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Course Overview

1 Mon, 17.9.2018
Thu, 20.9.2018

2 Fri, 21.9.2018

Fri, 28.9.2018
Fri, 5.10.2018

Fri, 12.10.2018

o o1 b~ W

Fri, 19.10.2018

Wed, 24.10.2018

7 Fri, 26.10.2018
29.10.-2.11.2018
Thu, 8.11.2018 /
Fri, 9.11.2018
Fri, 16.11.2018

Monday's lecture: introduction, example problems, problem types
groups defined via wiki

everybody went (actively!) through the Getting Started part of
github.com/numbbo/coco

lecture "Benchmarking", final adjustments of groups everybody can run
and postprocess the example experiment (~1h for final questions/help
during the lecture)

lecture "Introduction to Continuous Optimization"
lecture "Gradient-Based Algorithms"

lecture "Stochastic Algorithms and DFO"

lecture "Discrete Optimization |: graphs, greedy algos, dyn. progr."
deadline for submitting data sets

deadline for paper submission

final lecture "Discrete Optimization Il: dyn. progr., B&B, heuristics"
vacation aka learning for the exams

oral presentations (individual time slots)

written exam All deadlines:
23:59pm Paris time
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Monday's lecture: introduction, example problems, problem types
groups defined via wiki

everybody went (actively!) through the Getting Started part of
github.com/numbbo/coco

lecture "Benchmarking", final adjustments of groups everybody can run
and postprocess the example experiment (~1h for final questions/help
during the lecture)

lecture "Introduction to Continuous Optimization"
lecture "Gradient-Based Algorithms" + DFO

lecture "Stochastic Algorithms", in particular CMA-ES

lecture "Discrete Optimization |: graphs, greedy algos, dyn. progr."
deadline for submitting data sets

deadline for paper submission

final lecture "Discrete Optimization Il: dyn. progr., B&B, heuristics"
vacation aka learning for the exams

oral presentations (individual time slots)

written exam All deadlines:
23:59pm Paris time
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Details on Continuous Optimization Lectures

Introduction to Continuous Optimization
= examples (from ML / black-box problems)
= typical difficulties in optimization

Mathematical Tools to Characterize Optima
= reminders about differentiability, gradient, Hessian matrix
= unconstraint optimization

= first and second order conditions

= convexity

= constraint optimization

Gradient-based Algorithms
= quasi-Newton method (BFGS)
= [DFO trust-region method]

Learning in Optimization / Stochastic Optimization
= CMA-ES (adaptive algorithms / Information Geometry)
= PhD thesis possible on this topic
method strongly related to ML / new promising research area
interesting open questions
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Constrained Optimization
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Equality Constraint

Objective:

Generalize the necessary condition of V'f(x) = 0 at the optima of f
when f is in C1, i.e. is differentiable and its differential is continuous

Theorem:
Be U an open setof (E,|| ||),and f:U > R, g:U - RinC.
Let a € E satisfy

{f (@) = inf {f(x) [ x € R", g(x) = 0}
g(a) =0
l.e. a is optimum of the problem

If Vg(a) + 0, then there exists a constant A1 € R called Lagrange
multiplier, such that

‘ Vf(a) + AVg(a) = q Euler — Lagrange equation
|
l.e. gradients of f and g in a are colinear
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Geometrical Interpretation Using an Ex

Exercise:

Consider the problem
inf {f(x,y) | (x,¥) € R? g(x,y) = 0}

fO,y)=y—x*> gxy) =x*+y?—1=0

1) Plot the level sets of f, plot g =0
2) Compute Vf and Vg
3) Find the solutions with Vf + AVg =0
equation solving with 3 unknowns (x,y, 1)

4) Plot the solutions of 3) on top of the level set graph of 1)
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Interpretation of Euler-Lagrange Equation

Intuitive way to retrieve the Euler-Lagrange equation:

= |n alocal minimum a of a constrained problem, the
hypersurfaces (or level sets) f = f(a) and g = 0 are necessarily
tangent (otherwise we could decrease f by moving along g = 0).

= Since the gradients Vf(a) and Vg(a) are orthogonal to the level
sets f = f(a) and g = 0, it follows that Vf (a) and Vg(a) are
colinear.
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Generalization to More than One Constraint

Theorem

= Assume f:U > Rand g,:U >R (1 <k <p)areCcL
= Leta be such that

f(a) =inf {f(x) | x € R", gx(x) =0, 1<k<p}
gr(@) =0 foralll<k<p

= |f (ng(a))1<k<p are linearly independent, then there exist p real
constants (4x);<k<p Such that

p
Vf(a) + 2 AVgr(a) =0
k=1

|

Lagrange multiplier

again: a does not need to be global but local minimum
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The Lagrangian

= Define the Lagrangian on R™ x R? as

p
L0 D = O+ ) Agic(0)
k=1

» To find optimal solutions, we can solve the optimality system
(

p
Find (x, {Ax}) € R™ X R? such that Vf(x) + z A Vg (x) =0
k=1
gr(x) =0 foralll<k<p
Find (x, {1x}) € R™ x RP such that V,, L(x,{1;}) =0
72, L {4 (x) =0 foralll <k <p

A

.
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Inequality Constraint: Definitions

LetU ={x e R*| gx(x) =0 (fork € E), gix(x) <0 (fork € I)}.

Definition:
The points in R™ that satisfy the constraints are also called feasible
points.

Definition:
Let a € U, we say that the constraint g, (x) < 0 (for k € I) is active
in aif g,(a) = 0.
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Inequality Constraint: Karush-Kuhn-Tucker T

Theorem (Karush-Kuhn-Tucker, KKT):
Let U be an open setof (E, || ||) and f:U - R, g,:U - R, all ¢!
Furthermore, let a € U satisfy

(f(@) = inf(f(x) | x € R™, g (x) = 0 (for k € E), g (x) < 0 (for k € 1)
) gr(a) = 0 (for k € E) also works again for a
L gi(a) <0 (fork €1) being a local minimum

Let 12 be the set of constraints that are active in a. Assume that
(Vs (a))k < L o @re linearly independent.

Then there exist (1x)1<k<p that satisfy
(

vf(a) + 2 LV gi(a) = 0

gr(a) = O (fork € E)
grx(a) <0 (fork €1)

Ay =0 (fork € 12)
\Akgr(a) =0 (fork e EUI)

AN
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Inequality Constraint: Karush-Kuhn-Tucker

Theorem (Karush-Kuhn-Tucker, KKT):

Let U be an open setof (E, || ||) and f:U - R, g,:U - R, all ¢!
Furthermore, let a € U satisfy

(f(@) = inf(f(x) | x € R™, g (x) = 0 (for k € E), g (x) < 0 (for k € 1)
3 gix(a) =0 (fork € E)

\ gr(a) <0 (fork €1)

Let 12 be the set of constraints that are active in a. Assume that
(Vs (a))k < L o @re linearly independent.

Then there exist (1x)1<k<p that satisfy
(

vf(a) + 2 LV gi(a) = 0

gi(a) = () (for k € E) either active constraint
gx(a) <0 (fork € I or A =0

A =0 (fork-cil)
\Akgi(a) =0 (fork € EUT)

A
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Descent Methods
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Descent Methods

General principle
© choose an initial point x4, sett =0
® while not happy
» choose a descent direction d; # 0
* line search:
= choose a step size g; > 0
" setx;p 1 =x; +0:d;
» sett=t+1

Remaining questions
= how to choose d;?
= how to choose o;7?
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Gradient Descent

Rationale: d; = —Vf(x;) is a descent direction
indeed for f differentiable

f(x—aVf(x) = fx) = allVFEII? + o(alIVF (O]
< f(x) for o small enough
Step-size
= optimal step-size: g; = argmin f(x; — aVf(x;))
o

= Line Search: total or partial optimization w.r.t. o
Total is however often too "expensive" (needs to be performed at
each iteration step)
Partial optimization: execute a limited number of trial steps until a
loose approximation of the optimum is found. Typical rule for
partial optimization: Armijo rule (see next slides)

Typical stopping criterium:
norm of gradient smaller than ¢
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The Armijo-Goldstein Rule

Choosing the step size:
= Only to decrease f-value not enough to converge (quickly)
= \Want to have a reasonably large decrease in f

Armijo-Goldstein rule:
= also known as backtracking line search

» starts with a (too) large estimate of o and reduces it until f is
reduced enough

= what is enough?
= assuming alinear f e.g. my(x) = f(x;) + V f(x )T (x — x3)
= expected decrease if step of g, is done in direction d-:
ok Vf(x)'d
» actual decrease: f(xy) — f(x + g5 d)

» stop if actual decrease is at least constant times expected
decrease (constant typically chosen in [0, 1])
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The Armijo-Goldstein Rule

The Actual Algorithm:

Input: descent direction d, point x. objective function f(x) and its gra-
dient V f(x), parameters oy = 10, 6 € [0, 1] and g € (0,1)
Output: step-size o

Initialize o: 0 <+ oy

while f(x +od) > f(x)+ 0oV [f(x)"d do
o+ [o

end while

Armijo, in his original publication chose f = 6 = 0.5.
Choosing 8 = 0 means the algorithm accepts any decrease.
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The Armijo-Goldstein Rule

Graphical Interpretation
A actual increase

*
L4
*
*
*
L 4
*
.0
*

ted decrease

4
.
-
*
3
*
.
L 4
.
L 4
.
L4
*
.
L4
.
L 4
.
L4
* *%
* LN
\¢ s
.
v
.
*
.
*
.
.
.
.
*
.
*
.
L 4
.0
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
‘e
o

linear approximation
(expected decrease)

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct 5, 2018



The Armijo-Goldstein Rule

Graphical Interpretation
A
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The Armijo-Goldstein Rule

Graphical Interpretation
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Newton Algorithm

Newton Method

= descent direction: —[V?f(x,)] 1Vf (x;) [so-called Newton
direction]

= The Newton direction:
= minimizes the best (locally) quadratic approximation of f:
fla+Ax) = f(x) + Vf()TAx + = (M) V2 f (x) Ax

= points towards the optimum on f(x) = (x — x*)TA(x — x*)
= however, Hessian matrix is expensive to compute in general and
its inversion is also not easy

quadratic convergence

(i.e. lim =2 | =u > O)
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Remark: Affine Invariance

Affine Invariance: same behavior on f(x) and f(Ax + b) for A €
GLn(R) = set of all invertible n X n matrices over R

= Newton method is affine invariant

see http://users.ece.utexas.edu/~cmcaram/EE381V_2012F/
Lecture 6 Scribe Notes.final.pdf

= same convergence rate on all convex-quadratic functions
» Gradient method not affine invariant
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Quasi-Newton Method: BFGS

Xep1 = X — 0 H{Vf (x;) where H; is an approximation of the inverse
Hessian

Key idea of Quasi Newton:

successive iterates x;, x;,,; and gradients Vf(x;), Vf(x;+1) yield
second order information

Qe = V2 f (Xe11)De
where py = x;4q —xc and q; = Vf(xpyq) — Vf(xe)

Most popular implementation of this idea: Broyden-Fletcher-
Goldfarb-Shanno (BFGS)

= defaultin MATLAB's fminunc and python's
scipy.optimize.minimize
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Conclusions

| hope it became clear...

...what are the difficulties to cope with when solving numerical
optimization problems

in particular dimensionality, non-separability and ill-conditioning
...what are gradient and Hessian
...what is the difference between gradient and Newton direction
...and that adapting the step size in descent algorithms is crucial.
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Derivative-Free Optimization

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct 5, 2018



Derivative-Free Optimization (DFO)

DFO = blackbox optimization

Why blackbox scenario?

= gradients are not always available (binary code, no analytical
model, ...)

= or not useful (noise, non-smooth, ...)

= problem domain specific knowledge is used only within the black
box, e.g. within an appropriate encoding

» some algorithms are furthermore function-value-free, i.e. invariant
wrt. monotonous transformations of f.
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Derivative-Free Optimization Algorithms

» (gradient-based algorithms which approximate the gradient by
finite differences)

= coordinate descent
= pattern search methods, e.g. Nelder-Mead

» surrogate-assisted algorithms, e.g. NEWUOA or other trust-
region methods

= other function-value-free algorithms

typically stochastic

evolution strategies (ESs) and Covariance Matrix Adaptation
Evolution Strategy (CMA-ES)

differential evolution
particle swarm optimization
simulated annealing
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Downhill Simplex Method by Nelder and

While not happy do:
[assuming minimization of f and that x4, ..., x,,.1 € R" form a simplex]
1) Order according to the values at the vertices: f(x;) < f(xy) <+ < f(%41)
2) Calculate x,, the centroid of all points except x;,,1-
3) Reflection
Compute reflected point x,, = x, + a (x, — x,,41) (@ > 0)
If x,- better than second worst, but not better than best: x,,,;: = x,-, and go to 1)
4) Expansion
If x,- is the best point so far: compute the expanded point
Xe =X +V (% — x0)(¥y > 0)
If x, better than x,. then x,,,; == x, and go to 1)
Else x,,,1 = x,and goto 1)
Else (i.e. reflected point is not better than second worst) continue with 5)
5) Contraction (here: f(x,) = f(x,))
Compute contracted point x, = x, + p(x,,41 — x,) (0 < p < 0.5)
If f(xc) < f(xnt1): Xn41 = xc and goto 1)
Else go to 6)
6) Shrink
x; = x; +o(x; — xy)forallie {2,..,n+1} (0 <1)and goto 1)

J. A Nelder and R. Mead (1965). "A simplex method for function minimization".
Computer Journal. 7: 308-313. doi:10.1093/comjnl/7.4.308
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Nelder-Mead: Reflection

2) Calculate x,, the centroid of all points except x;,,1-
3) Reflection
Compute reflected point x,, = x, + a (x, — x,,41) (@ > 0)
If x,- better than second worst, but not better than best: x,,,;: = x,- , and go to 1)

X3
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Nelder-Mead: Reflection

2) Calculate x,, the centroid of all points except x;,,1-
3) Reflection
Compute reflected point x,, = x, + a (x, — x,,41) (@ > 0)
If x,- better than second worst, but not better than best: x,,,;: = x,- , and go to 1)

X3
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Nelder-Mead: Reflection

2) Calculate x,, the centroid of all points except x;,,1-
3) Reflection
Compute reflected point x,, = x, + a (x, — x,,41) (@ > 0)
If x,- better than second worst, but not better than best: x,,,;: = x,- , and go to 1)
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Nelder-Mead: Expansion

2) Calculate x,, the centroid of all points except x;,,1-
4) Expansion
If x,. is the best point so far: compute the expanded point
Xe =X +V (X — x0)(¥y > 0)
If x, better than x,. then x,,,; == x, and goto 1)
Else x,,,, :=x,and goto 1)
Else (i.e. reflected point is not better than second worst) continue with 5)

X3
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Nelder-Mead: Expansion
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Nelder-Mead: Expansion

2) Calculate x,, the centroid of all points except x;,,1-
4) Expansion
If x,. is the best point so far: compute the expanded point
Xe =X +V (X — x0)(¥y > 0)
If x, better than x,. then x,,,; == x, and goto 1)
Else x,,,, :=x,and goto 1)
Else (i.e. reflected point is not better than second worst) continue with 5)

X3
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Nelder-Mead: Expansion

2) Calculate x,, the centroid of all points except x;,,1-

5) Contraction (here: f(x,) = f(x,))
Compute contracted point x, = x, + p(x,+1 — x,) (0 < p < 0.5)
If f(xc) < f(Xn+1): Xn41 = xc and go to 1)
Else go to 6)
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Nelder-Mead: Expansion

2) Calculate x,, the centroid of all points except x;,,1-

5) Contraction (here: f(x,) = f(x,))
Compute contracted point x, = x, + p(x,+1 — x,) (0 < p < 0.5)
If f(xc) < f(Xn+1): Xn41 = xc and go to 1)
Else go to 6)
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Nelder-Mead: Expansion

2) Calculate x,, the centroid of all points except x;,,1-
6) Shrink
x; = x; +o(x; — xy)foralli € {2,..,n+ 1} and go to 1)

X3
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Nelder-Mead: Expansion

2) Calculate x,, the centroid of all points except x;,,1-
6) Shrink
x; = x; +o(x; — xy)foralli € {2,..,n+ 1} and go to 1)

AY
AY
\
\
X
\
\
N
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Nelder-Mead: Standard Parameters

= reflection parameter: a =1
= expansion parameter: y = 2

: 1
" contraction parameter: p = -

. 1
» shrink paremeter: o = 5

some visualizations of example runs can be found here:
https://en.wikipedia.org/wiki/Nelder%E2%80%93Mead_method
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stochastic algorithms

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct 5, 2018



Stochastic Search Template

A stochastic blackbox search template to minimize f: R" - R
Initialize distribution parameters @, set population size 1 € N
While happy do:

=  Sample distribution P(x|0) —» x4, ...,x; € R"

= Evaluate x4,...,x;0n f

» Update parameters 6 « Fy(0, x4, ..., X3, f(x1), ..., f(x))

= All depends on the choice of P and Fy
deterministic algorithms are covered as well

= |n Evolutionary Algorithms, P and Fy are often defined implicitly
via their operators.
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Generic Framework of an Evolutionary Algori

initialization best individual

; mating
evaluation :
selection
environmental
selection

crossover/

evaluation :
mutation

stochastic operators _ _
poing ese: Jus
e interpretation change
stopping criteria
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CMA-ES in a Nutshell

Evolution Strategies (ES)

The CMA-ES

Input: m € R*, 0 € Ry, A

Initialize: C =1, andp. =0, p, =0,

Set: cc ~4/n, co = 4/n, ¢y = 2/n?, Cp R [y /1%, C1 + cp <1,de =1+ \/%,
and wi—; _, such that s, = —<=— ~ 0.3\

2
i—1 Wi

While not terminate

xi=m+oy. yi ~ N;j(0,C), fori=1,..., A sampling
m<— Y b wixpy =m+ oy, wherey, =31 wiyi update mean
pe — (1 =co)pe + Mgy <15ym v/ 1 — (1 — ce)®>/itwyw  cumulation for C
Po — (1 —¢co)ps + \/1 — (1 — CJ)Z\/;TWC—%J:W cumulation for o
Ce(1—c1—c,)C+ crpepe’ + ¢ S0 wiviarh, update C
o4 0 X exp (g—z (%—1)) update of o

Not covered on this slide: termination, restarts, useful output, boundaries and
encoding

| 16/ 81
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CMA-ES in a Nutshell

Evolution Strategies (ES) A Search Template

The CMA-ES

Input: m € R*, 0 € Ry, A

Initialize: C =1, andp. =0, p, =0,

Set: cc 2 4/n, co = 4/n, ¢ = f_/fz Cp A /NP, 1+ cp < 1, de = 1+ /B2,
and w;—;._ such that p,, = Zp, 7~ 0.3\

While not terminate

xi=m+oy. yi ~ N;j(0,C), fori=1,..., A sampling
m S wixipn =m+ oy, wherey, =31 wiyiy update mean
pe — (1 =co)pe + Mgy <15ym v/ 1 — (1 — ce)®>/itwyw  cumulation for C
Po — (1= o) po + /1= (1 = ¢ )2\/tiw C 2y, cumulation for &

L T PPN R

(_,-%(1—.:1—(“#)(_, +C1]JJJLT +o

o (el
7 0 X CeXp (a (EIIN(O,I)H 1) Goal of next lecture:
Understand the main principles

Not covered on this slide: terminatic ) _
of this state-of-the-art algorithm.

encoding
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