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Introduction

Continuous Optimization I: differentiability, gradients,
convexity, optimality conditions

Continuous Optimization II: constrained optimization,
gradient-based algorithms, stochastic gradient

Continuous Optimization Ill: stochastic algorithms,
derivative-free optimization, critical performance
assessment |15t written test]

Discrete Optimization I: graph theory, greedy
algorithms

Discrete Optimization Il: dynamic programming,
heuristics [2"d written test]

final exam
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Details on Continuous Optimization Lectures

Introduction to Continuous Optimization
= examples (from ML / black-box problems)
= typical difficulties in optimization

Mathematical Tools to Characterize Optima
= reminders about differentiability, gradient, Hessian matrix
* unconstraint optimization

= first and second order conditions

" convexity

= constraint optimization

Gradient-based Algorithms
= stochastic gradient
» quasi-Newton method (BFGS)

Learning in Optimization / Stochastic Optimization
= CMA-ES (adaptive algorithms / Information Geometry)
= PhD thesis possible on this topic

method strongly related to ML / new promising research area
Interesting open questions
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Continuous Optimization

QcR*"-> R
X = (X1, ., Xp) = f(X1, eer, Xp)

eER

=  Optimize f: {
unconstrained optimization

= Search space is continuous, i.e. composed of real vectors x € R"

. _ | dimension of the problem
=7 dimension of the search space R™ (as vector space)

b problem 2-D level sets

=/ M
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What Makes a Function Difficult to Solve?

= dimensionality
(considerably) larger than three
* non-separability
dependencies between the objective variables
* jll-conditioning
" ruggedness

non-smooth, discontinuous, multimodal, and/or
noisy function

cut from 3D example,
solvable with an
evolution strategy
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Curse of Dimensionality

= The term Curse of dimensionality (Richard Bellman) refers to
problems caused by the rapid increase in volume associated
with adding extra dimensions to a (mathematical) space.

= Example: Consider placing 100 points onto a real interval, say
10,1]. To get similar coverage, in terms of distance between
adjacent points, of the 10-dimensional space [0,1]*° would
require 1001° = 102 points. The original 100 points appear now
as isolated points in a vast empty space.

= Consequently, a search policy (e.g. exhaustive search) that is
valuable in small dimensions might be useless in moderate or
large dimensional search spaces.
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Separable Problems

Definition (Separable Problem)
A function f is separable if

argmin f(xq, ..., x,) = (argmin f(xq,...),...,argmin f (..., xn))
(X1,0Xn) X1 Xn

= it follows that f can be optimized in a sequence of
n independent 1-D optimization processes
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Non-Separable Problems

Building a non-separable problem from a separable one [1,2]

Rotating the coordinate system
= f:x+— f(x) separable
= f:x+— f(Rx) non-separable
R rotation matrix
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[1] N. Hansen, A. Ostermeier, A. Gawelczyk (1995). "On the adaptation of arbitrary normal mutation distributions in
evolution strategies: The generating set adaptation”. Sixth ICGA, pp. 57-64, Morgan Kaufmann

[2] R. Salomon (1996). "Reevaluating Genetic Algorithm Performance under Coordinate Rotation of Benchmark
Functions; A survey of some theoretical and practical aspects of genetic algorithms." BioSystems, 39(3):263-278
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IlI-Conditioned Problems: Curvature of Leve

Consider the convex-quadratic function
1 1 z 1 z
f(.X') = — (x — x*)TH(x — x*) = — hi l-xl-z + — hl]xlx]
2 2 i 2 i ’

H is Hessian matrix of f and symmetric positive definite

gradient direction —f'(x)?
Newton direction —H~1f"(x)!

lll-conditioning means squeezed level sets (high curvature).

Condition number equals nine here. Condition numbers up to 100
are not unusual in real-world problems.

If H = I (small condition number of H) first order information (e.g.
the gradient) is sufficient. Otherwise second order information

(estimation of H~1) information necessary.

TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 4, 2(
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Reminder: Different Notions of Optimum

Unconstrained case
= |ocal vs. global
= |ocal minimum x*: 3 a neighborhood V of x* such that
Vx eV:f(x) = f(x¥)
= global minimum: vx € Q: f(x) = f(x*)
= strict local minimum if the inequality is strict
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Mathematical Characterization of Optima

Objective: Derive general characterization of optima

Example: if f: R — R differentiable,
f'(x) = 0 at optimal points

= generalizationto f:R" > R ?
= generalization to constrained problems?

Remark: notion of optimum independent of notion of derivability

optima of such function can be easily
approached by certain type of methods

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 4, 20



Reminder: Continuity of a Function

£V Hy) — (WL | w) is continuous in x € V if
Ve > 0,3n > 0suchthatvy e V: |[|lx —y|ly <n; [If () = fFW)]||lw < €

not continuous

continuous
function discontinuity
« point
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Reminder: Differentiability in 1D (n=1)

f:R — R is differentiable in x € R if

lim L&MW qvists h e R
h—-0 h
Notation:
/ o f(x+h)—f(x)
f1e0 = fim =

() 4

\

The derivative corresponds to the slope of the tangent in x.

© Anne Auger and Dimo Brockhoff, Inria
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Reminder: Differentiability in 1D (n=1)

Taylor Formula (Order 1)
If f is differentiable in x then

fx+h)=f&x)+ f)h+o(l|n]])

l.e. for h small enough, h — f(x + h) is approximated by h +—

f(x) + f(x)h

h+— f(x)+ f'(x)h is called a first order approximation of f(x + h)
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Reminder: Differentiability in 1D (n=1)

Geometrically:
&(x*k) &

/\ {(Y)* kf(x)

A\
A
\
\
\
\

The notion of derivative of a function defined on R" is generalized

via this idea of a linear approximation of f(x + h) for h small
enough.

How to generalize this to arbitrary dimension? J
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Gradient Definition Via Partial Derivatives

= In(R" || ||,) where ||x|], = +/{x, x) is the Euclidean norm
deriving from the scalar product {x,y) = xTy

daf
&

Vi) =

o,

0x,
= Reminder: partial derivative in x,

fi: y = f(x(%; ---,x(i)_l;}’: x(i)+1' ""x(r)l)

d
a—)’; (x0) = £/ (%)

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 4, 2019



Exercise: Gradients
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Exercise: Gradients

Exercise:

Compute the gradients of

a) f(x)=x; withx e R"

b) f(x) =a’x witha x € R"

c) f(x)=xTx(=]|x||?) with x € R"

Some more examples:
= inR"if f(x) = xTAx, then Vf(x) = (A + AD)x
" InR,Vf(x) =f'(x)

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct. ¢



Gradient: Geometrical Interpretation

Exercise:

Let L, = {x € R"| f(x) = c} be again a level set of a function f(x).
Let xy € L. +# @.

Compute the level sets for f;(x) = a’x and £, (x) = ||x||? and
the gradient in a chosen point x, and observe that Vf (x;) is
orthogonal to the level set in x,.

Again: if this seems too difficult, do it for two variables (and a
concrete a € R?) and draw the level sets and the gradients.

) TN
More generally, the gradient of a —
= X

differentiable function is orthogonal to - ]‘
its level sets. %

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Pari



Differentiability in R™

Taylor Formula — Order One

fx+h) = f@) +(Vf®) h+o(h]])
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Reminder: Second Order Derivability in 1D

= Let f:R — R be a differentiable function and let f":x - f'(x) be
its derivative.

= If f"is differentiable in x, then we denote its derivative as "' (x)
= f"(x) is called the second order derivative of f.
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Taylor Formula: Second Order Derivative

= |f f:R - Ristwo times differentiable then
fGx+h)=fx)+f'h+f"(x)h? + o(]|h|]?)
i.e. for h small enough, h - f(x) + hf'(x) + h?f"(x)
approximates h — f(x + h)

= h- f(x)+hf'(x) + h%f"(x) is a quadratic approximation (or
order 2) of f in a neighborhood of x

i NI AN ANNILIA

@\

s Jo)th ()

4

= The second derivative of f: R - R generalizes naturally to larger
dimension.
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In (R™, (x,y) = xTy), V2f(x) is represented by a symmetric matrix
called the Hessian matrix. It can be computed as

0 oY 0%
6_x12 0x10x,  0x10x,
02f  8%f 02f

V2(f) = |9x,0x, axz 7 0x,0x,
02f  8%f 02 f
0x,0x; 0x,0x, a_x,zl |
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Exercise on Hessian Matrix
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Second Order Differentiability in R™

Taylor Formula — Order Two

1
fa+h) = f@)+ (7)) h+5hT(72f(0) h+o(IRI?)
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Back to llI-Conditioned Problems

We have seen that for a convex quadratic function
f(x) = %(x —x9)TA(x — xy) + b of x € R™, A € R™", A SPD, b € R™:

1) The level sets are ellipsoids. The eigenvalues of A determine
the lengths of the principle axes of the ellipsoid.

or n=2,letA, A, be
the eigenvalues of A.
N|

2) The Hessian matrix of f equals to A.

lll-conditioned convex quadratic problems are problems with large
ratio between largest and smallest eigenvalue of A which means large
ratio between longest and shortest axis of ellipsoid.

This corresponds to having an ill-conditioned Hessian matrix.

TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 4
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Gradient Direction Vs. Newton Direction

Gradient direction: Vf(x)

Newton direction: (H(x))_1 - Vf(x)
with H(x) = 7%f(x) being the Hessian at x

Exercise:

Let again f(x) = %xTA x, X ER? A= (g (1)) € R?*2,

Plot the gradient and Newton direction of f in a point x € R™
of your choice (which should not be on a coordinate axis) into
the same plot with the level sets, we created before.
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Optimality Conditions
for Unconstrained Problems

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 4, 2019



Optimality Conditions: First Order Necessary «

For 1-dimensional optimization problems f: R - R
Assume f is differentiable
= x*isalocal optimum = f'(x*) =0
not a sufficient condition: consider f(x) = x3
proof via Taylor formula: f(x* + h) = f(x*) + f'(x*)h + o(||h]||)

= points y such that f'(y) = 0 are called critical or stationary points

Generalization to n-dimensional functions

If f:U c R™ +— R is differentiable

= necessary condition: If x* is a local optimum of f, then Vf(x*) =0
proof via Taylor formula

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 4, 2019



Second Order Necessary and Sufficient Opt.

If £ is twice continuously differentiable
= Necessary condition: if x* is a local minimum, then V'f(x*) =0
and V4f (x*) is positive semi-definite
proof via Taylor formula at order 2
= Sufficient condition: if 7f(x*) = 0 and V4f(x*) is positive definite,
then x* is a strict local minimum

Proof of Sufficient Condition:

= Let A > 0 be the smallest eigenvalue of V4f(x*), using a second
order Taylor expansion, we have for all h:

" f(x"+h)- f(x*) = Vf(x) h+ hTV2f (xR + o(||RI|?)

> 2RI + o(IIRII2) = (2 (Illlhllll )) L
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Convex Functions

Let U be a convex open set of R" and f: U — R. The function f is
said to be convex if for all x,y € U and for all t € [0,1]

f(A-Dx+ty) <A -Ofx) +tf(y)

Theorem
If £ Is differentiable, then f is convex if and only if for all x, y

f) - F@) = (VF@) (¥ - %)

If n = 1, the curve is on top of the tangent

If f is twice continuously differentiable, then f is convex if and only if
V4f(x) is positive semi-definite for all x.
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Convex Functions: Why Convexity?

Examples of Convex Functions:
= f(x)=a'x+b
= f(x) = %xTAx + a’x + b, A symmetric positive definite

= the negative of the entropy function (i.e. f(x) = =YX, x; In(x;) )

Exercise:

Let f: U — R be a convex and differentiable function on a

convex open U.
Show that if Vf(x*) = 0, then x* is a global minimum of f

Why is convexity an important concept?
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Constrained Optimization
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Equality Constraint

Objective:

Generalize the necessary condition of Vf(x) = 0 at the optima of f
when f isin 1, i.e. is differentiable and its differential is continuous

Theorem:
Be U anopensetof (E,|| ||),and f:U >R, g:U > Rinc.
Let a € E satisfy

{f (a) = inf {f(x) | x € R", g(x) = 0}
g(a) =0
l.e. a IS optimum of the problem

If Vg(a) + 0, then there exists a constant A € R called Lagrange
multiplier, such that

‘ Vf(a) + AVg(a) = q Euler — Lagrange equation
|
l.e. gradients of f and g in a are colinear

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 4, 2019



Geometrical Interpretation Using an Ex

Exercise:

Consider the problem
inf {f(x,y) | (x,¥) € R? g(x,y) = 0}

2 gley)=xt+y?-1=0

1) Plot the level sets of f, plot g =0
2) Compute IV'f and Vg
3) Find the solutions with Vf + AVg =0
equation solving with 3 unknowns (x, y, 1)
4) Plot the solutions of 3) on top of the level set graph of 1)

© Anne Auger and Dimo Brockhoff, Inria



Interpretation of Euler-Lagrange Equation

Intuitive way to retrieve the Euler-Lagrange equation:

* In alocal minimum a of a constrained problem, the
hypersurfaces (or level sets) f = f(a) and g = 0 are necessarily
tangent (otherwise we could decrease f by moving along g = 0).

= Since the gradients Vf(a) and Vg(a) are orthogonal to the level
sets f = f(a) and g = 0, it follows that Vf (a) and Vg(a) are
colinear.
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Generalization to More than One Constraint

Theorem

= Assume f:U » Rand g,:U -> R (1 <k <p)are CL.
= Let a be such that

f(a) =inf {f(x) | x € R", gx(x) =0, 1<k<p}
gr(@) =0 foralll<k<p

= |f (ng(a))1<k<p are linearly independent, then there exist p real
constants (Ax);<k<p Such that

p
Vf(a) + 2 AV gr(a) =0
k=1

|

Lagrange multiplier

again: a does not need to be global but local minimum

© Anne Auger and Dimo Brockhoff, Inria
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The Lagrangian

= Define the Lagrangian on R™ x R? as

p
L0 D = O+ ) Aegic(0)
k=1

= To find optimal solutions, we can solve the optimality system

r p

JFind (x, (1)) € R x RY such that 7 (x) + ) AFgi(x) = 0
k=1

L gr(x)=0foralll<k<p

Find (x,{1;}) € R™ x RP such that V,.L(x, {1,}) = 0
72, L {4 (x) =0 foralll <k <p
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Inequality Constraint: Definitions

LetU ={x e R"| gx(x) =0 (fork € E), g,(x) <0 (for k € I)}.

Definition:
The points in R" that satisfy the constraints are also called feasible
points.

Definition:
Let a € U, we say that the constraint g, (x) < 0 (for k € I) is active
in aif g,(a) = 0.

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 4, 2019



Inequality Constraint: Karush-Kuhn-Tucker T

Theorem (Karush-Kuhn-Tucker, KKT):
Let U be an open set of (R®, || ||]) and f:U - R, g,:U - R, all ¢?
Furthermore, let a € U satisfy

(f(@) = inf(f(x) | x € R™, g (x) = 0 (for k € E), g (x) < 0 (for k € 1)
) 9k (a) =0 (for k € E) also works again for a
L gi(a) <0 (fork €1) being a local minimum

Let 12 be the set of constraints that are active in a. Assume that
(Vs (a))k < L o are linearly independent.
a

Then there exist (1x)1<k<p that satisfy
(

Vf(a) + 2 A Vgr(a) =0

grx(a) = 0 (for k € E)
gix(a) <0 (fork €1)
A =0 (fork € ID)
Akgrx(a) =0 (fork € EUI)

A
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Inequality Constraint: Karush-Kuhn-Tucker

Theorem (Karush-Kuhn-Tucker, KKT):

Let U be an open setof (E,|||]) and f:U - R, g,:U - R, all ¢1
Furthermore, let a € U satisfy

(f(@) = inf(f(x) | x € R™, g (x) = 0 (for k € E), g (x) < 0 (for k € 1)
3 gix(a) =0 (fork € E)

\ gix(a) <0 (fork €1)

Let 12 be the set of constraints that are active in a. Assume that
(Vs (a))k < L o are linearly independent.

Then there exist (1x)1<k<p that satisfy
(

vf(a) + Z LV gi(a) = 0

grx(a) = 0 (for k € E) either active constraint
gx(a) <0 (fork €1) or A =0
A = 0 (for k-C IC‘;’)
Akgr(a) =0 (fork € EUI)

A
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Descent Methods
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Descent Methods

General principle
© choose an initial point x,, sett =0
® while not happy
» choose a descent directiond; # 0
* line search:
= choose a step size g; > 0
" setx;p1 =X +o0:d;
= sett=t+1

Remaining questions
= how to choose d;?
= how to choose o;?

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimizati



Gradient Descent

Rationale: d; = —Vf(x;) IS a descent direction
indeed for f differentiable

fx—oVf(x)) = f(x) = alIVFEOII? + o(al|Vf(X)]])
< f(x) for ¢ small enough
Step-size
= optimal step-size: g; = argmin f(x; — aVf(x;))
o

= Line Search: total or partial optimization w.r.t. o
Total is however often too "expensive" (needs to be performed at
each iteration step)
Partial optimization: execute a limited number of trial steps until a
loose approximation of the optimum is found. Typical rule for
partial optimization: Armijo rule (see next slides)

Typical stopping criterium:
norm of gradient smaller than ¢
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The Armijo-Goldstein Rule

Choosing the step size:
= Only to decrease f-value not enough to converge (quickly)
= Want to have a reasonably large decrease in f

Armijo-Goldstein rule:
= also known as backtracking line search

= starts with a (too) large estimate of o and reduces it until f is
reduced enough

= whatis enough?
= assuming a linear f e.g. m(x) = f(x) + V f ()T (x — x1)
= expected decrease if step of gy, Is done in direction d.:
o Vf(x)'d
= actual decrease: f(x;) — f(xy + 0 d)

» stop if actual decrease is at least constant times expected
decrease (constant typically chosen in [0, 1])
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The Armijo-Goldstein Rule

The Actual Algorithm:

Input: descent direction d, point x. objective function f(x) and its gra-
dient V f(x), parameters og = 10, 0 € [0, 1] and g € (0,1)
Output: step-size o

Initialize o: 0 <+ oy

while f(x +od) > f(x)+ 0oV f(x)"d do
o+ o

end while

Armijo, in his original publication chose g = 6 = 0.5.
Choosing 8 = 0 means the algorithm accepts any decrease.
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The Armijo-Goldstein Rule

Graphical Interpretation
A actual increase
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The Armijo-Goldstein Rule

Graphical Interpretation
A

. decrease in f
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The Armijo-Goldstein Rule

Graphical Interpretation

A

*
L4
*
*
*
L 4
*
.0
*

decrease in f

&
.
-
L2
.
-
.
o
.
L
.
-
‘e
* ‘e
L
.
-
.
.
£
.
.
.
‘e
v

now sufficiently large

ted decrease

|

02
linear approximation
(expected decrease)

© Anne Auger and Dimo Brockhoff, Inria

TC2: Introduction to Optimi



Newton Algorithm

Newton Method

= descent direction: —[V?f(x;)] 1V f(xy) [so-called Newton
direction]

= The Newton direction:
= minimizes the best (locally) quadratic approximation of f:
fla+Ax) = f(x) + Vf()TAx + = (M) V2 f (x) Ax

= points towards the optimum on f(x) = (x — x*)TA(x — x*)
= however, Hessian matrix is expensive to compute in general and
Its inversion is also not easy

guadratic convergence

(i.e. lim Xk+1= x' =u > O)
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Remark: Affine Invariance

Affine Invariance: same behavior on f(x) and f(Ax + b) for A €
GLn(R) = set of all invertible n X n matrices over R

= Newton method iIs affine invariant

see http://users.ece.utexas.edu/~cmcaram/EE381V_2012F/
Lecture 6 Scribe Notes.final.pdf

= same convergence rate on all convex-gquadratic functions
» Gradient method not affine invariant
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Quasi-Newton Method: BFGS

Xep1 = X — 0 H{Vf (x;) Where H; is an approximation of the inverse
Hessian

Key idea of Quasi Newton:

successive iterates x;, x;,, and gradients Vf (x;), Vf(x;;+1) yield
second order information

Qe = V*f(Xe41)Pt
where p; = x¢4q —x¢ and q; = Vf(xe1) — Vf(xe)

Most popular implementation of this idea: Broyden-Fletcher-
Goldfarb-Shanno (BFGS)

= default in MATLAB's £fminunc and python's
scipy.optimize.minimize
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Conclusions

| hope it became clear...

...what are the difficulties to cope with when solving numerical
optimization problems

In particular dimensionality, non-separability and ill-conditioning
...what are gradient and Hessian
...what is the difference between gradient and Newton direction
...and that adapting the step size in descent algorithms is crucial.
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