Introduction to Optimization

Lectures 5&6: Benchmarking + Discrete Optimization

October 30 and November 15, 2019
TC2 - Optimisation
Université Paris-Saclay

2 Anne Auger and Dimo Brockhoff
TTTTTTTTTTTTTTTTTTTTTTTTTTT Inria Saclay — lle-de-France

Course Overview

Date | |Topc

Fri, 27.9.2019 DB Introduction

Fri, 4.10.2019 AA Continuous Optimization I: differentiability, gradients,
(4hrs) convexity, optimality conditions

Fri, 11.10.2019 AA Continuous Optimization IlI: constrained optimization,
(4hrs) gradient-based algorithms, stochastic gradient

Fri, 18.10.2019 DB Continuous Optimization Ill: stochastic algorithms,

(4hrs) derivative-free optimization, ertical-performance
assessment [15t written test]

Wed, 30.10.2019 DB Benchmarking + Discrete Optimization I: graph theory,
greedy algorithms

Fri, 15.11.2019 DB Discrete Optimization Il: dynamic programming,
heuristics [2"d written test]

Fri, 22.11.2018 final exam

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30

Little Quiz (not graded)

CMA-ES as a stochastic search algorithm:

1) What's the underlying probability distribution?

2) How to update the mean?

3) When the progress is slower than expected, then ...

4) When the progress is faster than expected, then ...

5) With respect to which transformations is CMA-ES invariant?

6) How does the 10°

constant stepsize

(1+1)-ES looks E o

like on this graph? < fx) =32
5 i=1
2107 in [~0.2,0.8]"

for n =10
_9
10 0 0.5 1 1.5 2

i i :
function evaluations % 10

© Anne Auger and Dimo Brockhoff, Inria

Little Quiz Il (also not graded)

7) Is the function, optimized by CMA-ES here, separable?

bl}ae -abs(f), cyanf-min(f), green:sigma, red:axis ratio
10 T T

10 [=7.91055728188042e—10 |

0 2000 4000 6000
Principle Axes Lengths
2
10 T T
10 = 5
0 2000 4000 6000

function evaluations

Object Variables (9-D)
T T A“ }I=200529

(5)=1.2552¢
H(B)=1.2468e
k(9)=—7.3612
(4)=—2.9981
(7)=—8.3583
be(3)=—2.0364
k(2)=—2.1131

S

60583}!:—2.5301

Standard Deviations in Coordinates divided by sigma
—— T 13

10

O N B = I s A B - - B

&

2000 4000
function evaluations

f(x) = ¢ (x"Hx), ¢ : R — R stricly increasing

CocH 'forall ¢.H

from fHansen; p-- 93]
62/ 81

© Anne Auger and Dimo Brockhoff, Inria

TC2: Introduction to Optimi

Benchmarking Optimization Algorithms
or: critical performance assessment

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 20

challenging optimization problems
appear in many
scientific, technological and industrial domains

Reservoir modelling at the heart of Storengy’s professiong

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct

Practical (Numerical) Blackbox Optimization

Given:

x € R" f(x)eIR">

derivatives not available or not useful

Not clear:

which of the many algorithms should | use on my
problem?

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-¢

Need: Benchmarking

 understanding of algorithms
» algorithm selection

* putting algorithms to a standardized test
 simplify judgement
 simplify comparison
* regression test under algorithm changes

Kind of everybody has to do it (and it Is tedious):

» choosing (and implementing) problems, performance
measures, visualization, stat. tests, ...

* running a set of algorithms

e Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay

Do you remember the last Exercis

How would you compare algorithms?
assumptions:
e continuous search space R"
« Dblackbox scenario w/o constraints
« two algorithms

a) Define a concrete experimental setup
 What to do if | want to compare algorithms A and B?
 Which experiment parameters you have to decide on?

b) What would you display to compare the performance?

c) Generalize
e arbitrary search space
e constraints
« any number of algorithms
« deterministic vs. stochastic algorithms

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimizati

wouldn’t

automatized benchmarking
be cool?

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 201

for this, we developed COCO

/

Comparing Continuous Optimizers Platform
https://github.com/numbbo/coco

© Anne Auger and Dimo Brockhoff, Inria

benchmarking is non-trivial

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30

hence, COCO implements a
reasonable, well-founded, and
well-documented
pre-chosen methodology

ne Auger and Dimo Brockhoff, Inria

How to benchmark algorithms
with COCQ?

ne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct.

~ https://github.com/numbbo/coco

)
-

O numbbo/coco: Mumerical .. *
é (i) @ GitHub, Inc, (US) https://github.com/numbbo/coco c C?Sec'r':h

18} Most Visited @ Getting Started & COCO-Algerithms € numbbo/numbbo - Gi.. [RandOpt @& CMAP @ Inria GitLlab) RERE from lab

O This repository Pull requests Issues Marketplace Gist

& numbbo / coco @ Unwatch~ 15 W Unstar 24
¢y Code Issues 133 Pull requests 1 Projects 9 Settings Insights =

Numerical Black-Box Optimization Benchmarking Framework http://coco.gforge.inria.fr/

Add topics

D 16,007 commits ¥ 11 branches > 31 releases 4% 15 contributors

Branch: master = New pull request Create new file = Upload files = Find file Clone or download «

1"} brockho committed on GitHub Merge pull request #1352 from numbboy/development - Clone with HTTPS & Use 35H

_ i)]] Use Git or checkout with SWN using the web URL.
B code-experiments A little more verbose error message when suite regression test fai

https://github.com/numbbo/coco.git @-
8 code-postprocessing Hashes are back on the plots.
@ code-preprocessing Fixed preprocessing to work correctly with the extended biobjectiv Open in Desktop Download ZIP
| howtos Update create-a-suite-howto.md 4 months ago
E) .clang-format raising an error in bbob2009_logger.c when best_value is MULL. Plus s... 2 years ago

E) hgignare raising an error in bbob2009_logger.c when best_value is NULL. Plus s... 2 years ago

E) AUTHORS small correction in AUTHORS a year ago

[

© Anne Auger and Dimo Broc i uction to Optimization, U. Paris-Saclay, Oct. 30, 2

~ https://github.com/numbbo/coco

=]
LEL]

Q numbbo/coco: Mumerical ...

(' 'ﬁ:' & GitHub, Inc. (US] https://github.com/numbbo/coco £ ﬁ' E l' ‘ﬁ‘

[2) Most Visited @ Getting Started & COCO-Algorithms €) numbbo/numbbe - Gi.. [RandOpt @& CMAP @ Inria GitLab T RER B from lab

L humbbo / coco @ Unwatch~ 15 WUnstar 38 YFork 24
<» Code Issues 133 Pull requests 1 Projects 9 Settings Insights =

Mumerical Black-Box Optimization Benchmarking Framework http://coco.gforge.inria.fr/

Add topics

0 16,007 commits ¥ 11 branches @ 31 releases AL 15 contributors

Branch: master v MNew pull request Create new file | Upload files | Find file Clone or download

1"} brockho committed on GitHub Merge pull request #1352 from numbboy/development - Clone with HTTPS (@ Use 55H

))]) Use Git or checkout with SWN using the web URL.
code-experiments A little more verbose error message when suite regression test fai

https://github.com/numbbo/coco.git @-
code-postprocessing Hashes are back on the plots.
code-preprocessing Fixed preprocessing to work correctly with the extended biobjectiv Open in Desktop Download ZIP
howtos Update create-a-suite-howto.md 4 months ago
clang-format raising an error in bbob2009_logger.c when best_value is NULL. Plus s... 2 years ago
hgignore raising an error in bbob2009_logger.c when best_value is NULL. Plus s... 2 years ago
AUTHORS small correction in AUTHORS 3 year ago
LICENSE Update LICENSE 11 months ago

README.md Added link to #1335 before dosing. a month ago

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30

~ https://github.com/numbbo/coco

O numbbo/coco: Mumerical .. *

| 'fi:' & GitHub, Inc. (US) https://github.com/numbbo/coco

18} Most Visited @ Getting Started & COCO-Algerithms € numbbo/numbbo - Gi.. [RandOpt @& CMAP @ Inria GitLlab) RERE from lab

Numerical Black-Box Optimization Benchmarking Framework http://coco.gforge.inria.fr/

Add topics

{0 16,007 commits ¥ 11 branches > 31 releases AL 15 contributors

Branch: master + New pull request Create new file = Upload files = Find file Clone or download +

L") brockho committed on GitHub Merge pull request #1352 from numbbo/development - Clone with HTTPS 3 Use 55H

B)))) _ Use Git or checkout with 5¥N using the web URL.
B code-experiments A little more verbose error message when suite regression test fai

https://github.com/numbbo/coco.git @-
B code-postprocessing Hashes are back on the plots.
B code-preprocessing Fixed preprocessing to work correctly with the extended biobjectiv Open in Desktop Download ZIP
howtos Update create-a-suite-howto.md 4 months ago
£lang-format raising an error in bbob2009_logger.c when best_value is MULL. Plus s... 2 years ago
hgignore raising an error in bbob2009_logger.c when best_value is NULL. Plus s... 2 years ago
AUTHORS small correction in AUTHORS a year ago
LICEMSE Update LICEMNSE 11 months ago
README.md Added link to #1335 before dosing. a month ago

do.py refactoring here and there in do.py to get closer to PEPS specifications 2 months ago

doxygen.ini moved all files into code-experiments/ folder besides the do.py scrip... 2 years ago

© Anne Auger and Dimo Brock i TC2: Introduction to Opti

~ https://github.com/numbbo/coco

C=EE X)

O numbbo/coco: Mumerical .. *

(i) @ GitHub, Inc, (US) https://github.com/numbbo/coco c C?Sec'r':h ﬁ E ¥+ H

M

18} Most Visited @ Getting Started & COCO-Algerithms € numbbo/numbbo - Gi.. [RandOpt @& CMAP @ Inria GitLlab) RERE from lab

Branch: master = New pull request Create new file = Upload files = Find file Clone or download «

1"} brockho committed on GitHub Merge pull request #1352 from numbboy/development - Clone with HTTPS (@ Use 55H

))]) Use Git or checkout with SWN using the web URL.
code-experiments A little more verbose error message when suite regression test fai
https://github.com/numbbo/coco.git @-
code-postprocessing Hashes are back on the plots.

code-preprocessing Fixed preprocessing to work correctly with the extended biobjectiv Open in Desktop Download ZIP

howtos Update create-a-suite-howto.md 4 months ago

[iir7)

£lang-format raising an error in bbob2009_logger.c when best_value is MULL. Plus s... 2 years ago

[

hgignore raising an error in bbob2009_logger.c when best_value is NULL. Plus s... 2 years ago

[

AUTHORS small correction in AUTHORS a year ago

[T

LICENSE Update LICENSE 11 months ago

]

README.md Added link to #1335 before dosing. a month ago

[

do.py refactoring here and there in do.py to get closer to PEPS specifications 2 months ago

([}

doxygen.ini moved all files into code-experiments/ folder besides the do.py scrip... 2 years ago

EE README.md

numbbo/coco: Comparing Continuous Optimizers

© Anne Auger and Dimo Brockhoff, Inria

~ https://github.com/numbbo/coco

O numbbo/coco: Mumerical .. *
\ , (i) @ GitHub, Inc, (US) https://github.com/numbbo/coco c C?Seur':h ﬁ E ¥+ H
Ei_; Most Visited @ Getting Started & COCO-Algorithms €)) numbbo/numbho - Gi.. RandOpt @ CMAP @ Inria GitLab T RER B from lab
B code-preprocessing Fixed preprocessing to work correctly with the extended biobjectiv Open in Desktop Download ZIP
howtos Update create-a-suite-howto.md 4 months ago E|
£lang-format raising an error in bbob2009_logger.c when best_value is MULL. Plus s... 2 years ago
hgignore raising an error in bbob2009_logger.c when best_value is NULL. Plus s... 2 years ago
AUTHORS small correction in AUTHORS a year ago
LICEMSE Update LICEMNSE 11 months ago
README.md Added link to #1335 before dosing. a month ago

do.py refactoring here and there in do.py to get closer to PEPS specifications 2 months ago

doxygen.ini moved all files into code-experiments/ folder besides the do.py scrip... 2 years ago

EE README.md

numbbo/coco: Comparing Continuous Optimizers

This code reimplements the original Comparing Continous Optimizer platform, now rewritten fully in ANSI € with other
languages calling the ¢ code. As the name suggests, the code provides a platform to benchmark and compare continuous
optimizers, AKA non-linear solvers for numerical optimization. Languages currently available are

® C/C++
® Java

® MATLAB/Octave

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30

~ https://github.com/numbbo/coco

O numbbo/coco: Mumerical .. *
(i) @ GitHub, Inc, (US) https://github.com/numbbo/coco c C?Sec'r':h ﬁ E ¥+ H

18} Most Visited @ Getting Started & COCO-Algerithms € numbbo/numbbo - Gi.. [RandOpt @& CMAP @ Inria GitLlab) RERE from lab
LICENSE Update LICEMSE 11 months ago

README.md Added link to #1335 before closing. a month ago
do.py refactoring here and there in do.py to get closer to PEPS specifications 2 months ago

doxygen.ini moved all files into code-experiments/ folder besides the do.py scrip... 2 years ago

EB README.md

numbbo/coco: Comparing Continuous Optimizers

This code reimplements the original Comparing Continous Optimizer platform, now rewritten fully in ANSI C with other

languages calling the ¢ code. As the name suggests, the code provides a platform to benchmark and compare continuous

optimizers, AKA non-linear solvers for numerical optimization. Languages currently available are

® C/C++
Java
MATLAB/Octave

Python
Contributions to link further languages (including a better example in c++) are more than welcome.
For more information,

® read our benchmarking quidelines introduction

® read the COCO experimental setup description

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Pari

| htts://ithub.com/numbbo/coc

O numbbo/coco: Mumerical .. *

(' | (i) @ GitHub, Inc, (US) https:y//github.com/numbbo/coco c €9 Search

18} Most Visited @ Getting Started & COCO-Algerithms € numbbo/numbbo - Gi.. [RandOpt @& CMAP @ Inria GitLlab) RERE from lab

numbbo/coco: Comparing Continuous Optimizers

This code reimplements the original Comparing Continous Optimizer platform, now rewritten fully in AnsI ¢ with other
languages calling the ¢ code. As the name suggests, the code provides a platform to benchmark and compare continuous

optimizers, AKA non-linear solvers for numerical optimization. Languages currently available are

C/C++
Java
MATLAB/Octave

Python
ther languages (including a better example in C++) are more than welcome.
For more information,

® read our benchmarking guidelines introduction

® read the COCO experimental setup description

® see the bbob-biobj and bbob-biobj-ext COCO multi-objective functions testbed documentation and the specificities

of the performance assessment for the bi-objective testbeds.
consult the BBOB workshops series,

consider to register here for news,

see the previous COCO home page here and

see the links below to learn more about the ideas behind CoCO.

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30

~ https://github.com/numbbo/coco

O numbbo/coco: Mumerical .. *

\ 6 (i) @ GitHub, Inc. (US) https://github.com/numbbo/coco c C?Sec'r':h

18} Most Visited @ Getting Started & COCO-Algerithms € numbbo/numbbo - Gi.. [RandOpt @& CMAP @ Inria GitLlab) RERE from lab

0. Check out the Requirements above. req u I re m e n tS
1. Download the COCO framework code from github, & d OW n I O ad

® either by clicking the Download ZIP button and unzip the zip file,

® or by typing git clone https://github.com/numbbo/coco.git . This way allows to remain up-to-date easily (but needs
git to be installed). After cloning, git pull keeps the code up-to-date with the latest release.

The record of official releases can be found here. The latest release corresponds to the master branch as linked above.

2.In a system shell, cd into the coco or coco-<version> folder {framework root), where the file do.py can be found.
Type, i.e. execute, one of the following commands once

python do. run-c
python do. run-java
python do. run-matlab
python do. run-octave
python do. run-python

depending on which language shall be used to run the experiments. run-* will build the respective code and run the

example experiment once. The build result and the example experiment code can be found under code-experiments/build
/<language> (<language>=matlab for Octave). python do.py lists all available commands.

3. On the computer where experiment data shall be post-processed, run

python do.py install-postprocessing

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 201¢

~ https://github.com/numbbo/coco

O numbbo/coco: Mumerical .. *

\ 6 (i) @ GitHub, Inc. (US) https://github.com/numbbo/coco c C?Sec'r':h
18} Most Visited @ Getting Started & COCO-Algerithms € numbbo/numbbo - Gi.. [RandOpt @& CMAP @ Inria GitLlab) RERE from lab

Getting Started

0. Check out the Requirements above.
1. Download the COCO framework code from github,

® either by clicking the Download ZIP button and unzip the zip file,

® or by typing git clone https://github.com/numbbo/coco.git . This way allows to remain up-to-date easily (but needs
git to be installed). After cloning, git pull keeps the code up-to-date with the latest release.

The record of official releases can be found here. The latest release corresponds to the master branch as linked above.

2.In a system shell, cd into the coco or coco-<version> folder {framework root), where the file do.py can be found.
Type, i.e. execute, one of the following corg

Installation I: experiments

run-java
run-matlab

run-python

depending on which language shall be used to run the experiments. run-* will build the respective code and run the
example experiment once. The build result and the example experiment code can be found under code-experiments/build
/<language> (<language>=matlab for Octave). python do.py lists all available commands.

3. On the computer where experiment data shall be post-processed, run

python do.py install-postprocessing

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 201¢

O numbbo/coco: Mumerical .. *

\ 6 (i) @ GitHub, Inc, (US) https://github.com/numbbo/coco c C?Sec'r':h ﬂ E ¥+ @

18} Most Visited @ Getting Started & COCO-Algerithms € numbbo/numbbo - Gi.. [RandOpt @& CMAP @ Inria GitLlab) RERE from lab
example expenment once. he build result and the example expenment code can be found under code-experiments/build

/<language> (<language>=matlab for Octave). python do.py lists all available commands.

3. On the computer where experiment data shall b

to (user-locally) install the post-processing. From hereon,
builds to a new release.

4. Copy the folder code-experiments/build/YOUR-FAVORITE-LANGUAGE and its content to another location. In Python it is
sufficient to copy the file example_experiment.py . Run the example experiment (it already is compiled). As the details

vary, see the respective read-me’s and/or example experiment files:

c read me and example experiment
Java read me and example experiment
Matlab/Octave read me and example experiment

Python read me and example experiment

If the example experiment runs, connect your favorite algorithm to Coco: replace the call to the random search optimizer in
the example experiment file by a call to your algorithm (see above). Update the output result_folder , the algorithm_name

and algorithm_info of the observer options in the example experiment file.
Another entry point for your own experiments can be the code-experiments/examples folder.

5. Now you can run your favorite algorithm on the bbob suite (for single-objective algorithms) or on the bbob-biobj and
bbob-biobj-ext suites (for multi-objective algorithms). Output is automatically generated in the specified data
result_folder . By now, more suites might be available, see below.

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 201¢

O numbbo/coco: Mumerical .. *

\ 6 (i) @ GitHub, Inc, (US) https://github.com/numbbo/coco c C?Sec'r':h ﬂ E ¥+ @

18} Most Visited @ Getting Started & COCO-Algerithms € numbbo/numbbo - Gi.. [RandOpt @& CMAP @ Inria GitLlab) RERE from lab
example expenment once. he build result and the example expenment code can be found under code-experiments/build

/<language> (<language>=matlab for Octave). python do.py lists all available commands.

3. On the computer where experiment data shall be post-processed, run

python do.py install-postprocessing

to (user-locally) install the post-processing. From here on, do.py has done its job and is only needed again for updating the
builds to a new release.

4. Copy the folder code-experiments/build/YOUR-FAVORITE-LANGUAGE and its content to another location. In Python it is
sufficient to copy the file example_experiment.py . Run the example experiment (it already is compiled). As the details

see the respective read-me's and/or example experiment files:

c read me and example experiment
Java read me and example experiment

Matlab/Octave read me and example experiment C O u p | I n g al g O + COCO

Python read me and example experiment

If the example experiment runs, connect your favorite algorithm to Coco: replace the call to the random search optimizer in
the example experiment file by a call to your algorithm (see above). Update the output result_folder , the algorithm_name

and algorithm_info of the observer options in the example experiment file.
Another entry point for your own experiments can be the code-experiments/examples folder.

5. Now you can run your favorite algorithm on the bbob suite (for single-objective algorithms) or on the bbob-biobj and
bbob-biobj-ext suites (for multi-objective algorithms). Output is automatically generated in the specified data
result_folder . By now, more suites might be available, see below.

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 201¢

Simplified Example Experiment in Python

import cocoex
import scipy.optimize

input

suite name = "bbob"

output folder = "scipy-optimize-fmin"
fmin = scipy.optimize.fmin

prepare
suite = cocoex.Suite(suite name, "", "")
observer = cocoex.Observer (suite name,
"result folder: " + output folder)

go
for problem in suite: # this loop will take several minutes
problem.observe with (observer) # generates the data for
cocopp post-processing
fmin (problem, problem.initial solution)

Note: the actual example_experiment.py contains more
advanced things like restarts, batch experiments, other
_algorithms (e.g. CMA-ES), etc.

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U.

~ https://github. c:om/numbbo/coco

O numbbo/coco at develop., *
é (© & GitHub, Inc, (US) | https://github.com/numbbo/cocostree/development e || @ search

|2 Most Visited @ Getting Started & COCO-Algorithms €} numbbo/numbbe - Gi... A RandOpt @ CMAP @ Inria Gitlab) RER B from lab
Another entry point for your own experiments can be the code-experiments/examples folder.

5. Now you can run your favorite algorithm on the bbob suite (for single-objective algorithms) or on the bbob-biobj and
bbob-biobj-ext suites (for multi-objective algorithms). Output is automatically generated in the specified data
result_folder . By now, more suites might be available, see below.

6. Postprocess the data from the results folder by typing

python -m cocopp [-o OUTPUT_FOLDERNAME] YOURDA

running the experiment

Any subfolder in the folder arguments will be searched fo
different folders collected under a single "root” YOURDATAFOLDER folder. We can also compare more than one algorithm by

specifying several data result folders generated by different algorithms.

tip:
start with small #funevals (until bugs fixed ©)
then increase budget to get a feeling

how long a "long run" will take

8. The experiments can be parallelized with any re-distribution of single problem instances to batches (see
example_experiment.py for an example). Each batch must write in a different target folder (this should happen
automatically). Results of each batch must be kept under their separate folder as is. These folders then must be

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 20

~ https://github. c:om/numbbo/coco

O numbbo/coco at develop., *
é (© & GitHub, Inc, (US) | https://github.com/numbbo/cocostree/development e || @ search

|2 Most Visited @ Getting Started & COCO-Algorithms €} numbbo/numbbe - Gi... A RandOpt @ CMAP @ Inria Gitlab) RER B from lab
Another entry point for your own experiments can be the code-experiments/examples folder.

5. Now you can run your favorite algorithm on the bbob suite (for single-objective algorithms) or on the bbob-biobj and
bbob-biobj-ext suites (for multi-objective algorithms). Output is automatically generated in the specified data
result_folder . By now, more suites might be available, see below.

6. Postprocess the data from the results folder b

python -m cocopp [-o OUTPUT_FOLDERNAME] YOURDATAFOLDER [MORE_DATAFOLDERS]

Any subfolder in the folder arguments will be searched for logged data. That is, experiments from different batches can be in
different folders collected under a single "root” YOURDATAFOLDER

specifying several data result folders generated by different algg

postprocessing

A folder, ppdata by default, will be generated, which contains 3
file, useful as main entry point to explore the result with a brows®
the output folder name with the -o OUTPUT_FOLDERNAME option.

data from 200+ algorithms can be accessed directly
through its name (see
http://coco.gforge.inria.fr/doku.php?id=algorithms)

automatically). Results of each batch must be kept under their separate folder as is. These folders then must be

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 20

"?:_" " . # data-archive » data » gecco-bbob-1-24 » 2009 » rawdata » ppdata » - Search ppdata Fe

Organize « Include in library « Share with = Mew folder 4= (7]

-
& Favorites Mame Date modified Type

4. Downloads ; BIPOP-CMA-ES_hansen_noiseless 03/06,/2017 11:33 File folder
cocopp_commands.tex 03/06/2017 11:33 LaTex Document
index.html 03,/06/2017 11:33 Firefox HTML Doc...
ppdata.html 03/06/2017 11:33 Firefox HTML Doc...

% Dropbox
=] Recent Places
B Cesktop
J IntelGraphicsProfiles

o
L
L]

il Libraries
3 R Select a file
il Git to preview,
J’- Music
b=| Pictures
gﬂ Subwersion

B videos

%E- Homegroup

(M Computer
B vae_ a1

4 items State: 3% Shared

-

© Anne Auger and Dimo Brockhoff, Inria

Automatically Generated Result

PR

Post processing results

'(- o file:/// T/ Users/dimo/Desktop/coco/BBOB/ data-archive/data/gecco-bbob-1-24,/2009, c Q, Search ﬁ' E 4+

[2) Most Visited @ Getting Started & COCO-Algorithms €) numbbo/numbbe - Gi... [RandOpt @ CMAP @ Inria GitLlab) RER B from lab

Post processing results

Single algorithm data

BIPOP-CMA-ES hansen noiseless

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Opti

Automatically Generated Results

: R

BIPOP-CMA-ES, templateBBOB... *

| € | () filey///C:/Users/dimo/Desktop/coco/BBOB/ data-archive/data/gecco-bbob-1-24/2009, @ || Q Search S al:=| + B

[2) Most Visited @ Getting Started & COCO-Algorithms €) numbbo/numbbe - Gi... [RandOpt @ CMAP @ Inria GitLlab) RER B from lab

Home

Runtime distributions (ECDFs) per function

Runtime distributions (ECDFs) summary and function groups

Scaling with dimension for selected targets

Tables for selected targets

Runtime distribution for selected targets and f-distributions

Runtime loss ratios

Runtime distributions (ECDFs) over all targets

|bbab - f1-f24
51 targets in 108
115 instances

nction+target pairs

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30

Automatically Generated Results

ppridmany

-(-- (i) file:///C:/Users/dimo/Desktop/coco/BBOB/ data-archive/data/gecco-bbob-1-24/2009, @ || Q Search w B + #

Most Visited @ Getting Started & COCO-Algorithms € numbbo/numbbo - Gi... A RandOpt @ CMAP @ Inria GitLab) RER B from lab

Overview page

Runtime distributions (ECDFs) per function

irs

1 Sphere

=
=]

4 Skew Rastrigin-Bueche separ
bbb - 14 kg ~+&D
51 targets in 100 1e:08

15 instances. |

1o bbb - 13 X
51 targets in 100 Je-ap
0.8 115 instances !

im 100 1008

e
o

=
™

=
.

@

Propertian of Tunctien+target pairs
Prapartian of Tunction+target pairs

Pragartian of function+targst pa

dan
8

=
=]

i 4 &
laglD of (# fevals [dirmension)

Pragartian of function+target pairs

5 Linear slope

51 targats
0.8 (15 instanc

e
=]
-
e
o

ol

=

Propertion of Tunctien+target pairs
2 ¢ = ¥
L. . 5
Prapartion of Tuncticn+target pairs

=

=

o Lan]
4 b a [
lagll «f (# f-evals | difmension) logle of # f-evals / dimens

10 Ellipsoid

2

a1,
@
@
4
I
+
=
g
€
¥
5
5
g
i
20
=%

Pragartion of function+target pairs
g = ¢
o

1

L0 bbol - 112
51 targets in-
0.5 {15 instanceq
|

1.0 ook - 110
51 targats |
0.8 1S instance

Propertion of Tunctisn+target pairs
£ £ e o
ol
Prapartion of Tuncticn+target pairs
(=]
=
Fy

L=l
=
=
ra

o

@

Pragartian of function+target pairs
Pragartian of function+target pairs
o
o

2

=

ars

Automatically Generated Results

ppfigdim

Overview page

Average number of f~evaluations to reach target

2 Ellipsoid separable

21
<>1;<><><> R

15 instances
0 Vheoiute targets

3 Rastrigin separable

3 mstances
(0 Bbsolute targets

(&5 Q Search

wBe 93 A

[8) Most Visited @ Getting Started ' COCO-Algorithms € numbbo/numbbo - Gi... A RandOpt @ CMAP @ Inria GitLlab) RER B from lab

4 Skew Rastrigin-Bueche separ 5 Linear slope

OO -p—p—

13 mstances
absolute targats

45 instances
fhsolute targets

5 10 20
6 Attractive sector

0 A% instances
absolute targets

2: 31 #b 10 20 40

7 Step-ellipsoid

15 instances
0 Vheoiute targets

2 3 5 10 20
8 Rosenbrock original

nstances
nbsolute targats

2 3 5 10 20 40
9 Rosenbrock rotated

2 3 5 10 20
10 Ellipsoid

15 instances

15 instances
0 [bcoiute targets

0 Bhsciute targets

2 3 5 10 20
11 Discus

15 instances
0 Phsolute targets

2: 3 75 10 20
12 Bent cigar

15 instances
0 Vheoite targets

2 3 5 10 20
16 Weierstrass

40 2 3 5 10 20 40

17 Schaffer F7, condition 10

2 3 5 10 20
13 Sharp ridge

S nstances
0 bsolute targats

4 {

2 3 5 10 20

18 Schaffer F7, condition 1000

2 3 5 10 20 40
14 Sum of different powers

2 3 5 10 20
15 Rastrigin

15 instances
0 Bbsoiute targets

20 40
19 Griewank-Rosenbrock F8F2

2 3 5 10 20
20 Schwefel x*sin(x)

TC2: Introduction to Opti

so far:

data for 300+ algorithm variants
(some of which on noisy or multiobjective test functions)
143 workshop papers
by 109 authors from 28 countries

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oc

Measuring Performance

On

e real world problems
* expensive
« comparison typically limited to certain domains
« experts have limited interest to publish

 "artificial" benchmark functions
 cheap
 controlled
 data acquisition is comparatively easy
« problem of representativeness

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct.

Test Functions

» define the "scientific question”
the relevance can hardly be overestimated

 should represent "reality"
e are often too simple?

remind separability
* a number of testbeds are around

e account for invariance properties

prediction of performance is based on “similarity”,
ideally equivalence classes of functions

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30

Avalilable Test Suites in COCO

= bbob 24 noiseless fcts 220+ algo data sets
= bbob-noisy 30 noisy fcts 40+ algo data sets
* Dbbob-biobj 55 bi-objective fcts 30+ algo data sets
= Dbbob-largescale 24 noiseless fcts 11 algo data sets

= bbob-mixint 24 mixed integer fcts

* Dbbob-biobj-mixint 92 mixed integer fcts

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30

How Do We Measure Performance?

Meaningful quantitative measure
 quantitative on the ratio scale (highest possible)

"algo A Is two times better than algo B" is a meaningful
statement

e assume a wide range of values
« meaningful (interpretable) with regard to the real world

possible to transfer from benchmarking to real world

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 20

runtime or first hitting time 1s the prime candidate
(we don't have many choices anyway)

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30

How Do We Measure Performance?

Two objectives:

 Find solution with small(est possible)
function/indicator value

* With the least possible search costs (number of
function evaluations)

For measuring performance: fix one and measure the
other

e Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct.

Measuring Performance Empirically
convergence graphs is all we have to start with...

: I I
] o
N FS SO S
£ S
c ol
‘- i
5 3!
0 2 &L
=R ,_
T = n
cC
o O ;
g 5 [fxedtarget b M - Mg o oo
E o : |
=
> |
2oL .
E)
o ; which view is better?
i
i

|
number of function evaluations

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct.

ECDF:

Empirical Cumulative Distribution Function of the
Runtime

[aka data profile]

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oc

A Convergence Graph

110

100L _______________ — — —_ _—

oo M

function value

o R N — -

72| NN N S S A S — -

60

log,(function evaluations)

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 201¢

First Hitting Time Is Monotonous

110

100L _______________ — — —_ _—
90 _______________ _____________ ______________ _______________ |

o R N — -

function value

72| NN N S S N S — -

60

log,(function evaluations)

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 201¢

15 Runs

100

90

80

function value

70

"}}' v"\) /A)
R X

60 : : 1 : WaYaddies

log,(function evaluations)

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimi

15 Runs £ 15 Runtime Data Points

110
100
Q
=
c 90
>
O
.43
2 80
= |
Yy—
70
P~ ‘v‘ o \} R
ARG AL | 4"~‘fs'
REOTAM NN
T IR OV X\
50 IR A

log,(function evaluations)

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimi

Empirical Cumulative Distribution

110 g
V 'l“i" o
A \
v AAVL |

the of run
lengths to

100} reach the target

. has for each
data point a
vertical step of
constant size

90+

801

function value

. displays for

\ % each x-value

N AN G (budget) the

RO A N count of
observations to

the left (first

hitting times)

70t

60

log,(function evaluations)

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2

Empirical Cumulative Distribution

110 pymry interpretations
possible:
100 . 80% of the
v runs reached
T 90 the target
c
= . e.g. 60% of the
2 8ot
= runs need
between 2000
70t i 5 5 and 4000
IR R G N evaluations

T VAT G/ STNARER e W
N AN S A

60

log,(function evaluations)

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2

Reconstructing A Single Run

110

100 e — — — —_ _—

90+

function value

o —— N — -

60

T 2 3 4
log,(function evaluations)

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 201¢

Reconstructing A Single Run

110

100

O
o

50 equally
spaced targets

(o]
o

function value

T 2 3 4
log,(function evaluations)

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30

Reconstructing A Single Run

110py—

100} B S— S— . S— -

YN kT

function value

o 3 N — -

72| NN N S S 3 S — -

60

T 2 3 4
log,(function evaluations)

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 201¢

Reconstructing A Single Run

110 pv—

function value

log,(function evaluations)

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 201¢

Reconstructing A Single Run

110 pv—

the
makes a

step for each
star, Is
monotonous
and displays
for each
budget the
fraction of
targets
achieved within
the budget

w0
o

(o]
o

function value

log,o(function evaluations)

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct.

Reconstructing A Single Run

110

the ECDF
recovers the
monotonous
graph,
discretized and
flipped

100+

90+

function value

o T N — -

60

r 2 3 4
log,(function evaluations)

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30

Reconstructing A Single Run

110

100

90

function value

60

W L

T 2 3 4

log,(function evaluations)

the ECDF recovers
the monotonous
graph,
discretized and
flipped

© Anne Auger and Dimo Brockhoff, Inria

TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30

Aggregation

110 gy

15 runs

100

90

80

function value

70

60

1 2 3 4
log,(function evaluations)

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimi

Aggregation

110

15 runs

100

50 targets

S IR Y T S VR R
Ly W W LY
ALY W v e

i

e

90

80

function value

70

o
L= B
= - "'\“ e N “'
U, R T, 1
“A_-fd w1 Ty R

60

1 2 3 4
log,(function evaluations)

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 20

Aggregation

110
15 runs

+0 50 targets
Q
-
< 90
>
| &
©
2
- 80
e

70 5

,, hsad)
60 RO A

log,(function evaluations)

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2

Aggregation

110
15 runs

100 50 targets
Q
-
< 90
>
| &
©
B
- 80
e

70 L

ity
602 ” i 5 | : "\sn"r’é:i-ﬂ.;s':?(v” :

log,(function evaluations)

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2

Aggregation

110

50 targets from

100 15 runs

...Integrated In
a single
graph

90

80

function value

70

log,(function evaluations)

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2

Interpretation

50 targets from

110
15 runs
100 Integrated in a
single graph
5
© 90
>
c
2
2 80 =
E
average log
0 runtime
(or geometric avg.
60

~runtime) over all
log,o(function evaluations) targets (difficult and
easy) and all runs

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30

Worth to Note: ECDFs in COCO

In COCO, ECDF graphs

* never aggregate over dimension
* but often over targets and functions

« can show data of more than 1 algorithm at a time
R YT R R R s S

e, | W

from BBOB-2009 | /4 S& et ol mnee
,//-. ' ;, ‘}{“‘ ’," : ("_ A -\ _,\; ‘.
till BBOB-2015 /) i\

e5
g woise‘es
g’%‘hmse es
nd

Proportii

loa10 of (# f-evals / dimension) O

Another Interesting Plot...

...compares average runtimes over several algorithms

_1 Sphere/Sphere

7

e e s S

e — @ ------------------) S— O

*

Al]

S]

g S S e
-&= DEMO :

1L GA-MULTIOBI(NSGAH) o

0 L0100 abeRees 1o =2

Another Interesting Plot...

...compares average runtimes over several algorithms

] —

6

y axis shows 5}

runtime

In log-scale: 4

5 "=" 1e5*DIM 3}-

2t

1k

0

© Anne Auger and Di s

_1 Sphere/Sphere

--

== DEMO

= GA-MULTIOBJ(NSGA-H) e’
10, 10, Il_rlwgqa(%cé;sMA ES
falr;thI """"""" Ty A A Ay -

2 3 5 10 20 40

dimension

Another Interesting Plot...

...compares average runtimes over several algorithms
1 Sphere/Sphere median runlength

e / of uhsuccessful runs
6

e — a'star-indicates statistically

aRT value >l significant results compared
if<ec| | =@=DEMO toallother displayed algos
t0 reach LF=#="GA-MULTIOBHNSGA-H) -]

glve@ﬂlﬁﬂmﬁfoﬁ%aqggﬂénﬁﬂ?--“ _____ ______:

precision 2 3 5 10 50 40

© Anne Auger and Di s

Another Interesting Plot...

...compares average runtimes over several algorithms

7 1 Sphere/Sphere

/ A | quadra’t\ce """
] < — - -
3 inear : sc_allng Wlth

artificial best > .| dimension

algorithm -@- DEMO . :
from 1| == GA-MULTIOBJ(NSGA-H)]

BBOB-2016 10 10 ﬁ@"&&m ES
&8-5, P

© Anne Auger and Di s

Interesting for 2 Algorithms...

dimensions:
...are scatter plots 2:+, 3:7, 5:%, 10:0, 20:0, 40:0.

NowWw kR Ul O N 0 O

avg. runtime for algorithm B
7 Sphere/Rastrigin

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, O

Take Home Messages Benchmarking

| hope it became clear...

...that benchmarking is a non-trivial task
...details matter when comparing algorithms

...and that the COCO platform allows for an automated benchmarking
and provides data from hundreds of benchmarking experiments

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30

Discrete Optimization

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2

Discrete Optimization

Context discrete optimization:

= discrete variables

= or optimization over discrete structures (e.g. graphs)

= search space often finite, but typically too large for enumeration
= - need for smart algorithms

Algorithms for discrete problems:
= typically problem-specific
= but some general concepts are repeatedly used:
= greedy algorithms
= [branch and bound]
= dynamic programming
= randomized search heuristics

before 2 excursions:
the O-notation
& graph theory

Motivation for this Part:
= get an idea of the most common algorithm design principles

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct.

Excursion: The O-Notation

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Opti

Excursion: The O-Notation

Motivation:

= we often want to characterize how quickly a function f(x) grows
asymptotically

= e.g. when we say an algorithm takes quadratically many steps
(in the input size) to find the optimum of a problem with n

(binary) variables, it is most likely not exactly n?, but maybe n?+1
or (n+1)?

Big-O Notation

should be known, here mainly restating the definition:

Definition 1 We write f(x) = 0(g(x)) iff there exists a constant
¢ > 0 and an xy > 0 such that |f(x)| < ¢ g(x) holds for all x > x,

we also view O(g(x)) as a set of functions growing at most as
quick as g(x) and write f(x)eO(g(x))

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct.

Big-O: Examples

= f(x) + c=0O(f(x)) [if f(x) does not go to zero for x to infinity]
= c-f(x) = O(f(x))

= f(x) - 9(x) = O(f(x) - 9(x))
= 3n*+n?-7=0(n%

Intuition of the Big-O:
= f f(x) = O(g(x)) then g(x) gives an upper bound (asymptotically)

for f excluding constants and lower order terms
= With Big-O, you should have ‘<’ in mind
= An algorithm that solves a problem in polynomial time is "efficient"
= An algorithm that solves a problem in exponential time is not

= But be aware:
In practice, often the line between efficient and non-efficient lies
around nlogn or even n (or even logn in the big data context) and
the constants do matter!!!

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 3C

Excursion: The O-Notation

Further definitions to generalize from ‘<’ to ‘="' and ‘="

= 1(x) =Q(g(x)) 1t g(x) = O(f(x))
= f(x) = 0(g(x)) If f(x) = O(g(x)) and g(x) = O(f(x))

Note: extensions to ‘<’ and >’ exist as well, but are not needed here.

Example:

= Algo A solves problem P in time O(n)

= Algo B solves problem P in time O(n?)

= which one is faster?
only proving upper
bounds to compare

algorithms is not sufficient!
/

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30

Excursion: The O-Notation

Further definitions to generalize from ‘<’ to ‘="' and ‘="

= 1(x) =Q(g(x)) 1t g(x) = O(f(x))
= f(x) = 0(g(x)) If f(x) = O(g(x)) and g(x) = O(f(x))

Note: extensions to ‘<’ and >’ exist as well, but are not needed here.

Example:
= Algo A solves problem P in time O(n)
= Algo B solves problem P in time Q,Qrﬂ’f Q(n?)

= which one is faster?
only proving upper
bounds to compare

algorithms is not sufficient!
/

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30

Exercise O-Notation

O Please order the following functions in terms of their asymptotic
behavior (from smallest to largest):

= exp(n?)

= Jogn

= |Inn/Ininn
= n

= nlogn

= exp(n)

= |nn!

® Pick one pair of runtimes and give a formal proof for the relation.

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30

Excursion:
Basic Concepts of Graph Theory

[following for example http://math.tut.fi/~ruohonen/GT_English.pdf]

e Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30

Definition 1 An undirected graph G is a tupel G = (V, E) of edges e = {u,v} €
E over the vertex set V (i.e., u,v € V).

= vertices = nodes

= edges =lines

= Note: edges cover two unordered vertices (undirected graph)
= |f they are ordered, we call G a directed graph

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 201

Graphs: Basic Definitions

= G is called empty if E empty
= uand v are end vertices of an edge {u,v}
» Edges are adjacent if they share an end vertex

, . . . a loop
= Vertices u and v are adjacent if {u,v}isin E

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30

Walks, Paths, and Circuits

Definition 1 A walk in a graph G = (V, E) is a sequence

Vigs iy = (Vig, Viy)5 Viys €iy = (Viy, Vig)s -+ 5 €y, Vi

alternating vertices and adjacent edges of G.

A walk Is
= closed if first and last node coincide

= atrail if each edge traversed at most once
= a path if each vertex is visited at most once

a closed path is called a circuit or cycle

© Anne Auger and Dimo Brockhoff, Inria

TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30

Graphs: Connectedness

= Two vertices are called connected if there is a walk between
themin G

= |f all vertex pairs in G are connected, G is called connected

= The connected components of G are the (maximal) subgraphs
which are connected.

o(0®

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 20

Trees and Forests

= A forestis a cycle-free graph
= Atree is a connected forest

Sast

A spanning tree of a connected graph G is a tree in G which
contains all vertices of G

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 20

Greedy Algorithms

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Opti

Greedy Algorithms

From Wikipedia:

“A greedy algorithm is an algorithm that follows the problem
solving heuristic of making the locally optimal choice at each
stage with the hope of finding a global optimum.”

= Note: typically greedy algorithms do not find the global optimum

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30

Lecture Outline Greedy Algorithms

What we will see:
O Example 1: Money Change problem

® Example 2: Minimal Spanning Trees (MST) and the algorithm of
Kruskal

© Anne Auger and Dimo Brockhoff, Inria

TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30

Example 1. Money Change

Change-making problem

= Given n coins of distinct values w,=1, w,, ..., w, and a total
change W (where wy, ..., w,, and W are integers).

= Minimize the total amount of coins 2x; such that 2wx, = W and
where Xx; is the number of times, coin i is given back as change.

Greedy Algorithm
Unless total change not reached:

add the largest coin which is not larger than the remaining
amount to the change

Note: only optimal for standard coin sets, not for arbitrary ones!

Related Problem:
finishing darts (from 501 to O with 9 darts)

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2

Example 2: Minimum Spanning Trees (MST

Minimum Spanning Tree problem:
Given a graph G=(V,E) with edge weights w, for each edge e,.
Find the spanning tree with the smallest weight among all
spanning trees.

weight of a spanning tree:
w(T) = 2 W,

einT

Applications

Setting up a new wired telecommunication/water
supply/electricity network

Constructing minimal delay trees for broadcasting in networks

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30

Kruskal’s Algorithm: Idea

Algorithm, see [1]

= Create forest F = (V,{}) with n components and no edge
Put sorted edges (such that w.l.o.g. w; <w, < ... <Wwf) into set S
= While S non-empty and F not spanning:

= delete cheapest edge from S

= additto F if no cycle is introduced

[1] Kruskal, J. B. (1956). "On the shortest spanning subtree of a graph and the
traveling salesman problem". Proceedings of the American Mathematical
Society 7: 48-50. doi:10.1090/S0002-9939-1956-0078686-7

© Anne Auger and Dimo Brockhoff, Inria

TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2

Kruskal’s Algorithm: Example

ne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2

Kruskal’s Algorithm: Example

A C
7 A v 1°
3 E H
20
11 13

O =@

er and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2

Kruskal’s Algorithm: Runtime Consideratio

First question: how to implement the algorithm?
= sorting of edges needs O(|E]| log |E|)

Algorithm
Create forest F = (V,{}) with n components and no edge

Put sorted edges (SUC%% <..<Wg)IintosetS
While S non-empty and\&_not spanning-

delete theapest

add i\t ﬁ%

simple ’)

forest implementation:
Disjoint-set
data structure

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30

Disjoint-set Data Structure (“Union&Find”)

Data structure: ground set 1...N grouped to disjoint sets

Operations: @ @ @ @
= FIND(I): to which set does i belong?
= UNION(l,j): union the sets of i and |! @ @ @

Implemented as trees:
= UNION(T1, T2): hang root node of smaller tree under root
node of larger tree (constant time), thus

= FIND(u): traverse tree from u to root (to return a representative
of u’'s set) takes logarithmic time in total number of nodes

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct.

Implementation of Kruskal’s Algorithm

Algorithm, rewritten with UNION-FIND:

Create initial disjoint-set data structure, i.e. for each vertex v,
store v; as representative of its set

Create empty forest F = {}
Sort edges such that w.l.o.g. wy <w, < ... <Wg,
for each edge e={u,v} starting from i=1:
= if FIND(u) # FIND(v): # no cycle introduced?
* F=FuU{{uv}}
= UNION(u,v)
return F

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 201

Back to Runtime Considerations

= Sorting of edges needs O(|E| log |E|)
» forest: Disjoint-set data structure
= |nitialization: O(|V|)
= |og |V| to find out whether the minimum-cost edge {u,v}

connects two sets (no cycle induced) or is within a set (cycle
would be induced)

= 2X FIND + potential UNION needs to be done O(|E]|) times
= total O(|E| log |V])
= Qverall: O(|E| log |E|)

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 20

Kruskal’s Algorithm: Proof of Correctness

Two parts needed:
© Algo always produces a spanning tree
final F contains no cycle and is connected by definition v/
® Algo always produces a minimum spanning tree
= argument by induction

= P:If Fis forest at a given stage of the algorithm, then there
IS some minimum spanning tree that contains F.

= clearly true for F = (V, {})

= assume that P holds when new edge e is added to F and
be T a MST that contains F

= feinT, fine
= jfenotinT: T+ e has cycle C with edge fin C but not
In F (otherwise e would have introduced a cycle in F)

= now T —f+ eisatree with same weight as T (since
Tis a MST and f was not chosen to F)

» henceT-f+eis MST including F +e (i.e. P hczl/ds)

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oc

Conclusion Greedy Algorithms |

What we have seen so far:
= two problems where a greedy algorithm was optimal
= money change
= minimum spanning tree (Kruskal’s algorithm)
= Dut also: greedy not always optimal
= for some sets of coins for example

Obvious Question: when is greedy good?
Answer: if the problem is a matroid (no further details here)

From Wikipedia: [...] @ matroid is a structure that captures and
generalizes the notion of linear independence in vector
spaces. There are many equivalent ways to define a matroid,
the most significant being in terms of independent sets,
bases, circuits, closed sets or flats, closure operators, and
rank functions.

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct.

Conclusions Greedy Algorithms |l

| hope it became clear...

...what a greedy algorithm is
...that it not always results in the optimal solution
...but that it does if and only if the problem is a matroid

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30

Dynamic Programming

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Opti

Dynamic Programming

Wikipedia:
“[...] dynamic programming is a method for solving a complex

problem by breaking it down into a collection of simpler
subproblems.”

But that’s not all:

= dynamic programming also makes sure that the subproblems are
not solved too often but only once by keeping the solutions of
simpler subproblems in memory (“trading space vs. time”)

= jtis an exact method, i.e. in comparison to the greedy approach, it
always solves a problem to optimality

Note:

the reason why the approach is called "dynamic programming" is
historical: at the time of invention by Richard Bellman, no
computer "program" existed

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct.

Two Properties Needed

Optimal Substructure

A solution can be constructed efficiently from optimal solutions of
sub-problems

Overlapping Subproblems

Wikipedia: “[...] a problem is said to have overlapping
subproblems if the problem can be broken down into
subproblems which are reused several times or a recursive
algorithm for the problem solves the same subproblem over and
over rather than always generating new subproblems.”

Note: in case of optimal substructure but independent subproblems,
often greedy algorithms are a good choice; in this case, dynamic
programming is often called “divide and conquer” instead

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct.

Main Idea Behind Dynamic Programming

Main idea: solve larger subproblems by breaking them down to
smaller, easier subproblems in a recursive manner

Typical Algorithm Design:

© decompose the problem into subproblems and think about how
to solve a larger problem with the solutions of its subproblems

® specify how you compute the value of a larger problem
recursively with the help of the optimal values of its subproblems
(“Bellman equation”)

©® Dbottom-up solving of the subproblems (i.e. computing their
optimal value), starting from the smallest by using the Bellman
equality and a table structure to store the optimal values
(top-down approach also possible, but less common)

® eventually construct the final solution (can be omitted if only the
value of an optimal solution is sought)

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, O

Lecture Outline Dynamic Programming (DP)

What we will see:

O Example 1: The All-Pairs Shortest Path Problem
® Example 2: The knapsack problem

© Anne Auger and Dimo Brockhoff, Inria

TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30

Example 1. The Shortest Path Problem

Shortest Path problem:
Given a graph G=(V,E) with edge weights w, for each edge e,.
Find the shortest path from a vertex v to a vertex u, I.e., the path
(v, e,={v, vV}, Vq, -y Vi €,={V,, U}, U) Such that wy + ... + w s
minimized.

Obvious Applications
Google maps
Autonomous cars
Finding routes for packages in a computer network

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2

Example 1. The Shortest Path Problem

Shortest Path problem:
Given a graph G=(V,E) with edge weights w, for each edge e,.
Find the shortest path from a vertex v to a vertex u, I.e., the path

(v, e,={v, vV}, Vq, -y Vi €,={V,, U}, U) Such that wy + ... + w s
minimized. 7 1

Note:
We can often assume that
the edge weights are stored
In a distance matrix D of
dimension |E|x|E| where
an entry D;; gives the weight between nodes | and j and "non-
edges” are assigned a value of «

Why important? = determines input size

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 3C

Opt. Substructure and Overlapping Subprok

Optimal Substructure

The optimal path from u to v, if it contains another vertex p can
be constructed by simply joining the optimal path from u to p with
the optimal path from p to v.

Overlapping Subproblems
Optimal shortest
sub-paths can be reused 1
when computing longer paths: 3 L @,
e.g. the optimal path from u to p
IS contained in the optimal path from
u to g and in the optimal path from u to v.

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30

The All Pairs Shortest Paths Problem

All Pairs Shortest Path problem:
Given a graph G=(V,E) with edge weights w, for each edge e,.
Find the shortest path from each source vertex v to each other
target vertex u, i.e., the paths (v, e;={v, v}, V4, ..., V,, €,={V,,U}, U)
such that w, + ... + w, is minimized for all pairs (u,v) in V2.

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 20

The Algorithm of Robert Floyd (1962)

ldea:
= if we knew that the shortest path between source and target
goes through node v, we would be able to construct the
optimal path from the shorter paths “source->v” and “v—->target

= subproblem P(k): compute all shortest paths where the
iIntermediate nodes can be chosen from v, ..., v,

AllPairsShortestPathFloyd(G, D)
= Init: forall 1 <i,j < [V[: dist(i,j) = D;;
* Fork=1to|V| # solve subproblems P(k)
= for all pairs of nodes (i.e. 1 <i,j < |V]):
= dist(i,)) = min { dist(i,)), dist(i,k) + dist(k,)) }

Note: Bernard Roy in 1959 and Stephen Warshall in 1962 essentially proposed the
same algorithm independently.

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 3C

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30

m_ for all pairs of nodes (i.e. 1 <1i,j < |V|):]

dist(i,j)) = min { dist(i,}), dist(i,k) + dist(k,]j) } |

) 9] -1)

00 00 00
00 00 00 3
00 5 00

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct.

m_ for all pairs of nodes (i.e. 1 <1i,j < |V|):]

dist(i,j)) = min { dist(i,}), dist(i,k) + dist(k,]j) } |

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct.

m_ for all pairs of nodes (i.e. 1 <1i,j < |V|):]

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct.

m_ for all pairs of nodes (i.e. 1 <1i,j < |V|):]

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct.

m_ for all pairs of nodes (i.e. 1 <1i,j < |V|):]

dist(i,j)) = min { dist(i,}), dist(i,k) + dist(k,]j) } |

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct

m_ for all pairs of nodes (i.e. 1 <1i,j < |V|):]

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }

~
R O 8 N
8
8
~
= © 38§
8
8

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct.

m_ for all pairs of nodes (i.e. 1 <1i,j < |V|):]

dist(i,j)) = min { dist(i,}), dist(i,k) + dist(k,]j) } |

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct

m_ for all pairs of nodes (i.e. 1 <1i,j < |V|):]

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, O

m_ for all pairs of nodes (i.e. 1 <1i,j < |V|):]

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }

allow {1,2,3} as intermediate nodes
/

——
1 00 1 1 00 1 0 2 11 1 £

Bl - 2 ¢
0w w0 9 1 o« 0w 9 -1 o
9 18 8 9 18 8
1 10 0 3 1 10 0 3
© 5 o0 © 5

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct.

m_ for all pairs of nodes (i.e. 1 <1i,j < |V|):]

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }

allow {1,2,3} as intermediate nodes
/

—
1 o0 1 1 00 1 11 £

Bl - 2 ¢
© o 9 -1 o 9 oo
9 18 8 7 9 18 8
1 10 0 3 10 3
© 5 @ ow 5

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, O

for all pairs of nodes (i.e. 1<ij<|V]): |

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }

allow {1,2,3} as intermediate nodes
/

—
1 °0 1 1 °0 i 18 2 11 1 °0

Bl - (2 1
© 0o 9 -] o 16 18 9 -1
9 18 8 = 7 9 18 8
1 10 0 3 -1 ' 1 10 O 3
© 5 © 12 14 5 13

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, O

m_ for all pairs of nodes (i.e. 1 <1i,j < |V|):]

dist(i,j)) = min { dist(i,}), dist(i,k) + dist(k,]j) } |

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct

for all pairs of nodes (i.e. 1 <i,j < |V|): |

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }

allow {1,2,3,4} as intermediate nodes

_—
18 2 11
16 18 9 -1

/9 18 8

© Anne Auger and Dimo Brockhoff, Inria

for all pairs of nodes (i.e. 1 <i,j < |V|): |

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }

allow {1,2,3,4} as intermediate nodes

_—
18 2 11
16 18 9 -1

/9 18 8

8 11
0O 3
13 16

© Anne Auger and Dimo Brockhoff, Inria

m_ for all pairs of nodes (i.e. 1 <1i,j < |V|):]

dist(i,j)) = min { dist(i,}), dist(i,k) + dist(k,]j) } |

allow all nodes as intermediate nodes

— —
1 0 2 11 1 1 0 2 11 1 4
2 0 9 -1 2 2 0 9 -1 2
7 9 18 8 11 7 9 18 8 11

-1 1 10 O 3 -1 1 10 O 3
12 14 5 13 16 12 14 5 13 16

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct

for all pairs of nodes (i.e. 1 <i,j < |V|): |

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }

allow all nodes as intermediate nodes

— o
1 0 2 11 1 4 1 0 2 9 1 4
BN 2 0o 9 12 2 B2 0o 7 a1 2

9 16 8 11

© Anne Auger and Dimo Brockhoff, Inria

Runtime Considerations and Correctness

O(]V]3) easy to show
= O(|V|?) many distances need to be updated O(|V|) times

Correctness
= given by the Bellman equation
dist(i,}) = min { dist(i,)), dist(i,k) + dist(k,j) }
= only correct if cycles do not have negative total weight (can

be checked in final distance matrix if diagonal elements are
negative)

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 201¢

But How Can We Actually Construct the Path

= Construct matrix of predecessors P alongside distance matrix
= P; (k) = predecessor of node | on path from i to | (at algo. step k)

= no extra costs (asymptotically)

0y [0 1=l ordy =

[in all other cases

p; (k) = P j(k —1) ifdist(i,j) < dist(i, k) + dist(k, j)
AT Prj(k— 1) ifdist(i, j) > dist(i, k) + dist(k,))

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 201

Example 2: The Knapsack Problem (KP)

Knapsack Problem

max. ijxj with Z S~ {0, 1}
g=1

e Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30

Opt. Substructure and Overlapping Subprok

Consider the following subproblem:
P(i, j): optimal profit when packing the first i items into a
knapsack of size j

Optimal Substructure

The optimal choice of whether taking item i or not can be made
easily for a knapsack of weight j if we know the optimal choice
foritems1..i— 1.

0 ifi=00rj=0
P(i,j) = P(i—1,)) ifw; >j
max{P(i —1,/),p; + P((—1,j—wy)} ifw; <j

Overlapping Subproblems

a recursive implementation of the Bellman equation is simple,
but the P(i,j) might need to be computed more than once!

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2

Dynamic Programming Approach to the KP

To circumvent computing the subproblems more than once, we can
store their results (in a matrix for example)...

knapsack weight

n-------

P(1.))

+— [tems

best achievable
profit with items 1...i
and a knapsack of
size |

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30

Dynamic Programming Approach to the KP

Example instance with 5 items with weights and profits
(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is W=11.

knapsack weight

n-----n-nn

+— |tems

Initialization:
P(i,j)=0ifi=0o0rj=0

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30

Dynamic Programming Approach to the KP

Example instance with 5 items with weights and profits
(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is W=11.

knapsack weight

n-----n-nn

+— |tems

o O O O O

Initialization:
P(i,j)=0ifi=0o0rj=0

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30

Dynamic Programming Approach to the KP

Example instance with 5 items with weights and profits
(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restrictionis W = 11.

knapsack weight

n-----n-nn

n

&

g 0 ———-
0 B T ————-

| B . — —T
0 e ————-

fori =1 ton:

forj=1to W:

max{P(i —1,)),p; + P(i — 1,j — w;)}itw; =j

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30

Dynamic Programming Approach to the KP

Example instance with 5 items with weights and profits
(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restrictionis W = 11.

knapsack weight

n-----n-nn

=
9 o |0
0
| BN
0
0
fori =1ton:
forj=1to W:
PG, f) = P(i—1,)) itw; > j

max{P(i —1,)),p; + P(i — 1,j — w;)}itw; =j

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30

Dynamic Programming Approach to the KP

Example instance with 5 items with weights and profits
(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restrictionis W = 11.

knapsack weight

n-----n-nn

=
g O 0 O
0
| BN
0
0
fori =1ton:
forj=1to W:
PG, f) = P(i—1,)) itw; > j

max{P(i —1,)),p; + P(i — 1,j — w;)}itw; =j

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30

Dynamic Programming Approach to the KP

Example instance with 5 items with weights and profits
(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restrictionis W = 11.

knapsack weight

n-----n-nn

0 0 0 0

+— |tems

o O O O O

fori =1ton:
forj=1to W:

' max{P(i —1,)),p; + P(i — 1,j — w;)}ifw; = j

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30

Dynamic Programming Approach to the KP

Example instance with 5 items with weights and profits
(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restrictionis W = 11.

knapsack weight

n-----n-nn

g 04— 0 TO 0 0
Q 0 O 0 0 3
T +p1(= 4)
0
| BN
0
0
fori =1 to n:
forj=1to W:
1 g ifw; >

max{P(i —1,)),p; + P(i — 1,j —w;)}itw; =j

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30

Dynamic Programming Approach to the KP

Example instance with 5 items with weights and profits
(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restrictionis W = 11.

knapsack weight

n-----n-nn

g <_ 0 TO
2 0 0 0 0 04— 4
- +p1(=4)
0
1 ,
0
0
fori =1 ton:
forj=1to W:
.4 ifw: > i

max{P(i —1,)),p; + P(i — 1,j —w;)}itw; =j

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30

Dynamic Programming Approach to the KP

Example instance with 5 items with weights and profits
(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restrictionis W = 11.

knapsack weight

n-----n-nn

0 0 0 0 4 4 4 4 4 4 4

+— |tems

o O O O O

fori =1ton:
forj=1to W:

;s — 1,7 ifw; >j
P(i,) = P(i—1,)) i =)

max{P(i —1,)),p; + P(i — 1,j —w;)}itw; =j

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30

Dynamic Programming Approach to the KP

Example instance with 5 items with weights and profits
(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restrictionis W = 11.

knapsack weight

n-----n-nn

0 0 0 0 4 4 4 4 4 4 4
0 0 0 0 4 4

+— |tems

o O O O O

fori =1ton:
forj=1to W:

;s — 1,7 ifw; >j
P(i,) = P(i—1,)) i =)

max{P(i —1,)),p; + P(i — 1,j —w;)}itw; =j

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30

Dynamic Programming Approach to the KP

Example instance with 5 items with weights and profits
(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restrictionis W = 11.

knapsack weight

n-----n-nn

(7))
&
2 0 «0 0 0 0 14 4 4 4 4
0 0 0 0) 0]
l +p, (= 10)
0
0
0
fori =1ton:
forj=1to W:
1 ifw; >j

max{P(i —1,)),p; + P(i — 1,j —w;)}itw; =j

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30

Dynamic Programming Approach to the KP

Example instance with 5 items with weights and profits
(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restrictionis W = 11.

knapsack weight

n-----n-nn

0 0 0 0 4 4 4 4 4 4 4
0 0 0 0 4 4 10 10 10 10 10

+— |tems

o O O O O

fori =1ton:
forj=1to W:

;s — 1,7 ifw; >j
P(i,) = P(i—1,)) i =)

max{P(i —1,)),p; + P(i — 1,j —w;)}itw; =j

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30

Dynamic Programming Approach to the KP

Example instance with 5 items with weights and profits
(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restrictionis W = 11.

knapsack weight

n-----n-nn

4 4 4 4 4 4 4
4 4 10 10 10 10 10

o O
o O
o O
o O

+— |tems

o O O O O
o
w
w
w

fori =1ton:
forj=1to W:

;s — 1,7 ifw; >j
P(i,) = P(i—1,)) i =)

max{P(i —1,)),p; + P(i — 1,j —w;)}itw; =j

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30

Dynamic Programming Approach to the KP

Example instance with 5 items with weights and profits
(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restrictionis W = 11.

knapsack weight

n-----n-nn

(7))
-
g 0 0 0 0 0 4 4 4 4 4 4 4
O O O O0_. 0 44 4 10 10 10 10 10
l o 0 3 3'\14
tp3(=3
0
0
fori =1 ton:
forj=1to W:
A ifw; >j

max{P(i —1,)),p; + P(i — 1,j —w;)}itw; =j

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30

Dynamic Programming Approach to the KP

Example instance with 5 items with weights and profits
(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restrictionis W = 11.

knapsack weight

n-----n-nn

(7))
-
g 0 0 0 0 0 4 4 4 4 4 4 4
O O O O 0 ._.4 44 10 10 10 10 10
l o 0 3 3 3'4\14
+p3(= 3)
0
0
fori =1 ton:
forj=1to W:
A ifw; >j

max{P(i —1,)),p; + P(i — 1,j —w;)}itw; =j

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30

Dynamic Programming Approach to the KP

Example instance with 5 items with weights and profits
(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restrictionis W = 11.

knapsack weight

n-----n-nn

(7))
-
g 0 0 0 0 0 4 4 4 4 4 4 4
O O O O 0 4 _ 4 40 10 10 10 10
l 003334'4\110etc.
+p3(= 3)
0
0
fori =1 ton:
forj=1to W:
A ifw; >j

max{P(i —1,)),p; + P(i — 1,j —w;)}itw; =j

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30

Dynamic Programming Approach to the KP

Example instance with 5 items with weights and profits
(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restrictionis W = 11.

knapsack weight

=
9 O 0 O 0 0 4 4 4
0O 0 O 0 0 4 4 10
l O 0 3 3 3 4 4 10
O 0 3 3 5 5 8 10
0O 0 3 3 5 6 8 10

fori =1ton:
forj=1to W:

P(i,j) = P(i—1,j)

4
10
10
10
10

4
10
13
13
13

4 4
10 10
13 13
13 15
13 15
if Wi >j

ﬂ-----ﬂ-ﬂﬂ

max{P(i —1,)),p; + P(i — 1,j —w;)}itw; =j

© Anne Auger and Dimo Brockhoff, Inria

TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 201¢

Dynamic Programming Approach to the KP

Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restrictionis W = 11.

knapsack weight

=
9 O 0 O 0 0 4 4 4
0O 0 O 0 0 4 4 10
l O 0 3 3 3 4 4 10
O 0 3 3 5 5 8 10
0O 0 3 3 5 6 8 10

fori =1ton:
forj=1to W:

P(i,j) = P(i—1,j)

4
10
10
10
10

4
10
13
13
13

4 4
10 10
13 13
13 15
1
if Wi >j

ﬂ-----ﬂ-ﬂﬂ

max{P(i —1,)),p; + P(i — 1,j —w;)}itw; =j

© Anne Auger and Dimo Brockhoff, Inria

TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 201¢

Dynamic Programming Approach to the KP

Question: How to obtain the actual packing?
Answer: we just need to remember where the max came from!

knapsack weight

Pi.j) n-----n-nn

n
= 0
3 00 O O0_ 4, 4 4 4 4 4 4
. — X2 — 1
O 0 0 0 10_,0 10 10 10
o 3 3 3 4 10 13, 13, 13
=
O 3 3 5 8 10 10 13 1-3715
o 3 3 5 6 8 10 10 13 13 15

x5=O
fori =1ton:
forj=1to W:

' max{P(i — 1,)),p; + P(i — 1,j — w;)}i{w; =

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30

Conclusions

| hope it became clear...

...what the algorithm design ideas of dynamic programming are
...and for which problem types it is supposed to be suitable

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30

(Randomized) Search Heuristics

ne Auger and Dimo Brockhoff, Inria to Optimization, U. Paris-Saclay, Oct. 30

Motivation General Search Heuristics

= often, problem complicated and not much time available to
develop a problem-specific algorithm

= search heuristics are a good choice:
= relatively easy to implement
= easy to adapt/change/improve

= e.g. when the problem formulation changes in an early
product design phase

= or when slightly different problems need to be solved
over time

= randomized/stochastic algorithms are a good choice because
they are robust to noise

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2

Lecture Outline Randomized Search Heuristics

Which algorithms will we touch?
© Randomized Local Search (RLS)

® Variable Neighborhood Search (VNS)
©® Tabu Search (TS)

® Evolutionary Algorithms (EAS)

© Anne Auger and Dimo Brockhoff, Inria

TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30

Neighborhoods

For most (stochastic) search heuristics, we need to define a
neighborhood structure

= which search points are close to each other?

Example: k-bit flip / Hamming distance k neighborhood
» search space: bitstrings of length n (Q={0,1}")

»= two search points are neighbors if their Hamming
distance is k

*= |n other words: x and y are neighbors if we can flip
exactly k bits in x to obtain y

= (0001001101 is neighbor of
0001000101 for k=1
0101000101 for k=2
1101000101 for k=3

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2

Neighborhoods Il

Example: possible neighborhoods for the knapsack problem
= search space again bitstrings of length n (Q={0,1}")
= Hamming distance 1 neighborhood:

= add an item or remove it from the packing
= replacing 2 items neighborhood:
*= replace one chosen item with an unchosen one

= makes only sense in combination with other
neighborhoods because the number of items stays
constant

= Hamming distance 2 neighborhood on the contrary:
= allows to change 2 arbitrary items, e.g.
= add 2 new items
= remove 2 chosen items
= or replace one chosen item with an unchosen one

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2

Randomized Local Search (RLS)

Idea behind (Randomized) Local Search:
= explore the local neighborhood of the current solution (randomly)

Pure Random Search:
= go to randomly chosen neighbor

First Improvement Local Search:
= go to first (randomly) chosen neighbor which is better

Best Improvement strategy:

= always go to the best neighbor

= not random anymore

= computationally expensive if neighborhood large

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30

Variable Neighborhood Search

Main ldea: [Mladenovic and P. Hansen, 1997]
= change the neighborhood from time to time

» |ocal optima are not the same for different neighborhood
operators

= but often close to each other
= global optimum is local optimum for all neighborhoods
* rather a framework than a concrete algorithm
= e.g. deterministic and stochastic neighborhood changes

= typically combined with (i) first improvement, (ii) a random
order in which the neighbors are visited and (iii) restarts

N. Mladenovic and P. Hansen (1997). "Variable neighborhood search". Computers
and Operations Research 24 (11): 1097-1100.

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct.

Tabu Search

Disadvantages of local searches (with or without varying
neighborhoods)

» they get stuck in local optima

= have problems to traverse large plateaus of equal objective
function value (“random walk”)

Tabu search addresses these by
= allowing worsening moves if all neighbors are explored
* |ntroducing a tabu list of temporarily not allowed moves
» those restricted moves are
= problem-specific and

= can be specific solutions or not permitted “search
directions” such as “don’t include this edge anymore” or
“do not flip this specific bit”

» the tabu list is typically restricted in size and after a while,
restricted moves are permitted again

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct.

Stochastic Optimization Algorithms

One class of (bio-inspired) stochastic optimization algorithms:

Evolutionary Algorithms (EAS)

= (Class of optimization algorithms
originally inspired by the idea of
biological evolution

= selection, mutation, recombination

—

x
PUBLIC
DOMAIN

© Anne Auger and Dimo Brockhoff, Inria

Classical Optimization Evolutionary Computation

variables or parameters variables or chromosomes

candidate solution Individual, offspring, parent
vector of decision variables /
design variables / object

variables
set of candidate solutions population
objective function fitness function

loss function
cost function
error function

iteration generation

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 20

Generic Framework of an EA

Initialization best individual

: pOtentia mating
evaluation :
parents selection

environmental
selection

crossover/
mutation

evaluation

stochastic operators

__ “Darwinism’ representation (search space)
stopping criteria J

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 201¢

The Historic Roots of EAS

Genetic Algorithms (GA)
J. Holland 1975 and D. Goldberg (USA)
Q={0,1}"

Evolution Strategies (ES)
|. Rechenberg and H.P. Schwefel, 1965 (Berlin)
() =R"

Evolutionary Programming (EP)

L.J. Fogel 1966 (USA)

Genetic Programming (GP)

J. Koza 1990 (USA)
() = space of all programs

nowadays one umbrella term: evolutionary algorithms

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30

Genotype — Phenotype mapping

The genotype — phenotype mapping

= related to the question: how to come up with a fithess
("quality") of each individual from the representation?

= related to DNA vs. actual animal (which then has a fitness)

fitness of an individual not always = f(x)
* include constraints
* Include diversity
= others
= but needed: always a total order on the solutions

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 201¢

Handling Constraints

Several possible ways to handle constraints, e.g.:
= resampling until a new feasible point is found (“often bad idea”)

= penalty function approach: add constraint violation term
(potentially scaled)

* repair approach: after generation of a new point, repair it (e.g.
with a heuristic) to become feasible again if infeasible

= continue to use repaired solution in the population or
» use repaired solution only for the evaluation?

= multiobjective approach: keep objective function and constraint
functions separate and try to optimize all of them in parallel

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2

Examples for some EA parts

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Opti

Selection is the major determinant for specifying the trade-off
between exploitation and exploration

Selection is either

stochastic or deterministic
e.g. fitness proportional Disadvantage: e.g. (U+A), (LLA)
e D "=~ depends on T 4
C Yl f(x;) | scaling of f
best p from
e.g. via a tournament offspring and

parents
. @ best p from

offspring only

Mating selection (selection for variation): usually stochastic
Environmental selection (selection for survival): often deterministic

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30

Variation Operators

Variation aims at generating new individuals on the basis of those
Individuals selected for mating

Variation = Mutation and Recombination/Crossover

mutation: mut:) — €
recombination: recomb: 2 — Q° wherer >2ands > 1

= choice always depends on the problem and the chosen
representation

= however, there are some operators that are applicable to a wide

range of problems and tailored to standard representations such
as vectors, permutations, trees, etc.

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2

Variation Operators: Guidelines

Two desirable properties for mutation operators:

= every solution can be generation from every other with a
probability greater than 0 (“exhaustiveness”)

" d(z,2") <d(z,2") => Prob(mut(z) = 2') > Prob(mut(z) = z")
(“locality”)

Desirable property of recombination operators (“in-between-ness”):

" = recomb(z,z’) = d(z",x) < d(z,2") Nd(2",2") < d(x,z")

17
.ZU

© Anne Auger and Dimo Brockhoff, Inria

Examples of Mutation Operators on Permutations

Swap: 1]12]3]4]5]6
N4

swap

Scramble: [1]2]3]4]5]6] —— [1]3]4]2]5]6
T 1

realrrange

Invert: 1]2[3]4]5]6] - [1][4]3]2]5]6
t t

reverse

Insert: 1]12]3]4]5]6] - [1]4]2]3]|5]6

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30

Examples of Recombination Operators: {0,1}"

1-point crossover

1[o[1]0}0]1

—— [lefofofo] 1

n-point crossover
[1}1]o0]of1]0] 70

1:0[1]0}0][1

uniform crossover

0/0] independently from
110[1]/0]0]1 one parent or another

_ . . choose each bit J
— 0 0

© Anne Auger and Dimo Brockhoff, Inria

TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30

A Canonical Genetic Algorithm

= binary search space, maximization
= uniform initialization
= generational cycle: of the population
= evaluation of solutions
= mating selection (e.qg. roulette wheel)
= crossover (e.g. 1-point)
= environmental selection (e.g. plus-selection)

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30

Conclusions

= EASs are generic algorithms (randomized search heuristics,
meta-heuristics, ...) for black box optimization

no or almost no assumptions on the objective function

* They are typically less efficient than problem-specific
(exact) algorithms (in terms of #funevals)

less differences in the continuous case (as we have seen)

= Allow for an easy and rapid implementation and therefore
to find good solutions fast

easy to incorporate (and recommended!) to incorporate
problem-specific knowledge to improve the algorithm

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 201

Conclusions

| hope it became clear...

...that heuristics is what we typically can afford in practice (no
guarantees and no proofs)

...what are the main ideas behind evolutionary algorithms

...and that evolutionary algorithms and genetic algorithms are no
synonyms

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30

