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Course QOverview

3 Fn, 22.9.2017 today's lecture "Introduction to Continuous Optimization"
4  Fri, 29.9.2017 lecture "Gradient-Based Algorithms"
5 Fri, 6.10.2017 lecture "Stochastic Algorithms and DFO"
6 Fri, 13.10.2017 lecture "Discrete Optimization |: graphs, greedy algos, dyn. progr.”
deadline for submitting data sets
Wed, 18.10.2017 deadline for paper submission
7 Fri, 20.10.2017 final lecture "Discrete Optimization II: dyn. progr., B&B, heuristics"

Thu, 26.10.2017/  oral presentations (individual time slots)
Fri, 27.10.2017

after 30.10.2017 vacation aka learning for the exams
Fri, 10.11.2017 written exam All deadlines:

23:59pm Paris time




Details on Continuous Optimization Lectures

Introduction to Continuous Optimization
= examples (from ML / black-box problems)
= typical difficulties in optimization

Mathematical Tools to Characterize Optima
= reminders about differentiability, gradient, Hessian matrix
" unconstraint optimization

= first and second order conditions

" convexity

= constraint optimization

Gradient-based Algorithms
= quasi-Newton method (BFGS)
= [DFO trust-region method]

Learning in Optimization / Stochastic Optimization
= CMA-ES (adaptive algorithms / Information Geometry)
= PhD thesis possible on this topic

method strongly related to ML / new promising research area
mterestlng open questions




Continuous Optimization
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unconstrained optimization
= Search space is continuous, i.e. composed of real vectors x € R"

. _ | dimension of the problem
"= 7 dimension of the search space R" (as vector space)

{G)s

1-D problem 2-D level sets
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Reminder: Different Notions of Optimum

Unconstrained case
= Jocal vs. global
= Jocal minimum x*: 3 a neighborhood V of x* such that
VxeV:f(x) = f(x")
= global minimum: vx € Q: f(x) = f(x*)
= strict local minimum if the inequality is strict




Mathematical Characterization of Optima

Objective: Derive general characterization of optima

Example: if f: R — R differentiable,
f'(x) = 0 at optimal points

= generalization to f:R" - R ?
= generalization to constrained problems?

Remark: notion of optimum independent of notion of derivability

optima of such function can be easily
approached by certain type of methods




Reminder: Continuity of a Function

- y) — (WL |lw) is continuous in x € V if
Ve > 0,an >0suchthatvy e V: [[x —y|ly < |If(x) — fFOW)|lw < €

not continuous

continuous
function discontinuity
< point




Reminder: Differentiability in 1D (n=1)

f:R = R is differentiable in x € R if

lim L8 qvists h e R
h-0 h
Notation:
/ s fx+h)—f(x)
160 = fim P
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Reminder: Differentiability in 1D (n=1)

Taylor Formula (Order 1)
If £ is differentiable in x then

fx+h) =fx)+f (x)h+ o[l

l.e. for h small enough, h — f(x + h) is approximated by h —

fO) + f(x)h

h— f(x)+ f'(x)h is called a first order approximation of f(x + h)




Reminder: Differentiability in 1D (n=1)

Geometrically:

>

4
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The notion of derivative of a function defined on R" is generalized
via this idea of a linear approximation of f(x + h) for h small

enough.

How to generalize this to arbitrary dimension?




Gradient Definition Via Partial Derivatives

= In (R" || [l,) where ||x||, = +/{x, x) is the Euclidean norm
deriving from the scalar product (x,y) = xTy

T
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0x,

Vi(x) =

» Reminder: partial derivative in x,
; 1 i—1 i+1 n
fi: y— f(xo,...,xo ¥V, Xg ,...,xo)

0
a—j;<x0> = £ (x0)




Exercise: Gradients




Exercise: Gradients

Exercise:

Compute the gradients of

a) f(x)=x; withx e R"

b) f(x) =a’x with a,x € R"

c) f(x) =xTx (=]|x||?) with x € R"

Some more examples:
= inR",if f(x) = x"Ax, then Vf(x) = (4 + A")x
= inR, Vf(x) = f'(x)




Gradient: Geometrical Interpretation

Exercise:

Let L, = {x e R"| f(x) = c} be again a level set of a function f(x).
Let xo € L. + Q.

Compute the level sets for f;(x) = a’x and £, (x) = ||x||* and
the gradient in a chosen point x, and observe that Vf(xg) is
orthogonal to the level setin x,.

Again: if this seems too difficult, do it for two variables (and a
concrete a € R? and draw the level sets and the gradients.

b
More generally, the gradient of a ~ < fle)
X

differentiable function is orthogonal to \ 7'
its level sets. %




Differentiability in R"

Taylor Formula — Order One

fx+h) = f(x) + (V@) h+o([|h]])




Reminder: Second Order Derivability in 1D

= Let f:R — R be a derivable function and let f":x - f'(x) be its
derivative function.

= |If f'isderivable in x, then we denote its derivative as f''(x)
=  f"(x) is called the second order derivative of f.




Taylor Formula: Second Order Derivative

= If f:R - Ristwo times differentiable then
flx+h) =fC)+f' R+ f"()h* + o(||r]]H)
i.e. for h small enough, h = f(x) + hf'(x) + h*f"(x)
approximates h + f(x + h)

= h - f(x)+hf'(x) + h*f"(x) is a quadratic approximation (or
order 2) of f in a neighborhood of x
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= The second derivative of f: R - R generalizes naturally to larger
dimension.




In (R, (x,y) = xTy), V2f(x) is represented by a symmetric matrix
called the Hessian matrix. It can be computed as

oY o 0*f

a_xf 0x10x, —  0x,0x,
02f  0%f 02 f

V2(f) = |9x,0x, a_xzz " 0x,0x,
02f  0%f 02 f

0x,0x; 0x,0x, a_x,% l




Exercise on Hessian Matrix




Second Order Differentiability in R"®

Taylor Formula — Order Two

1
fa+ ) = f() +(Vf(0) h+5 R (72f(0) h+o(l|Rl?)




Back to llI-Conditioned Problems

We have seen that for a convex quadratic function
flx) = %(x —x9)TA(x —xy) + b of x € R"*, 4 € R™™", A SPD, b € R™

1) The level sets are ellipsoids. The eigenvalues of A determine
the lengths of the principle axes of the ellipsoid.

or n=2,letA, 1, be
the eigenvalues of A.
N

2) The Hessian matrix of f equals to A.

lll-conditioned convex quadratic problems are problems with large
ratio between largest and smallest eigenvalue of A which means large
ratio between longest and shortest axis of ellipsoid.

This corresponds to having an ill-conditioned Hessian matrix.




Gradient Direction Vs. Newton Direction

Gradient direction: Vf(x)

Newton direction: (H(x))_1 - Vf(x)
with H(x) = V“f(x) being the Hessian at x

Exercise:

Let again f(x) = %xTA x,x ER? A= (3 (1)) e R?*?,

Plot the gradient and Newton direction of f in a point x € R"
of your choice (which should not be on a coordinate axis) into
the same plot with the level sets, we created before.




Optimality Conditions
for Unconstrained Problems




Optimality Conditions: First Order Necessary

For 1-dimensional optimization problems f: R - R
Assume f is differentiable
= x*isa local optimum = f'(x*) =0
not a sufficient condition: consider f(x) = x>
proof via Taylor formula: f(x* + h) = f(x*) + f'(x*)h + o(||h]])

= points y such that f'(y) = 0 are called critical or stationary points

Generalization to n-dimensional functions

If f:U c R™ — R is differentiable

= necessary condition: If x* is a local optimum of f, then Vf(x*) =0
proof via Taylor formula




Second Order Necessary and Sufficient Opt.

If £ is twice continuously differentiable
= Necessary condition: if x* is a local minimum, then V'f(x*) =0
and V%f(x*) is positive semi-definite
proof via Taylor formula at order 2
= Sufficient condition: if 7f(x*) = 0 and V2f(x*) is positive definite,
then x™ is a strict local minimum

Proof of Sufficient Condition:

= Let 1 > 0 be the smallest eigenvalue of V%f(x*), using a second
order Taylor expansion, we have for all h:

= fG+Rh) — (") =Vf&)Th+ ShTV2f(x)h + o(||h]|?)
o(||Rh|I?)

—IIh|I2+0(IIhII )_(E IE ) ||R]|?




Convex Functions

Let U be a convex open set of R" and f:U — R. The function f is
said to be convex iffor all x,y € U and for all t € [0,1]

flA=-Ox+ty) <A -8)f(x) +tf ()

Theorem
If £ is differentiable, then f is convex if and only if for all x, y

) - f@ = (7F®) -

If n = 1, the curve is on top of the tangent

If £ is twice continuously differentiable, then f is convex if and only if
V2f(x) is positive semi-definite for all x.




Convex Functions: Why Convexity?

Examples of Convex Functions:
= f(x)=a'x+b
" f(x) = %xTAx + a’x + b, A symmetric positive definite

= the negative of the entropy function (i.e. f(x) = =Y, x; In(x;) )

Exercise:

Let f: U - R be a convex and differentiable function on a
convex open U.
Show that if Vf(x*) = 0, then x* is a global minimum of f

Why is convexity an important concept?




