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Typically, we aim at

 finding solutions x which minimize f(x) in the shortest time possible

(maximization is reformulated as minimization)

 or finding solutions x with as small f(x) in the shortest time possible

(if finding the exact optimum is not possible)

What is Optimization?
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Date Topic

Fri, 27.9.2019 DB Introduction

Fri, 4.10.2019 

(4hrs)

AA Continuous Optimization I: differentiability, gradients, 

convexity, optimality conditions

Fri, 11.10.2019 

(4hrs)

AA Continuous Optimization II: constrained optimization, 

gradient-based algorithms, stochastic gradient

Fri, 18.10.2019 

(4hrs)

DB Continuous Optimization III: stochastic algorithms, 

derivative-free optimization, critical performance 

assessment

Wed, 30.10.2019 DB Discrete Optimization I: graph theory, greedy 

algorithms

Fri, 15.11.2019 DB Discrete Optimization II: dynamic programming, 

heuristics

Fri, 22.11.2018 final exam

Course Overview
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Date Topic

Fri, 27.9.2019 DB Introduction

Fri, 4.10.2019 

(4hrs)

AA Continuous Optimization I: differentiability, gradients, 

convexity, optimality conditions

Fri, 11.10.2019 

(4hrs)

AA Continuous Optimization II: constrained optimization, 

gradient-based algorithms, stochastic gradient

Fri, 18.10.2019 

(4hrs)

DB Continuous Optimization III: stochastic algorithms, 

derivative-free optimization, critical performance 

assessment [1st written test]

Wed, 30.10.2019 DB Discrete Optimization I: graph theory, greedy 

algorithms

Fri, 15.11.2019 DB Discrete Optimization II: dynamic programming, 

heuristics [2nd written test]

Fri, 22.11.2018 final exam

Course Overview



6TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 27, 2019© Anne Auger and Dimo Brockhoff, Inria 6

Mastertitelformat bearbeiten

 possibly not clear yet what the lecture is about in detail

 but there will be always examples and small exercises to learn 

“on-the-fly” the concepts and fundamentals

Overall goals:

 give a broad overview of where and how optimization is used

 understand the fundamental concepts of optimization algorithms

 be able to apply common optimization algorithms on real-life 

(engineering) problems

Remarks
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 open book: take as much material as you want

 multiple-choice

 Friday, 22nd of November 2019

 counts 60% of overall grade

The Exam
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 instead of a group project

 two smaller written exams/tests of about 20min each

 October 18 & November 15

 most likely one on continuous, one on discrete optimization

 goal: spread learning of lecture content over the course

 account 20% each to overall grade 

 could also be multiple choice (not yet decided)

Intermediate Written Exams (“contrôle continu”)

All information also available at 

http://www.cmap.polytechnique.fr/

~dimo.brockhoff/optimizationSaclay/2019/

(in particular the lecture slides)
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Presentation

Blackbox Optimization

Lecture

Advertisement I
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 Optional class “Black Box Optimization” ("Advanced Optimization")

 Taught by Anne Auger and me

 Advanced class, (even) closer to our actual research topic

Goals:

 present the latest knowledge on blackbox optimization 

algorithms and their foundations

 offer hands-on exercises on difficult common optimization 

problems

 give insights into what are current challenging research 

questions in the field of blackbox optimization (as preparation 

for a potential Master’s or PhD thesis in the field)

 relatively young research field with many interesting 

research questions (in both theory and algorithm design)

 related to real-world problems: also good for a job outside 

academia

Presentation Black Box Optimization Lecture
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Why are we interested in a black box scenario?

 objective function ℱ often noisy, non-differentiable, or 

sometimes not even understood or available

 objective function ℱ contains legacy or binary code, is based 

on numerical simulations or real-life experiments

 most likely, you will see such problems in practice...

Objective: find 𝑥 with small ℱ(𝑥) with as few function evaluations 

as possible

assumption: internal calculations of algo irrelevant

Black Box Scenario

black box
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 Search space too large

exhaustive search impossible

 Non conventional objective function or search space

mixed space, function that cannot be computed

 Complex objective function

non-smooth, non differentiable, noisy, ...

What Makes an Optimization Problem Difficult?

stochastic search algorithms

well suited because they:

• don’t make many assumptions on ℱ
• are invariant wrt. translation/rotation

of the search space, scaling of ℱ, ...

• are robust to noise
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 Introduction to stochastic search algorithms, in particular

 Evolutionary algorithms

 Evolution Strategies and the CMA-ES algorithm in depth

 Algorithms for large-scale problems (“big data”)

 Multiobjective optimization

 In more detail: Benchmarking black box algorithms

 Combination of lectures & exercises, theory & practice

 Connections with machine learning class of M. Sebag

Planned Topics / Keywords
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Permanent members:
Anne Auger, Dimo Brockhoff, Nikolaus Hansen
https://team.inria.fr/randopt/team-members/

Master's theses available (PhD theses possible) :
• start anytime
• 6 months
• paid via Inria
• many topics around

blackbox optimization
• theory  algorithm design

http://randopt.gforge.inria.fr/thesisprojects/

RandOpt team
Inria and Ecole Polytechnique

blackbox
optimization

constrained
large-scale

expensive

multiobjective

theory

algorithm design
benchmarking

applications

CMA-ES
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 More examples of optimization problems

 introduce some basic concepts of optimization problems 

such as domain, constraint, ...

 Beginning of continuous optimization part

 typical difficulties in continuous optimization 

 differentiability

 …   [we’ll see how far we get]

Overview of Today’s Lecture
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Given:

set of possible solutions

quality criterion

Objective:

Find the best possible solution for the given criterion

Formally:

Maximize or minimize

ℱ:Ω ⟼ ℝ,

𝑥 ⟼ ℱ(𝑥)

General Context Optimization

Search space

Objective function
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Maximize or minimize

ℱ: Ω ⟼ ℝ,
𝑥 ⟼ ℱ 𝑥

where 𝑔𝑖 𝑥 ≤ 0
ℎ𝑖 𝑥 = 0

Constraints explicitly or implicitly define the feasible solution set

[e.g. ||x|| - 7 ≤ 0 vs. every solution should have at least 5 zero entries]

Hard constraints must be satisfied while soft constraints are preferred 

to hold but are not required to be satisfied

[e.g. constraints related to manufacturing precisions vs. cost constraints]

Constraints

Maximize or minimize

ℱ:Ω ⟼ ℝ,
𝑥 ⟼ ℱ(𝑥)

unconstrained

Ω
example of a

constrained Ω
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Knapsack Problem

 Given a set of objects with

a given weight and value (profit)

 Find a subset of objects whose

overall mass is below a certain

limit and maximizing the

total value of the objects

[Problem of ressource allocation

with financial constraints]

max
𝑗=1

𝑛

𝑝𝑗𝑥𝑗 with 𝑥𝑗 ∈ 0,1

s.t. 
𝑗=1

𝑛

𝑤𝑗𝑥𝑗 ≤ 𝑊

Example 1: Combinatorial Optimization

Ω = 0,1 𝑛

Dake
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Traveling Salesperson Problem (TSP)

 Given a set of cities and their

distances

 Find the shortest path going

through all cities

Example 2: Combinatorial Optimization

Ω = 𝑆𝑛 (set of all permutations)
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A farmer has 500m of fence to fence off a rectangular field that is 

adjacent to a river. What is the maximal area he can fence off?

Example 3: Continuous Optimization

Exercise:

a) what is the search space?

b) what is the objective function?
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Optimizing a Two-Phase Nozzle [Schwefel 1968+]

 maximize thrust under constant starting conditions

 one of the first examples of Evolution Strategies

copyright Hans-Paul Schwefel

[http://ls11-www.cs.uni-dortmund.de/people/schwefel/EADemos/]

Ω = all possible nozzles of given number of slices

initial design:

final design:

http://ls11-www.cs.uni-dortmund.de/people/schwefel/EADemos
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Computer simulation teaches itself to walk upright (virtual robots (of 

different shapes) learning to walk, through stochastic optimization

(CMA-ES)), by Utrecht University:

https://www.youtube.com/watch?v=pgaEE27nsQw

T. Geitjtenbeek, M. Van de Panne, F. Van der Stappen: "Flexible Muscle-Based

Locomotion for Bipedal Creatures", SIGGRAPH Asia, 2013.

Example 5: Continuous Optimization Problem

https://www.youtube.com/watch?v=pgaEE27nsQw
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Design of a Launcher

 Scenario: multi-stage launcher brings a 

satellite into orbit

 Minimize the overall cost of a launch

 Parameters: propellant mass of each stage / 

diameter of each stage / flux of each engine / 

parameters of the command law

23 continuous parameters to optimize

+ constraints

Example 6: Constrained Continuous Optimization

Ω = ℝ23

Vol atmosphérique
- efforts généraux

- pilotage

retombée d’étage

visibilité

120km

fragmentation

flux thermiquelargage coiffe
(flux thermique)

station 1
station 2

Injection en 
orbite

- position
- vitesse

pas de tir

Séparations
(pression 

dynamique)

Poppy

copyright by Astrium
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well

pipeline

structure + ℝ+
3 ⋅ #wells

𝜎 ∈ Ω: variable length!

for a given structure,

per well:

• angle & distance to 

previous well

• well depth 

platform
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Objective

 Given a sequence of data points 𝒙𝑖 , 𝑦𝑖 ∈ ℝ𝑝 × ℝ, 𝑖 = 1,… ,𝑁, 

find a model "𝑦 = 𝑓(𝒙)" that "explains" the data

experimental measurements in biology, chemistry, ...

 In general, choice of a parametric model or family of functions 

𝑓𝜃 𝜃∈ℝ𝑛

use of expertise for choosing model

or only a simple model is affordable (e.g. linear, quadratic)

 Try to find the parameter 𝜃 ∈ ℝ𝑛 fitting best to the data

Fitting best to the data

Minimize the quadratic error:

min
𝜃∈ℝ𝑛



𝑖=1

𝑁

𝑓𝜃 𝒙𝑖 − 𝑦𝑖
2

Example 8: Data Fitting – Data Calibration
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Actually the same idea:

match model best to given data

Model here:

artificial neural nets

with many hidden layers

(aka deep neural networks)

Parameters to tune:

 weights of the connections (continuous parameter)

 topology of the network (discrete)

 firing function (less common)

Specificity:

 large amount of training data, hence often batch learning

Example 9: Deep Learning

Glosser.ca
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Scenario:

 supervised learning of 2-class samples

 Support Vector Machines (SVMs):

 decide to which class a 

new sample belongs

 learns from the training data the "best linear model" 

(= a hyperplane separating the two classes); 

non-linear transformations possible via the kernel trick

 hard margin (when data linearly separable):

min 𝒘 s. t. 𝑦𝑖 𝒘 ⋅ 𝒙𝑖 − 𝑏 ≥ 1 ∀1 ≤ 𝑖 ≤ 𝑛

 soft margin (e.g. via hinge loss):

min
1

𝑛


𝑖=1

𝑛

max(0, 1 − 𝑦𝑖 𝒘 ⋅ 𝒙𝑖 − 𝑏) + 𝜆 𝒘
2

with 𝜆 being a tradeoff parameter

(constrained optimization)

Example 10: Classification with SVMs
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Scenario:

 many existing algorithms (in ML and elsewhere) have internal 

parameters

 “In machine learning, a hyperparameter is a parameter whose 

value is set before the learning process begins.” --- Wikipedia

 can be model parameters

 #trees in random forest

 #nodes in neural net

 …

 or other generic parameters such as learning rates, …

 choice has typically a big impact and is not always obvious

 search space often mixed discrete-continuous or even categorical

Example 11: Hyperparameter Tuning
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Coffee Tasting Problem

 Find a mixture of coffee in order to keep the coffee taste from 

one year to another

 Objective function = opinion of one expert

Example 12: Interactive Optimization

M. Herdy: “Evolution Strategies with subjective 

selection”, 1996

1
3

2

Quasipalm

4
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Observation:

 Many problems with different properties

 For each, it seems a different algorithm?

In Practice:

 often most important to categorize your problem first in order 

to find / develop the right method

  problem types

Many Problems, Many Algorithms?

Algorithm design is an art, 

what is needed is skill, intuition, luck, experience,

special knowledge and craft

freely translated and adapted from Ingo Wegener (1950-2008)



34TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 27, 2019© Anne Auger and Dimo Brockhoff, Inria 34

Mastertitelformat bearbeiten

 discrete vs. continuous

 discrete: integer (linear) programming vs. combinatorial 

problems

 continuous: linear, quadratic, smooth/nonsmooth, 

blackbox/DFO, ...

 both discrete&continuous variables: mixed integer problem

 categorical variables (“no order”)

 unconstrained vs. constrained (and then which type of constraint)

Not covered in this introductory lecture:

 deterministic vs. stochastic outcome of objective function(s)

 one or multiple objective functions

Problem Types
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Optimize 𝑓: Ω ⊂ ℝ𝑛 ↦ ℝ𝑘

derivatives not available or not useful

𝑥 ∈ ℝ𝑛 𝑓(𝑥) ∈ ℝ𝑘

Example: Numerical Blackbox Optimization

Typical scenario in the continuous, unconstrained case:
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 search domain

 discrete or continuous or mixed integer or even categorical

 finite vs. infinite dimension

 constraints

 bound constraints (on the variables only)

 linear/quadratic/non-linear constraints

 blackbox constraints

 many more

(see e.g. Le Digabel and Wild (2015), https://arxiv.org/abs/1505.07881)

Further important aspects (in practice):

 deterministic vs. stochastic algorithms

 exact vs. approximation algorithms vs. heuristics

 anytime algorithms

 simulation-based optimization problem / expensive problem

General Concepts in Optimization



continuous optimization
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 Optimize 𝑓: ቊ
Ω ⊂ ℝ𝑛 → ℝ

𝑥 = 𝑥1, … , 𝑥𝑛 → 𝑓(𝑥1, … , 𝑥𝑛)

 Search space is continuous, i.e. composed of real vectors 𝑥 ∈ ℝ𝑛

 𝑛 =

Continuous Optimization

∈ ℝ unconstrained optimization

dimension of the problem

dimension of the search space ℝ𝑛 (as vector space)

1-D problem 2-D level sets
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Unconstrained optimization

inf 𝑓 𝑥 𝑥 ∈ ℝ𝑛}

Constrained optimization

 Equality constraints: inf {𝑓 𝑥 | 𝑥 ∈ ℝ𝑛, 𝑔𝑘 𝑥 = 0, 1 ≤ 𝑘 ≤ 𝑝}

 Inequality constraints: inf {𝑓 𝑥 | 𝑥 ∈ ℝ𝑛, 𝑔𝑘 𝑥 ≤ 0, 1 ≤ 𝑘 ≤ 𝑝}

where always 𝑔𝑘: ℝ
𝑛 → ℝ

Unconstrained vs. Constrained Optimization
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feasible

domain

min
𝑥∈ℝ

𝑓 𝑥 = 𝑥2 such that 𝑥 ≤ −1

Example of a Constraint
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Example: 1-D

𝑓1 𝑥 = 𝑎 𝑥 − 𝑥0
2 + 𝑏

where 𝑥, 𝑥0, 𝑏 ∈ ℝ, 𝑎 ∈ ℝ

Generalization:

convex quadratic function

𝑓2 𝑥 = 𝑥 − 𝑥0
𝑇𝐴 𝑥 − 𝑥0 + 𝑏

where 𝑥, 𝑥0 ∈ ℝ𝑛, 𝑏 ∈ ℝ , 𝐴 ∈ ℝ n×𝑛

and 𝐴 symmetric positive definite (SPD)

Analytical Functions

Exercise:

What is the minimum of 𝑓2(𝑥)?
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Reminder: level sets of a function

𝐿𝑐 = 𝑥 ∈ ℝ𝑛 𝑓 𝑥 = 𝑐}

(similar to topography lines /

level sets on a map)

Levels Sets of Convex Quadratic Functions

Continuation of exercise:

What are the level sets of 𝑓2?
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 Probably too complicated in general, thus an example here

 Consider 𝐴 =
9 0
0 1

, 𝑏 = 0, 𝑛 = 2

a) Compute 𝑓2 𝑥 .

b) Plot the level sets of 𝑓2 𝑥 .

c) More generally, for 𝑛 = 2, if 𝐴 is SPD with eigenvalues 𝜆1 =
9 and 𝜆2 = 1, what are the level sets of 𝑓2 𝑥 ? 

Levels Sets of Convex Quadratic Functions

Continuation of exercise:

What are the level sets of 𝑓2?
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 dimensionality

(considerably) larger than three

 non-separability

dependencies between the objective variables

 ill-conditioning

 ruggedness

non-smooth, discontinuous, multimodal, and/or 

noisy function

What Makes a Function Difficult to Solve?

a narrow ridge

cut from 3D example, 

solvable with an 

evolution strategy
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 The term Curse of dimensionality (Richard Bellman) refers to 

problems caused by the rapid increase in volume associated 

with adding extra dimensions to a (mathematical) space.

 Example: Consider placing 100 points onto a real interval, say 

0,1 . To get similar coverage, in terms of distance between

adjacent points, of the 10-dimensional space 0,1 10 would

require 10010 = 1020 points. The original 100 points appear now

as isolated points in a vast empty space. 

 Consequently, a search policy (e.g. exhaustive search) that is 

valuable in small dimensions might be useless in moderate or 

large dimensional search spaces.

Curse of Dimensionality
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Definition (Separable Problem)

A function 𝑓 is separable if

argmin
(𝑥1,…,𝑥𝑛)

𝑓(𝑥1, … , 𝑥𝑛) = argmin
𝑥1

𝑓 𝑥1, … , … , argmin
𝑥𝑛

𝑓(… , 𝑥𝑛)

⟹ it follows that 𝑓 can be optimized in a sequence of

𝑛 independent 1-D optimization processes

Example:

Additively decomposable functions

𝑓 𝑥1, … , 𝑥𝑛 =

𝑖=1

𝑛

𝑓𝑖(𝑥𝑖)

Rastrigin function
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Building a non-separable problem from a separable one [1,2]

Rotating the coordinate system

 𝑓: 𝒙 ⟼ 𝑓(𝒙) separable

 𝑓: 𝒙 ⟼ 𝑓(𝑅𝒙) non-separable

𝑅 rotation matrix

𝑅
⟶

[1] N. Hansen, A. Ostermeier, A. Gawelczyk (1995). "On the adaptation of arbitrary normal mutation distributions in 

evolution strategies: The generating set adaptation". Sixth ICGA, pp. 57-64, Morgan Kaufmann

[2] R. Salomon (1996). "Reevaluating Genetic Algorithm Performance under Coordinate Rotation of Benchmark 

Functions; A survey of some theoretical and practical aspects of genetic algorithms." BioSystems, 39(3):263-278
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Consider the convex-quadratic function

𝑓 𝒙 =
1

2
𝒙 − 𝒙∗ 𝑇𝐻 𝒙 − 𝒙∗ =

1

2


𝑖
ℎ𝑖,𝑖𝑥𝑖

2 +
1

2


𝑖,𝑗
ℎ𝑖,𝑗𝑥𝑖𝑥𝑗

H is Hessian matrix of 𝑓 and symmetric positive definite

Ill-conditioning means squeezed level sets (high curvature). 

Condition number equals nine here. Condition numbers up to 1010

are not unusual in real-world problems. 

If 𝐻 ≈ 𝐼 (small condition number of 𝐻) first order information (e.g. 

the gradient) is sufficient. Otherwise second order information 

(estimation of 𝐻−1) information necessary.

gradient direction −𝑓′ 𝑥 𝑇

Newton direction −𝐻−1𝑓′ 𝑥 𝑇
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Unconstrained case

 local vs. global

 local minimum 𝒙∗: ∃ a neighborhood 𝑉 of 𝒙∗ such that

∀𝒙 ∈ V: 𝑓(𝒙) ≥ 𝑓(𝒙∗)

 global minimum: ∀𝒙 ∈ Ω: 𝑓 𝒙 ≥ 𝑓 𝒙∗

 strict local minimum if the inequality is strict

Constrained case

 a bit more involved

 hence, later in the lecture 

Different Notions of Optimum
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Objective: Derive general characterization of optima

Example: if 𝑓:ℝ → ℝ differentiable,

𝑓′ 𝑥 = 0 at optimal points

 generalization to 𝑓:ℝ𝑛 → ℝ ?

 generalization to constrained problems?

Remark: notion of optimum independent of notion of derivability

Mathematical Characterization of Optima

optima of such function can be easily 

approached by certain type of methods
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𝑓: (𝑉, | | 𝑉) ⟶ (𝑊, | | 𝑊) is continuous in 𝑥 ∈ 𝑉 if

∀𝜖 > 0, ∃𝜂 > 0 such that ∀𝑦 ∈ 𝑉: |𝑥 − 𝑦| 𝑉 ≤ 𝜂; ||𝑓 𝑥 − 𝑓(𝑦)||𝑊 ≤ 𝜖

Reminder: Continuity of a Function

continuous

function

not continuous

discontinuity

point
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𝑓:ℝ → ℝ is differentiable in 𝑥 ∈ ℝ if

lim
ℎ→0

𝑓 𝑥+ℎ −𝑓(𝑥)

ℎ
exists, ℎ ∈ ℝ

Notation:

𝑓′ 𝑥 = lim
ℎ→0

𝑓 𝑥+ℎ −𝑓(𝑥)

ℎ

The derivative corresponds to the slope of the tangent in 𝑥.

Reminder: Differentiability in 1D (n=1)
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Taylor Formula (Order 1)

If 𝑓 is differentiable in 𝑥 then

𝑓 𝑥 + ℎ = 𝑓 𝑥 + 𝑓′ 𝑥 ℎ + 𝑜 |ℎ|

i.e. for ℎ small enough, ℎ ⟼ 𝑓 𝑥 + ℎ is approximated by ℎ ⟼
𝑓 𝑥 + 𝑓′ 𝑥 ℎ

ℎ ⟼ 𝑓 𝑥 + 𝑓′ 𝑥 ℎ is called a first order approximation of 𝑓(𝑥 + ℎ)

Reminder: Differentiability in 1D (n=1)
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Geometrically:

The notion of derivative of a function defined on ℝ𝑛 is generalized

via this idea of a linear approximation of 𝑓(𝑥 + ℎ) for ℎ small

enough.

Reminder: Differentiability in 1D (n=1)

How to generalize this to arbitrary dimension?
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 In (ℝ𝑛, || ||2) where ||𝒙||2 = 𝒙, 𝒙 is the Euclidean norm

deriving from the scalar product 𝒙, 𝒚 = 𝒙𝑇𝒚

𝛻𝑓 𝑥 =

𝜕𝑓

𝜕𝑥1
⋮
𝜕𝑓

𝜕𝑥𝑛

 Reminder: partial derivative in 𝑥0
fi: 𝑦→ 𝑓 𝑥0

1, … , 𝑥0
𝑖−1, 𝑦, 𝑥0

𝑖+1, … , 𝑥0
𝑛

𝜕𝑓

𝜕𝑥𝑖
𝑥0 = 𝑓𝑖′(𝑥0)

Gradient Definition Via Partial Derivatives
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Exercise:

Compute the gradients of 

a) 𝑓 𝑥 = 𝑥1 with 𝑥 ∈ ℝ𝑛

b) 𝑓 𝑥 = 𝑎𝑇𝑥 with a, 𝑥 ∈ ℝ𝑛

c) 𝑓 𝑥 = 𝑥𝑇𝑥 (= |x| 2) with 𝑥 ∈ ℝ𝑛
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Some more examples:

 in ℝ𝑛, if 𝑓 𝒙 = 𝒙𝑇𝐴𝒙, then 𝛻𝑓 𝒙 = (𝐴 + 𝐴𝑇)𝒙

 in ℝ, 𝛻𝑓 𝒙 = 𝑓′(𝒙)

Exercise: Gradients

Exercise:

Compute the gradients of 

a) 𝑓 𝑥 = 𝑥1 with 𝑥 ∈ ℝ𝑛

b) 𝑓 𝑥 = 𝑎𝑇𝑥 with a, 𝑥 ∈ ℝ𝑛

c) 𝑓 𝑥 = 𝑥𝑇𝑥 (= |x| 2) with 𝑥 ∈ ℝ𝑛
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More generally, the gradient of a

differentiable function is orthogonal to

its level sets.

Gradient: Geometrical Interpretation

Exercise:

Let 𝐿𝑐 = 𝒙 ∈ ℝ𝑛 𝑓 𝒙 = 𝑐} be again a level set of a function 𝑓 𝒙 .

Let 𝒙0 ∈ 𝐿𝑐 ≠ ∅.

Compute the level sets for 𝑓1 𝒙 = 𝒂𝑇𝒙 and 𝑓2 𝒙 = | 𝒙 |2 and

the gradient in a chosen point 𝑥0 and observe that 𝛻𝑓 𝒙𝟎 is

orthogonal to the level set in 𝑥0.

Again: if this seems too difficult, do it for two variables (and a

concrete 𝒂 ∈ ℝ2) and draw the level sets and the gradients.
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Taylor Formula – Order One

𝑓 𝒙 + 𝒉 = 𝑓 𝒙 + 𝛻𝑓 𝒙
𝑇
𝒉 + 𝑜(||𝒉||)

Differentiability in ℝ𝒏
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 Let 𝑓:ℝ → ℝ be a differentiable function and let 𝑓′: 𝑥 → 𝑓′(𝑥) be 

its derivative.

 If 𝑓′ is differentiable in 𝑥, then we denote its derivative as 𝑓′′ 𝑥

 𝑓′′(𝑥) is called the second order derivative of 𝑓.

Reminder: Second Order Derivability in 1D
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 If 𝑓:ℝ → ℝ is two times differentiable then

𝑓 𝑥 + ℎ = 𝑓 𝑥 + 𝑓′ 𝑥 ℎ + 𝑓′′ 𝑥 ℎ2 + 𝑜 ||ℎ||2

i.e. for ℎ small enough, ℎ → 𝑓 𝑥 + ℎ𝑓′ 𝑥 + ℎ2𝑓′′(𝑥)
approximates ℎ + 𝑓(𝑥 + ℎ)

 ℎ → 𝑓 𝑥 + ℎ𝑓′ 𝑥 + ℎ2𝑓′′(𝑥) is a quadratic approximation (or 

order 2) of 𝑓 in a neighborhood of 𝑥

 The second derivative of 𝑓: ℝ → ℝ generalizes naturally to larger 

dimension.

Taylor Formula: Second Order Derivative
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In ℝ𝑛, 𝑥, 𝑦 = 𝑥𝑇𝑦 , 𝛻2𝑓(𝑥) is represented by a symmetric matrix 

called the Hessian matrix. It can be computed as

𝛻2 𝑓 =

𝜕2𝑓

𝜕𝑥1
2

𝜕2𝑓

𝜕𝑥1𝜕𝑥2
…

𝜕2𝑓

𝜕𝑥1𝜕𝑥𝑛
𝜕2𝑓

𝜕𝑥2𝜕𝑥1

𝜕2𝑓

𝜕𝑥2
2 …

𝜕2𝑓

𝜕𝑥2𝜕𝑥𝑛
⋮ ⋮ ⋱ ⋮

𝜕2𝑓

𝜕𝑥𝑛𝜕𝑥1

𝜕2𝑓

𝜕𝑥𝑛𝜕𝑥2
…

𝜕2𝑓

𝜕𝑥𝑛
2

Hessian Matrix
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Exercise:

Let 𝑓 𝒙 =
1

2
𝒙𝑇𝐴 𝒙, 𝒙 ∈ ℝ𝑛, 𝐴 ∈ ℝ𝑛×𝑛.

Compute the Hessian matrix of 𝑓.

If it is too complex, consider 𝑓: ൝
ℝ2 → ℝ

𝒙 →
1

2
𝒙𝑇𝐴 𝒙

with 𝐴 =
9 0
0 1
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Taylor Formula – Order Two

𝑓 𝒙 + 𝒉 = 𝑓 𝒙 + 𝛻𝑓 𝒙
𝑇
𝒉 +

1

2
𝒉𝑇 𝛻2𝑓 𝒙 𝒉 + 𝑜( |𝒉| 2)

Second Order Differentiability in ℝ𝒏
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We have seen that for a convex quadratic function

𝑓 𝑥 =
1

2
𝑥 − 𝑥0

𝑇𝐴 𝑥 − 𝑥0 + 𝑏 of 𝑥 ∈ ℝ𝑛, 𝐴 ∈ ℝ𝑛×𝑛, 𝐴 SPD, 𝑏 ∈ ℝ𝑛:

1) The level sets are ellipsoids. The eigenvalues of 𝐴 determine 

the lengths of the principle axes of the ellipsoid.

2) The Hessian matrix of 𝑓 equals to 𝐴.

Ill-conditioned convex quadratic problems are problems with large 

ratio between largest and smallest eigenvalue of 𝐴 which means large 

ratio between longest and shortest axis of ellipsoid.

This corresponds to having an ill-conditioned Hessian matrix.

Back to Ill-Conditioned Problems

For 𝑛 = 2, let 𝜆1, 𝜆2 be

the eigenvalues of 𝐴.
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Gradient direction: 𝛻𝑓(𝒙)

Newton direction: 𝐻 𝒙
−1

⋅ 𝛻𝑓 𝒙

with 𝐻(𝒙) = 𝛻2𝑓(𝒙) being the Hessian at 𝒙

Gradient Direction Vs. Newton Direction

Exercise:

Let again 𝑓 𝒙 =
1

2
𝒙𝑇𝐴 𝒙, 𝒙 ∈ ℝ2, 𝐴 =

9 0
0 1

∈ ℝ2×2.

Plot the gradient and Newton direction of 𝑓 in a point 𝑥 ∈ ℝ𝑛

of your choice (which should not be on a coordinate axis) into

the same plot with the level sets, we created before.
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Gradient direction: 𝛻𝑓(𝒙)

Newton direction: 𝐻 𝒙
−1

⋅ 𝛻𝑓 𝒙

with 𝐻(𝒙) = 𝛻2𝑓(𝒙) being the Hessian at 𝒙

 remind level sets: axis-parallel ellipsoids, axis-ratio=3

 remind gradient: 𝐴𝒙

 remind Hessian: 𝐴

Gradient Direction Vs. Newton Direction

Exercise:

Let again 𝑓 𝒙 =
1

2
𝒙𝑇𝐴 𝒙, 𝒙 ∈ ℝ2, 𝐴 =

9 0
0 1

∈ ℝ2×2.

Plot the gradient and Newton direction of 𝑓 in a point 𝑥 ∈ ℝ𝑛

of your choice (which should not be on a coordinate axis) into

the same plot with the level sets, we created before.
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I hope it became clear...

…what kind of optimization problems we are interested in

…what are level sets and how to plot them

…what difficulties a problem can have

…what the gradient is

(and that it is generally orthogonal to the level sets)

…what the Hessian is

…which basic optimality conditions exist (1st and 2nd order)

Conclusions


