Introduction to Optimization

Lecture 3: Continuous Optimization I

September 30, 2016 TC2 - Optimisation Université Paris-Saclay

Anne Auger Inria Saclay – Ile-de-France

Dimo Brockhoff Inria Saclay – Ile-de-France

Course Overview

1	Fri, 16.9.2016	Introduction to Optimization	
	Wed, 21.9.2016	groups defined via wiki	
	Thu, 22.9.2016	everybody went (actively!) through the Getting Started part of github.com/numbbo/coco	
2	Fri, 23.9.2016	Lecture: Benchmarking; final adjustments of groups everybody can run and postprocess the example experiment (~1h for final questions/help during the lecture)	
3	Fri, 30.9.2016	Today's lecture: Continuous Optimization I	
4	Fri, 7.10.2016	Lecture: Continuous Optimization II	
	Mon, 10.10.2016	deadline for intermediate wiki report: what has been done and what remains to be done?	
5	Fri, 14.10.2016	Lecture	
6	Tue, 18.10.2016	Lecture	All deadlines:
	Tue, 18.10.2016	deadline for submitting data sets	23:59pm Paris time
	Fri, 21.10.2016	deadline for paper submission	
		vacation	
7	Fri, 4.11.2016	Final lecture	
	711.11.2016	oral presentations (individual time slots)	
	14 - 18.11.2016	Exam (exact date to be confirmed)	

Details on Continuous Optimization Lectures

Introduction to Continuous Optimization

- examples (from ML / black-box problems)
- typical difficulties in optimization

Mathematical Tools to Characterize Optima

- reminders about differentiability, gradient, Hessian matrix
- unconstraint optimization
 - first and second order conditions
 - convexity
- constraint optimization

Gradient-based Algorithms

- quasi-Newton method (BFGS)
- DFO trust-region method

Learning in Optimization / Stochastic Optimization

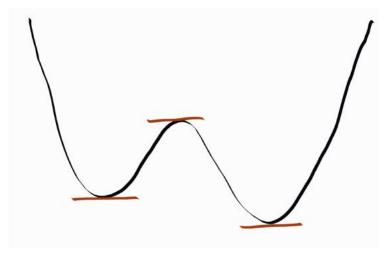
- CMA-ES (adaptive algorithms / Information Geometry)
- PhD thesis possible on this topic

method strongly related to ML / new promising research area interesting open questions

Mathematical Characterization of Optima

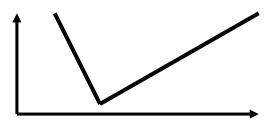
Objective: Derive general characterization of optima

Example: if $f: \mathbb{R} \to \mathbb{R}$ differentiable, f'(x) = 0 at optimal points



- generalization to $f: \mathbb{R}^n \to \mathbb{R}$?
- generalization to constrained problems?

Remark: notion of optimum independent of notion of derivability



optima of such function can be easily approached by certain type of methods

A Few Reminders...

- (E, || ||) will be a K-general vector space endowed with a norm || || and a corpus K.
- If not familiar with this notion, think about $E = \mathbb{R}^n$, $x \in \mathbb{R}^n$, $K = \mathbb{R}$, and $||x|| = \sqrt{\sum_{i=1}^n x_i^2} = \sqrt{x^T x}$

Linear Mapping:

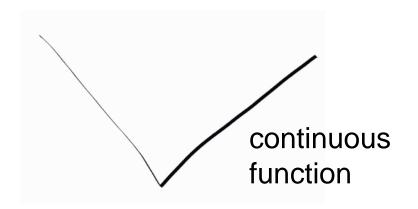
• $u: E \to E$ is a linear mapping if $u(\lambda x + \mu y) = \lambda u(x) + \mu u(y)$ for all $\lambda, \mu \in K$ and for all $x, y \in E$

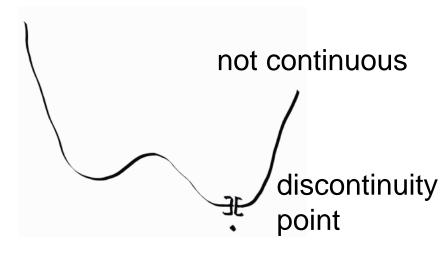
Exercise:

Let $E = \mathbb{R}^n$, $K = \mathbb{R}$ and $A \in \mathbb{R}^{n \times n}$ be a matrix. Show that $x \mapsto Ax$ is a linear mapping.

Continuity of a Function

 $f: (E, || \ ||) \rightarrow (E, || \ ||)$ is continuous in $x \in E$ if $\forall \epsilon > 0, \exists \eta > 0$ such that $\forall y: ||x - y|| \le \eta; ||f(x) - f(y)|| \le \epsilon$





Scalar Product

 $\langle , \rangle : E \times E \to \mathbb{R}$ is a scalar product if it is

- a bilinear application
- symmetric (i.e. $\langle x, y \rangle = \langle y, x \rangle$
- positive (i.e. $\forall x \in E : \langle x, x \rangle \ge 0$)
- definite (i.e. $\langle x, x \rangle = 0 \Longrightarrow x = 0$)

Given a scalar product $\langle , \rangle, ||x|| = \sqrt{\langle x, x \rangle}$ is a norm.

(home exercise)

Example in \mathbb{R}^n : $\langle x, y \rangle = x^T y$

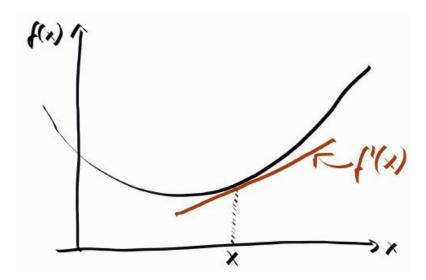
Reminder: Derivability in 1D (n=1)

 $f: \mathbb{R} \to \mathbb{R}$ is derivable in $x \in \mathbb{R}$ if

$$\lim_{h\to 0} \frac{f(x+h)-f(x)}{h} \text{ exists, } h \in \mathbb{R}$$

Notation:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$



The derivative corresponds to the slope of the tangent in x.

Reminder: Derivability in 1D (n=1)

Taylor Formula (Order 1)

If f is derivable in x then

$$f(x+h) = f(x) + f'(x)h + o(||h||)$$

i.e. for h small enough, $h \mapsto f(x+h)$ is approximated by $h \mapsto f(x) + f'(h)$

 $h \mapsto f(x) + f'(x)h$ is a linear approximation of f(x + h)

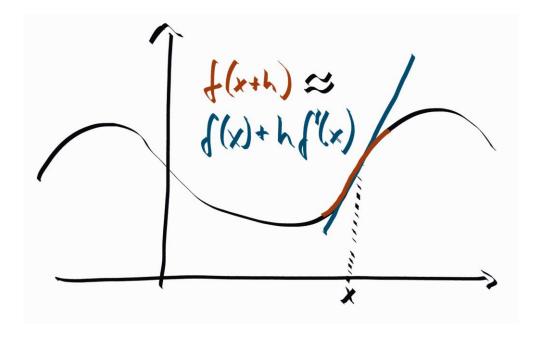
Exercise:

Why is it linear?

 $h \mapsto f(x) + f'(x)h$ is a first order approximation of f(x + h)

Reminder: Derivability in 1D (n=1)

Geometrically:



The notion of derivative of a function defined on \mathbb{R}^n is generalized via this idea of a linear approximation of f(x+h) for h small enough.

Differentiability: Generalization from 1D

Given a normed vector space (E, ||.||) and complete (Banach space), consider $f: U \subset E \to \mathbb{R}$ with U open set of E.

• f is differentiable in $x \in U$ if there exists a continuous linear mapping Df(x) such that

$$f(\mathbf{x} + \mathbf{h}) = f(\mathbf{x}) + Df(\mathbf{x})(\mathbf{h}) + o(||\mathbf{h}||)$$

Df(x) is the differential of f in x

Exercise:

Consider $E = \mathbb{R}^n$ with the scalar product $\langle x, y \rangle = x^T y$. Let $a \in \mathbb{R}^n$, show that

$$f(x) = \langle a, x \rangle$$

is differentiable and compute its differential.

Gradient

If the norm ||.|| comes from a scalar product, i.e. $||x|| = \sqrt{\langle x, x \rangle}$ (the Banach space E is then called a Hilbert space), the gradient of f in x denoted $\nabla f(x)$ is defined as the element of E such that

$$Df(\mathbf{x})(\mathbf{h}) = \langle \nabla f(\mathbf{x}), \mathbf{h} \rangle$$

Riesz representation Theorem

Taylor formula – order one

Replacing the differential in the last slide by the above, we obtain the Taylor formula:

$$f(x + h) = f(x) + \langle \nabla f(x), h \rangle + o(||h||)$$

Exercise: Gradients

Exercise:

Compute the gradient of the functions

- $f(x) = \langle a, x \rangle$.
- $f_n(\theta) = \frac{1}{2}(y_n \langle \Phi(\mathbf{x}_n), \theta \rangle)^2$.

Gradient: Connection to Partial Derivatives

In $(\mathbb{R}^n, || ||_2)$ where $||x||_2 = \sqrt{\langle x, x \rangle}$ is the Euclidean norm deriving from the scalar product $\langle x, y \rangle = x^T y$

$$\nabla f(x) = \begin{pmatrix} \frac{\partial f}{\partial x_1} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{pmatrix}$$

• Reminder: partial derivative in x_0

$$y \underset{f_i}{\rightarrow} f(x_0^1, \dots, x_0^{i-1}, y, x_0^{i+1}, \dots, x_0^n)$$
$$\frac{\partial f}{\partial x_i}(x_0) = f_i'(x_0)$$

Gradient: More Examples

- if $f(x) = \langle a, x \rangle, \nabla f(x) = a$
- in \mathbb{R}^n , if $f(x) = x^T A x$, then $\nabla f(x) = (A + A^T) x$
- particular case if $f(x) = ||x||^2$, then $\nabla f(x) = 2x$
- in \mathbb{R} , $\nabla f(\mathbf{x}) = f'(\mathbf{x})$

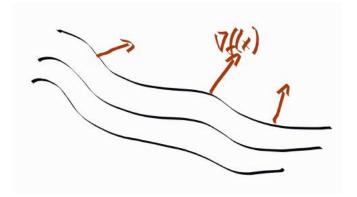
Gradient: Geometrical Interpretation

Exercise:

Let $L_c = \{x \in \mathbb{R}^n \mid f(x) = c\}$ be again a level set of a function f(x). Let $x_0 \in L_c \neq \emptyset$.

Show for $f(x) = \langle a, x \rangle$ and $f(x) = ||x||^2$ that $\nabla f(x_0)$ is **orthogonal** to the level sets in x_0 .

More generally, the gradient of a differentiable function is orthogonal to its level sets.

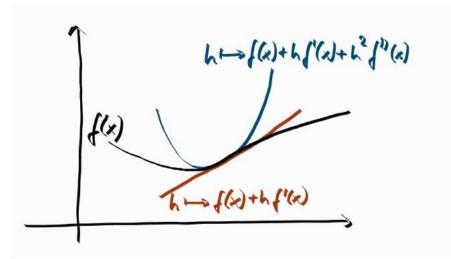


Reminder: Second Order Derivability in 1D

- Let $f: \mathbb{R} \to \mathbb{R}$ be a derivable function and let $f': x \to f'(x)$ be its derivative function.
- If f' is derivable in x, then we denote its derivative as f''(x)
- f''(x) is called the second order derivative of f.

Taylor Formula: Second Order Derivative

- If $f: \mathbb{R} \to \mathbb{R}$ is two times derivable then $f(x+h) = f(x) + f'(x)h + f''(x)h^2 + o(||h||^2)$ i.e. for h small enough, $h \to f(x) + hf'(x) + h^2f''(x)$ approximates h + f(x+h)
- $h \to f(x) + hf'(x) + h^2f''(x)$ is a quadratic approximation (or order 2) of f in a neighborhood of x



■ The second derivative of $f: \mathbb{R} \to \mathbb{R}$ generalizes naturally to larger dimension.

Second Order Differentiability

- (first order) differential: gives a linear local approximation
- second order differential: gives a quadratic local approximation

Definition: second order differentiability

 $f: U \subset E \to \mathbb{R}$ is differentiable at the second order in $x \in U$ if it is differentiable in a neighborhood of x and if $u \mapsto Df(u)$ is differentiable in x

Second Order Differentiability (Cont.)

Another Definition:

 $f: U \subset E \to \mathbb{R}$ is differentiable at the second order in $x \in U$ iff there exists a continuous linear application Df(x) and a bilinear symmetric continuous application $D^2f(x)$ such that

$$f(x + h) = f(x) + Df(x)(h) + \frac{1}{2}D^2f(x)(h, h) + o(||h||^2)$$

In a Hilbert space $(E, \langle \rangle)$

$$D^2 f(\mathbf{x})(\mathbf{h}, \mathbf{h}) = \langle \nabla^2 f(\mathbf{x})(\mathbf{h}), \mathbf{h} \rangle$$

where $\nabla^2 f(x)$: $E \to E$ is a symmetric continuous operator.

Hessian Matrix

In $(\mathbb{R}^n, \langle x, y \rangle = x^T y)$, $\nabla^2 f(x)$ is represented by a symmetric matrix called the Hessian matrix. It can be computed as

$$\nabla^{2}(f) = \begin{bmatrix} \frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} & \dots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}} \\ \frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2}^{2}} & \dots & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2} f}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}} & \dots & \frac{\partial^{2} f}{\partial x_{n}^{2}} \end{bmatrix}$$

Exercise on Hessian Matrix

Exercise:

Let $f(x) = x^T A x$, $x \in \mathbb{R}^n$, $A \in \mathbb{R}^{n \times n}$.

Compute the Hessian matrix of f.

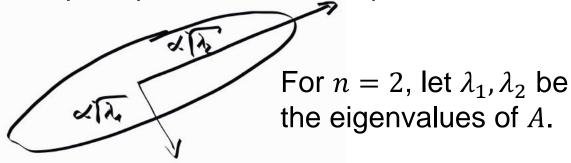
If it is too complex, consider $f: \begin{cases} \mathbb{R}^2 \to \mathbb{R} \\ x \to x^T A x \end{cases}$ with $A = \begin{pmatrix} 9 & 0 \\ 0 & 1 \end{pmatrix}$

Back to III-Conditioned Problems

We have seen that for a convex quadratic function

$$f(x) = \frac{1}{2}(x - x_0)^T A(x - x_0) + b \text{ of } x \in \mathbb{R}^n, A \in \mathbb{R}^{n \times n}, A \text{ SPD, } b \in \mathbb{R}^n$$
:

1) The level sets are ellipsoids. The eigenvalues of *A* determine the lengths of the principle axes of the ellipsoid.



2) The Hessian matrix of f equals to A.

Ill-conditioned convex quadratic problems are problems with large ratio between largest and smallest eigenvalue of *A* which means large ratio between longest and shortest axis of ellipsoid.

This corresponds to having an ill-conditioned Hessian matrix.

Optimality Conditions: First Order Necessary Cond.

For 1-dimensional optimization problems $f: \mathbb{R} \to \mathbb{R}$

Assume *f* is derivable

- x^* is a local extremum $\Rightarrow f'(x^*) = 0$ not a sufficient condition: consider $f(x) = x^3$ proof via Taylor formula: $f(x^* + h) = f(x^*) + f'(x^*)h + o(||h||)$
- points y such that f'(y) = 0 are called critical or stationary points

Generalization to n-dimensional functions

If $f: U \subset \mathbb{R}^n \mapsto \mathbb{R}$ is differentiable

• necessary condition: If x^* is a local extremum of f, then $Df(x^*) = 0$ and hence $\nabla f(x^*) = 0$

proof via Taylor formula

Second Order Necessary and Sufficient Opt. Cond.

If *f* is twice continuously differentiable

Necessary condition: if x^* is a local minimum, then $\nabla f(x^*) = 0$ and $\nabla^2 f(x^*)$ is positive semi-definite

proof via Taylor formula at order 2

• Sufficient condition: if $\nabla f(x^*) = 0$ and $\nabla^2 f(x^*)$ is positive definite, then x^* is a strict local minimum

Proof for sufficient condition:

Let $\lambda > 0$ be the smallest eigenvalue of $\nabla^2 f(x^*)$, using a second order Taylor expansion, we have for all h:

$$f(\mathbf{x}^* + \mathbf{h}) - f(\mathbf{x}^*) = \nabla f(\mathbf{x}^*)^T \mathbf{h} + \frac{1}{2} \mathbf{h}^T \nabla^2 f(\mathbf{x}^*) \mathbf{h} + o(||\mathbf{h}||^2)$$
$$> \frac{\lambda}{2} ||\mathbf{h}||^2 + o(||\mathbf{h}||^2) = \left(\frac{\lambda}{2} + \frac{o(||\mathbf{h}||^2)}{||\mathbf{h}||^2}\right) ||\mathbf{h}||^2$$

Convex Functions

Let U be a convex open of \mathbb{R}^n and $f: U \to \mathbb{R}$. The function f is said to be convex if for all $x, y \in U$ and for all $t \in [0,1]$

$$f((1-t)x + ty) \le (1-t)f(x) + tf(y)$$

Theorem

If f is differentiable, then f is convex if and only if for all x, y

$$f(y) - f(x) \ge Df(x)(y - x)$$

if n = 1, the curve is on top of the tangent

If f is twice continuously differentiable, then f is convex if and only if D^2f satisfies $\forall x \in U, h \in \mathbb{R}^n$: $D^2f(x)(h,h) \geq 0$ (or $\nabla^2 f(x)$ is positive semi-definite for all x)

Convex Functions: Why Convexity?

Examples:

- $f(x) = \langle a, x \rangle + b$
- $f(x) = \frac{1}{2}\langle x, Ax \rangle + \langle a, x \rangle + b$, A positive definite symmetric the opposite of the entropy function: $f(x) = -\sum_{i=1}^{n} x_i \ln(x_i)$ (the entropy function is then concave)

Exercise:

Let $f: U \to \mathbb{R}$ be a convex and differentiable function on a convex open U.

Show that if $Df(x^*) = 0$, then x^* is a global minimum of f

Why convexity? local minima are also global under convexity assumption.