
TTC 2 - Optimization for ML CLASS 4

of Abut the EXAM :

written exam week from th - 18 December at the

University .
13:30 → 15:30 2Hours

without documents .

For the 3/4 of you
who cannot be present , we will

organize an oral exam .
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We observe that the Newton direction points towards the optimum
independently of the condition number of the Hessian matrix .

whereas - DfE) points towards the optimuazx.gg and only if
172ft) = Id and the condition number equal to 1 .

If the Hessian matrix is not diagonal anymore : flxttzxtax
symmetric

A- positive, definite

, µYkD
-

'

Dff) : Newton direction A not diagonal

-
Dfw//µ# - Dax, tht -- afar . h
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optimality conditions :

Assume f : IR → R is differentiable ( f
'
Cx) exists for all x)

which one of the following statements are correct :

① f
' k'T = o ⇒ x

'
is a local optimum w.ae/'ffIIEY

L'61=0 FEI --o

② xt is a local optimum ⇒ f
'

txt ) = 0 correct ¥¥mpf
③ f

'

1×7=0 ⇒ x* is a global optimum Wrona

⑥ x
-
is a global optimum ⇒ f

'

lock) = 0 correct

② gives a first order necessary condition .

THEoRE# ( first order necessary condition)
her f : IR"→ IR be a differentiable function . If x k is a local optimum off
then DfHr) = o .

minimum

or maximum
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SECOND ORDER NECESSARY AND SUFFICIENT CONDITIONS :

Let assume that f is twice continuously differentiable
NECESSARycoNDition-Ifxt.is a local minimum

,
then Dfw) = o

and DYK) is positive semi- definite .
( if n -- t , xd is a local minimum ⇒ f'G.) = o , f-

"

G)3 O )
SufFiciENTwNDiTioN:_ If x* which satisfies Dfw) = o and DYK) is

positive definite , then x' is a strict local minimum
.

( if n=a , xte such that f'Ga) = o f
"

(x) so ⇒ xd is a strict local

minimum)
Eixample f =x2

, f
" (x) -- 2

µ
74×1=2×0
satisfies that Fto) -- 2×0=0 and f-

"101=2> o

⇒ O is a strict local minimum
.
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CONVEX FUNCTIONS

Let f : y C IR
"

→ R .
We say that f is convex , if for all x. y E V

open convex set tf t E [ o , I]

flu -H x x ty ) te le - H f Cx) t t fly )
^

a.t.gg sun...fka-tlxt.to/*/;-/yh.ttxtty
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s not convex because

ifabo@neTtEoREnn.I
f f is differentiable , then f is convex if and only if

for all n, y flyt - LH z DfH 'T y - x) =Dfled . ly -x)
If n -- a fly ) - fat s f

'GI ly -x ) cover

if and only if the#
f is

function is above
the tangent .

THEoREn If f rs twice continuously differentiable, then f is convex if and only

/ if DYK) is positive semi- definite for all x.
If n -- I f is twice derivable , then f is convex if and only if f

"

(x) Z O



Exempt flx) = xd is convex ( because f = 2 so)
f (x) = - xd (f

"

H = - 2 → f is not convex)

fat -- toga) (FAKE , f
"
= -¥ go → f is not once. )

FH) -- X f is convex f = o
⇒ o

Examplesofconvexfunotions.FM= tzxtax A Sym . pos . definite .

.

• Jk) = atx t b a E pin
,
BER"

•
the negative of the entropy : LCH = - ? xilogcxi)



EciE : Let f: u c ith-s R be a convex and differentiable
function .

\ Iron that if Dfw) -- o , then xm!,:{ma
.

global

Ifex and differentiable we have : f x,y
flyt - LH s DfH 'T y - x)

If it is such that Dfk7=o , then fly) - LAY⇒ Dfhttly -xD
-

fly l - LAY so f y
⇒

then tf
y fly)z fk)

which means that xia is the global minimum of f .



ydilferentiabk
The important consequence is that for convex functions
critical points, points where DfH ⇒ , are global minima of the
functions .



OBJECTIVE :

DESCENT METHODS Minimize f: IR
"
→ R

Generalprina.pk
I choose an initial point Xo, t = o

µµ WHILE NOT HAPPY [WHILE f not minimized enough) .
• choose a descent direction dt# o dteip "

• line search

¥ → choose a step- size of > o

48¥ descent direction → set xtti = xttotdt

*

t minimize its
.
set t -- ttt

•xttr attitude

| If xteotdtRemainongquestionsn.IN-

how to choose dt ?

-

how to choose ot ?



Picture with level sets
- You to choose a descent

Kita.

*

direction ?

*÷:c
. f÷÷:÷÷÷÷¥÷÷÷:÷:*:Ht's is small enough then

go small enough
flxL¥xtD#flxtl-otgktfnfktlxt.in

-

- flxt) - oh Dflxttll
'

#< fat)

from Taylor formula :

←

↳ - Dflxt) is a descent direction

flxth) -- flat Dffxtthtolllhll)
h small flrth) ref +Dflxlth
↳ flxt - otfhktt ) x flirt) + Dflxtffotlflxtt) -- fat) - oDflxtttfkttflxttrllpflxttk



g

choice of the step - size ? pots flit
- stifled

optimal step - size : of = anymin fat . • pg
of = argmginglo)

530

Typically too expensive to do those its optimization perfectly
there exists different techniques . One widely used one is Armijo rule .

When do we stop Heovaallalgoithm
→ we can track fated - fat) (stop when it's small )
→ We can stop all Dflxtlll is small .

when



Remark : If instead of minimizing f , I want to maximize
f , we talk about gradient ascent ( instead of gradient
descent) and the update reads :

xtei = xt tot Df txt)

You can always turn m×ax fix)
into min ( - f (x))



Gradient descent is slow on ill- conditioned problems :

.

.pftxtl On a ill- conditioned

function If typically* points in the "wrong
" directionT and the

convergence will be

ME I I7fhi
, is also somethingi. u

Newton direction that can be proven : the

convergence rate is slower
-§2flxt))

- '

Dflxt) the layer the condition
✓ number is .



The Newton direction points towards the optimum on convex

quadratic functions .
On functions that are not convex - quadratic, the Newton director

will typically Not points towards the optimum .
Yet it will

be a good direction to follow when
you can approximate the

function by arts second order Taylor expansion ( ire for
twice continuously differentiable function ) .

We can use the Newton direction
- Dffha))

-
'

Dfcxt)
as a descent direction .

↳ It minimizes the locally quadratic approximation off .
ffxt Dx ) =LG) + Ddlxlt Dx x#x)TDY Dx



In some settings we can compute the Newton direction analytically,
in which case we should do

.

Yet we need to approximate numerically [DFG)) and invert it
,

this can be too expensive .

Quasi - NEWTON METHOD : BFGS ["old " still state - of the art)
tei = xt - ot Ht Dflxt)

\ approximation of the inverse of Ifat)
Ht is updated iteratively using Dfkt) and approximates Dj

Cf Wikipedia page for updates of algorithm
→ Implemented in toolboxes [

also large -scale version , L-BFG S

limit memory BFGS )



STOCHASTIC GRADIENT DESCENT

Minimize loss function of the following form :

N

Q (w) =L
,
Qilw) N -

- # Data
N # Examples

w can be the weights of Neural Network .

Assume we are in a supervised learning setting , we have a
classification task . give) : prediction error made if we use weight

image i
w to predict eat

-
: o if w predicts that

→Inara:Network
'w)

its a cat

-- i otherwise
CAT



How do we minimize 9 ?

N

Gradientdescent.se 1791W) = NI , Bailw)

wth = wt - Ot D8 hut) [update of weight]
BACKPROPAGATION algorithm is an algorithm to compute Ddi (w)

Typically N is very large , computation of all Daito)
i= t, . . .

,
N

is too expensive .

Instead we use an approximation of DOW) :

D8 Iue) rn DQilw) [Gradient of a single
T example)approximated



Also do mini - batches :
nbatches

1791W) x L Z Desilu) nbatches cc N
.

hbatches
i=L

Stochastic Gradient Descent :

-

CHOOSE AN INITIAL VECTORS of PARAMETERS AND A STEP- size Y
WHILE NOT HAPPY

- Randomly shuttle examples in
-training set

-
For i = 1 , . . . , N

w← w - y poilu)
JWIabmopf.ae- the

T
possibly mini- batches



Not armed : . eloise of step- size . ( step- site adapted using-

"momentum techniques " in particular
ADAn step - size update which
is WIDELY used)

- increase I choice of mini - batches


