \in \mathbb{R}^{n \times \mathrm{n}}$ be a matrix.
Show that $x \mapsto A x$ is a linear mapping.

Continuity of a Function

$f:(E,\| \|) \rightarrow(E,\| \|)$ is continuous in $x \in E$ if
$\forall \epsilon>0, \exists \eta>0$ such that $\forall y:\|x-y\| \leq \eta ;\|f(x)-f(y)\| \leq \epsilon$

Scalar Product

$\langle\rangle:, E \times E \rightarrow \mathbb{R}$ is a scalar product if it is

- a bilinear application
- symmetric (i.e. $\langle x, y\rangle=\langle y, x\rangle$
- positive (i.e. $\forall x \in E:\langle x, x\rangle \geq 0$)
- definite (i.e. $\langle x, x\rangle=0 \Rightarrow x=0$)

Given a scalar product $\langle\rangle,,\|x\|=\sqrt{\langle x, x\rangle}$ is a norm.
(home exercise)

Example in $\mathbb{R}^{n}:\langle x, y\rangle=x^{T} y$

Reminder: Derivability in 1D ($\mathrm{n}=1$)

$f: \mathbb{R} \rightarrow \mathbb{R}$ is derivable in $x \in \mathbb{R}$ if

$$
\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \text { exists, } h \in \mathbb{R}
$$

Notation:
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$

The derivative corresponds to the slope of the tangent in x.

Reminder: Derivability in 1D (n=1)

Taylor Formula (Order 1)

If f is derivable in x then

$$
f(x+h)=f(x)+f^{\prime}(x) h+o(| | h| |)
$$

i.e. for h small enough, $h \mapsto f(x+h)$ is approximated by $h \mapsto$ $f(x)+f^{\prime}(h)$
$h \mapsto f(x)+f^{\prime}(x) h$ is a linear approximation of $f(x+h)$

Exercise:
 Why is it linear?

$h \mapsto f(x)+f^{\prime}(x) h$ is a first order approximation of $f(x+h)$

Reminder: Derivability in 1D ($\mathrm{n}=1$)

Geometrically:

The notion of derivative of a function defined on \mathbb{R}^{n} is generalized via this idea of a linear approximation of $f(x+h)$ for h small enough.

Differentiability: Generalization from 1D

Given a normed vector space ($E, \||\cdot| \mid$) and complete (Banach space), consider $f: U \subset E \rightarrow \mathbb{R}$ with U open set of E.

- f is differentiable in $x \in U$ if there exists a continuous linear mapping $D f(x)$ such that

$$
f(\boldsymbol{x}+\boldsymbol{h})=f(\boldsymbol{x})+D f(\boldsymbol{x})(\boldsymbol{h})+o(\mid \boldsymbol{h} \|)
$$

$D f(x)$ is the differential of f in \boldsymbol{x}

Exercise:

Consider $E=\mathbb{R}^{n}$ with the scalar product $\langle\boldsymbol{x}, \boldsymbol{y}\rangle=\boldsymbol{x}^{T} \boldsymbol{y}$. Let $\boldsymbol{a} \in \mathbb{R}^{n}$, show that

$$
f(x)=\langle a, x\rangle
$$

is differentiable and compute its differential.

Gradient

If the norm ||. || comes from a scalar product, i.e. $\|x\|=\sqrt{\langle\boldsymbol{x}, \boldsymbol{x}\rangle}$ (the Banach space E is then called a Hilbert space), the gradient of f in \boldsymbol{x} denoted $\nabla f(\boldsymbol{x})$ is defined as the element of E such that

$$
D f(\boldsymbol{x})(\boldsymbol{h})=\langle\nabla f(\boldsymbol{x}), \boldsymbol{h}\rangle
$$

Riesz representation Theorem

Taylor formula - order one

Replacing the differential in the last slide by the above, we obtain the Taylor formula:

$$
f(\boldsymbol{x}+\boldsymbol{h})=f(\boldsymbol{x})+\langle\nabla f(\boldsymbol{x}), \boldsymbol{h}\rangle+o(\|\boldsymbol{h}\|)
$$

Exercise: Gradients

Exercise:

Compute the gradient of the functions

- $f(x)=\langle a, x\rangle$.
- $f_{n}(\theta)=\frac{1}{2}\left(y_{n}-\left\langle\Phi\left(x_{n}\right), \theta\right\rangle\right)^{2}$.

Gradient: Connection to Partial Derivatives

- In $\left(\mathbb{R}^{n},\| \|_{2}\right)$ where $\|x\|_{2}=\sqrt{\langle\boldsymbol{x}, \boldsymbol{x}\rangle}$ is the Euclidean norm deriving from the scalar product $\langle\boldsymbol{x}, \boldsymbol{y}\rangle=\boldsymbol{x}^{T} \boldsymbol{y}$

$$
\nabla f(x)=\left(\begin{array}{c}
\frac{\partial f}{\partial x_{1}} \\
\vdots \\
\frac{\partial f}{\partial x_{n}}
\end{array}\right)
$$

- Reminder: partial derivative in x_{0}

$$
\begin{gathered}
y_{f_{i}} f\left(x_{0}^{1}, \ldots, x_{0}^{i-1}, y, x_{0}^{i+1}, \ldots, x_{0}^{n}\right) \\
\frac{\partial f}{\partial x_{i}}\left(x_{0}\right)=f_{i}^{\prime}\left(x_{0}\right)
\end{gathered}
$$

Gradient: More Examples

- if $f(\boldsymbol{x})=\langle\boldsymbol{a}, \boldsymbol{x}\rangle, \nabla f(x)=\boldsymbol{a}$
- in \mathbb{R}^{n}, if $f(\boldsymbol{x})=\boldsymbol{x}^{T} A \boldsymbol{x}$, then $\nabla f(\boldsymbol{x})=\left(A+A^{T}\right) \boldsymbol{x}$
- particular case if $f(\boldsymbol{x})=\|\boldsymbol{x}\|^{2}$, then $\nabla f(\boldsymbol{x})=2 \boldsymbol{x}$
- in $\mathbb{R}, \nabla f(\boldsymbol{x})=f^{\prime}(\boldsymbol{x})$

Gradient: Geometrical Interpretation

Exercise:

Let $L_{c}=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid f(\boldsymbol{x})=c\right\}$ be again a level set of a function $f(\boldsymbol{x})$. Let $x_{0} \in L_{c} \neq \emptyset$.

Show for $f(\boldsymbol{x})=\langle\boldsymbol{a}, \boldsymbol{x}\rangle$ and $f(\boldsymbol{x})=\|\boldsymbol{x}\|^{2}$ that $\nabla f\left(\boldsymbol{x}_{\boldsymbol{0}}\right)$ is orthogonal to the level sets in x_{0}.

More generally, the gradient of a differentiable function is orthogonal to its level sets.

Reminder: Second Order Derivability in 1D

- Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a derivable function and let $f^{\prime}: x \rightarrow f^{\prime}(x)$ be its derivative function.
- If f^{\prime} is derivable in x, then we denote its derivative as $f^{\prime \prime}(x)$
- $\quad f^{\prime \prime}(x)$ is called the second order derivative of f.

Taylor Formula: Second Order Derivative

- If $f: \mathbb{R} \rightarrow \mathbb{R}$ is two times derivable then

$$
f(x+h)=f(x)+f^{\prime}(x) h+f^{\prime \prime}(x) h^{2}+o\left(\|h\|^{2}\right)
$$

i.e. for h small enough, $h \rightarrow f(x)+h f^{\prime}(x)+h^{2} f^{\prime \prime}(x)$ approximates $h+f(x+h)$

- $h \rightarrow f(x)+h f^{\prime}(x)+h^{2} f^{\prime \prime}(x)$ is a quadratic approximation (or order 2) of f in a neighborhood of x

- The second derivative of $f: \mathbb{R} \rightarrow \mathbb{R}$ generalizes naturally to larger dimension.

Second Order Differentiability

- (first order) differential: gives a linear local approximation
- second order differential: gives a quadratic local approximation

Definition: second order differentiability

$f: U \subset E \rightarrow \mathbb{R}$ is differentiable at the second order in $x \in U$ if it is differentiable in a neighborhood of x and if $u \mapsto D f(u)$ is differentiable in \boldsymbol{x}

Second Order Differentiability (Cont.)

Another Definition:

$f: U \subset E \rightarrow \mathbb{R}$ is differentiable at the second order in $x \in U$ iff there exists a continuous linear application $D f(\boldsymbol{x})$ and a bilinear symmetric continuous application $D^{2} f(x)$ such that

$$
f(\boldsymbol{x}+\boldsymbol{h})=f(\boldsymbol{x})+D f(\boldsymbol{x})(\boldsymbol{h})+\frac{1}{2} D^{2} f(\boldsymbol{x})(\boldsymbol{h}, \boldsymbol{h})+o\left(\|\boldsymbol{h}\|^{2}\right)
$$

In a Hilbert space $(E,\langle\quad\rangle)$

$$
D^{2} f(\boldsymbol{x})(\boldsymbol{h}, \boldsymbol{h})=\left\langle\nabla^{2} f(\boldsymbol{x})(\boldsymbol{h}), \boldsymbol{h}\right\rangle
$$

where $\nabla^{2} f(\boldsymbol{x}): E \rightarrow E$ is a symmetric continuous operator.

In $\left(\mathbb{R}^{n},\langle x, y\rangle=x^{T} y\right), \nabla^{2} f(x)$ is represented by a symmetric matrix called the Hessian matrix. It can be computed as

$$
\nabla^{2}(f)=\left[\begin{array}{cccc}
\frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}} \\
\frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^{2} f}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{n}^{2}}
\end{array}\right]
$$

Exercise on Hessian Matrix

Exercise:

Let $f(\boldsymbol{x})=\boldsymbol{x}^{T} A \boldsymbol{x}, \boldsymbol{x} \in \mathbb{R}^{n}, A \in \mathbb{R}^{n \times n}$.
Compute the Hessian matrix of f.
If it is too complex, consider $f:\left\{\begin{array}{c}\mathbb{R}^{2} \rightarrow \mathbb{R} \\ \boldsymbol{x} \rightarrow \boldsymbol{x}^{T} A \boldsymbol{x}\end{array}\right.$ with $A=\left(\begin{array}{ll}9 & 0 \\ 0 & 1\end{array}\right)$

Back to III-Conditioned Problems

We have seen that for a convex quadratic function
$f(x)=\frac{1}{2}\left(x-x_{0}\right)^{T} A\left(x-x_{0}\right)+b$ of $x \in \mathbb{R}^{n}, A \in \mathbb{R}^{n \times n}, A \operatorname{SPD}, b \in \mathbb{R}^{n}$:

1) The level sets are ellipsoids. The eigenvalues of A determine the lengths of the principle axes of the ellipsoid.

2) The Hessian matrix of f equals to A.

III-conditioned convex quadratic problems are problems with large ratio between largest and smallest eigenvalue of A which means large ratio between longest and shortest axis of ellipsoid.

This corresponds to having an ill-conditioned Hessian matrix.

Optimality Conditions: First Order Necessary Cond.

For 1-dimensional optimization problems $f: \mathbb{R} \rightarrow \mathbb{R}$
Assume f is derivable

- x^{*} is a local extremum $\Rightarrow f^{\prime}\left(x^{*}\right)=0$
not a sufficient condition: consider $f(x)=x^{3}$ proof via Taylor formula: $f\left(\boldsymbol{x}^{*}+\boldsymbol{h}\right)=f\left(\boldsymbol{x}^{*}\right)+f^{\prime}\left(\boldsymbol{x}^{*}\right) h+o(\|\boldsymbol{h}\|)$
- points \boldsymbol{y} such that $f^{\prime}(\boldsymbol{y})=0$ are called critical or stationary points

Generalization to n-dimensional functions

 If $f: U \subset \mathbb{R}^{n} \mapsto \mathbb{R}$ is differentiable- necessary condition: If x^{*} is a local extremum of f, then $D f\left(x^{*}\right)=0$ and hence $\nabla f\left(x^{*}\right)=0$
proof via Taylor formula

Second Order Necessary and Sufficient Opt. Cond.

If f is twice continuously differentiable

- Necessary condition: if \boldsymbol{x}^{*} is a local minimum, then $\nabla f\left(\boldsymbol{x}^{*}\right)=0$ and $\nabla^{2} f\left(x^{*}\right)$ is positive semi-definite
proof via Taylor formula at order 2
- Sufficient condition: if $\nabla f\left(\boldsymbol{x}^{*}\right)=0$ and $\nabla^{2} f\left(\boldsymbol{x}^{*}\right)$ is positive definite, then x^{*} is a strict local minimum

Proof for sufficient condition:

- Let $\lambda>0$ be the smallest eigenvalue of $\nabla^{2} f\left(x^{*}\right)$, using a second order Taylor expansion, we have for all \boldsymbol{h} :
- $f\left(\boldsymbol{x}^{*}+\boldsymbol{h}\right)-f\left(\boldsymbol{x}^{*}\right)=\nabla f\left(\boldsymbol{x}^{*}\right)^{T} \boldsymbol{h}+\frac{1}{2} \boldsymbol{h}^{T} \nabla^{2} f\left(\boldsymbol{x}^{*}\right) \boldsymbol{h}+o\left(\|\boldsymbol{h}\|^{2}\right)$

$$
>\frac{\lambda}{2}\|\boldsymbol{h}\|^{2}+o\left(\|\boldsymbol{h}\|^{2}\right)=\left(\frac{\lambda}{2}+\frac{o\left(\|\boldsymbol{h}\|^{2}\right)}{\|\boldsymbol{h}\|^{2}}\right)\|\boldsymbol{h}\|^{2}
$$

Convex Functions

Let U be a convex open of \mathbb{R}^{n} and $f: U \rightarrow \mathbb{R}$. The function f is said to be convex if for all $\boldsymbol{x}, \boldsymbol{y} \in U$ and for all $t \in[0,1]$

$$
f((1-t) \boldsymbol{x}+t \boldsymbol{y}) \leq(1-t) f(\boldsymbol{x})+t f(\boldsymbol{y})
$$

Theorem

If f is differentiable, then f is convex if and only if for all $\boldsymbol{x}, \boldsymbol{y}$

$$
\begin{aligned}
& f(\boldsymbol{y})-f(\boldsymbol{x}) \geq D f(\boldsymbol{x})(\boldsymbol{y}-\boldsymbol{x}) \\
& \quad \text { if } n=1 \text {, the curve is on top of the tangent }
\end{aligned}
$$

If f is twice continuously differentiable, then f is convex if and only if $D^{2} f$ satisfies $\forall \boldsymbol{x} \in U, \boldsymbol{h} \in \mathbb{R}^{n}: D^{2} f(\boldsymbol{x})(\boldsymbol{h}, \boldsymbol{h}) \geq 0$ (or $\nabla^{2} f(x)$ is positive semi-definite for all x)

Convex Functions: Why Convexity?

Examples:

- $f(\boldsymbol{x})=\langle a, \boldsymbol{x}\rangle+b$
- $f(\boldsymbol{x})=\frac{1}{2}\langle\boldsymbol{x}, A \boldsymbol{x}\rangle+\langle a, \boldsymbol{x}\rangle+b, A$ positive definite symmetric the opposite of the entropy function: $f(x)=-\sum_{i=1}^{n} \boldsymbol{x}_{i} \ln \left(\boldsymbol{x}_{\boldsymbol{i}}\right)$ (the entropy function is then concave)

Exercise:

Let $f: U \rightarrow \mathbb{R}$ be a convex and differentiable function on a convex open U. Show that if $D f\left(x^{*}\right)=0$, then \boldsymbol{x}^{*} is a global minimum of f

Why convexity? local minima are also global under convexity assumption.

