Optimization for Machine Learning

Lecture 2: Continuous Optimization I

November 10, 2022 Université Paris-Saclay

Anne Auger Inria Saclay – Ile-de-France

Course Overview

Date		Topic
Thu, 3.11.2022	DB	Introduction
Thu, 10.11.2022	AA	Continuous Optimization I: differentiability, gradients, convexity, optimality conditions
Thu, 17.11.2022	AA	Continuous Optimization II: constrained optimization, gradient-based algorithms, stochastic gradient
Thu, 24.11.2022	AA	Continuous Optimization III: stochastic algorithms, derivative-free optimization written test / « contrôle continue »
Thu, 1.12.2022	DB	Discrete Optimization I: graph theory, greedy algorithms
Thu, 8.12.2022	DB	Discrete Optimization II: dynamic programming, branch&bound
Thu 15.12.2022	DB	Written exam
		classes from 13h30 – 16h45 (2 nd break at end)

Details on Continuous Optimization Lectures

Introduction to Continuous Optimization

- examples (from ML / black-box problems)
- typical difficulties in optimization

Mathematical Tools to Characterize Optima

- reminders about differentiability, gradient, Hessian matrix
- unconstraint optimization
 - first and second order conditions
 - convexity
- constraint optimization

Gradient-based Algorithms

- stochastic gradient
- quasi-Newton method (BFGS)

Learning in Optimization / Stochastic Optimization

- CMA-ES (adaptive algorithms / Information Geometry)
- PhD thesis possible on this topic

method strongly related to ML / new promising research area interesting open questions

Reminder: Continuous Optimization

• Optimize
$$f: \begin{cases} \Omega \subset \mathbb{R}^n \to \mathbb{R} \\ x = (x_1, \dots, x_n) \to f(x_1, \dots, x_n) \end{cases}$$
 $\in \mathbb{R}$ unconstrained optimization

- Search space is continuous, i.e. composed of real vectors $x \in \mathbb{R}^n$

Reminder: Mathematical Characterization of Optima

Objective: Derive general characterization of optima

Example: if $f: \mathbb{R} \to \mathbb{R}$ differentiable, f'(x) = 0 at optimal points

- generalization to $f: \mathbb{R}^n \to \mathbb{R}$?
- generalization to constrained problems?

Reminder: Geometrical Interpretation of Gradient

The gradient of a differentiable function is orthogonal to its level sets.

Differentiability in \mathbb{R}^n

Taylor Formula – Order One

$$f(\mathbf{x} + \mathbf{h}) = f(\mathbf{x}) + (\nabla f(\mathbf{x}))^{T} \mathbf{h} + o(||\mathbf{h}||)$$

Reminder: Second Order Derivability in 1D

- Let $f: \mathbb{R} \to \mathbb{R}$ be a differentiable function and let $f': x \to f'(x)$ be its derivative.
- If f' is differentiable in x, then we denote its derivative as f''(x)
- f''(x) is called the second order derivative of f.

Taylor Formula: Second Order Derivative

- If $f: \mathbb{R} \to \mathbb{R}$ is two times differentiable then $f(x+h) = f(x) + f'(x)h + f''(x)h^2 + o(||h||^2)$ i.e. for h small enough, $h \to f(x) + hf'(x) + h^2f''(x)$ approximates $h \to f(x+h)$
- $h \to f(x) + hf'(x) + h^2f''(x)$ is a quadratic approximation (or order 2) of f in a neighborhood of x

■ The second derivative of $f: \mathbb{R} \to \mathbb{R}$ generalizes naturally to larger dimension.

Hessian Matrix

In $(\mathbb{R}^n, \langle x, y \rangle = x^T y)$, $\nabla^2 f(x)$ is represented by a symmetric matrix called the Hessian matrix. It can be computed as

$$\nabla^{2}(f) = \begin{bmatrix} \frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} & \dots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}} \\ \frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2}^{2}} & \dots & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2} f}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}} & \dots & \frac{\partial^{2} f}{\partial x_{n}^{2}} \end{bmatrix}$$

Exercise on Hessian Matrix

Exercise:

Let
$$f(\mathbf{x}) = \frac{1}{2} \mathbf{x}^T A \mathbf{x}, \mathbf{x} \in \mathbb{R}^n, A \in \mathbb{R}^{n \times n}$$
.

Compute the Hessian matrix of f.

If it is too complex, consider
$$f: \begin{cases} \mathbb{R}^2 \to \mathbb{R} \\ x \to \frac{1}{2} x^T A x \end{cases}$$
 with $A = \begin{pmatrix} 9 & 0 \\ 0 & 1 \end{pmatrix}$

Second Order Differentiability in \mathbb{R}^n

Taylor Formula – Order Two

$$f(\mathbf{x} + \mathbf{h}) = f(\mathbf{x}) + (\nabla f(\mathbf{x}))^T \mathbf{h} + \frac{1}{2} \mathbf{h}^T (\nabla^2 f(\mathbf{x})) \mathbf{h} + o(||\mathbf{h}||^2)$$

Back to III-Conditioned Problems

We have seen that for a convex quadratic function

$$f(x) = \frac{1}{2}(x - x_0)^T A(x - x_0) + b \text{ of } x \in \mathbb{R}^n, A \in \mathbb{R}^{n \times n}, A \text{ SPD, } b \in \mathbb{R}^n$$
:

1) The level sets are ellipsoids. The eigenvalues of *A* determine the lengths of the principle axes of the ellipsoid.

2) The Hessian matrix of f equals to A.

Ill-conditioned convex quadratic problems are problems with large ratio between largest and smallest eigenvalue of *A* which means large ratio between longest and shortest axis of ellipsoid.

This corresponds to having an ill-conditioned Hessian matrix.

Gradient Direction Vs. Newton Direction

Gradient direction: $\nabla f(x)$

Newton direction: $(H(x))^{-1} \cdot \nabla f(x)$

with $H(x) = \nabla^2 f(x)$ being the Hessian at x

Exercise:

Let again
$$f(x) = \frac{1}{2}x^T A x$$
, $x \in \mathbb{R}^2$, $A = \begin{pmatrix} 9 & 0 \\ 0 & 1 \end{pmatrix} \in \mathbb{R}^{2 \times 2}$.

Plot the gradient and Newton direction of f in a point $x \in \mathbb{R}^n$ of your choice (which should not be on a coordinate axis) into the same plot with the level sets, we created before.

Optimality Conditions for Unconstrained Problems

Optimality Conditions: First Order Necessary Cond.

For 1-dimensional optimization problems $f: \mathbb{R} \to \mathbb{R}$

Assume *f* is differentiable

- x^* is a local optimum $\Rightarrow f'(x^*) = 0$ not a sufficient condition: consider $f(x) = x^3$
 - proof via Taylor formula: $f(x^* + h) = f(x^*) + f'(x^*)h + o(||h||)$
- points y such that f'(y) = 0 are called critical or stationary points

Generalization to *n*-dimensional functions

If $f: U \subset \mathbb{R}^n \mapsto \mathbb{R}$ is differentiable

• necessary condition: If x^* is a local optimum of f, then $\nabla f(x^*) = 0$ proof via Taylor formula

Second Order Necessary and Sufficient Opt. Cond.

If *f* is twice continuously differentiable

Necessary condition: if x^* is a local minimum, then $\nabla f(x^*) = 0$ and $\nabla^2 f(x^*)$ is positive semi-definite

proof via Taylor formula at order 2

• Sufficient condition: if $\nabla f(x^*) = 0$ and $\nabla^2 f(x^*)$ is positive definite, then x^* is a strict local minimum

Proof of Sufficient Condition:

Let $\lambda > 0$ be the smallest eigenvalue of $\nabla^2 f(x^*)$, using a second order Taylor expansion, we have for all h:

$$f(\mathbf{x}^* + \mathbf{h}) - f(\mathbf{x}^*) = \nabla f(\mathbf{x}^*)^T \mathbf{h} + \frac{1}{2} \mathbf{h}^T \nabla^2 f(\mathbf{x}^*) \mathbf{h} + o(||\mathbf{h}||^2)$$

$$> \frac{\lambda}{2} ||\mathbf{h}||^2 + o(||\mathbf{h}||^2) = \left(\frac{\lambda}{2} + \frac{o(||\mathbf{h}||^2)}{||\mathbf{h}||^2}\right) ||\mathbf{h}||^2$$

Convex Functions

Let U be a convex open set of \mathbb{R}^n and $f:U\to\mathbb{R}$. The function f is said to be convex if for all $x,y\in U$ and for all $t\in[0,1]$

$$f((1-t)x + ty) \le (1-t)f(x) + tf(y)$$

Theorem

If f is differentiable, then f is convex if and only if for all x, y

$$f(y) - f(x) \ge (\nabla f(x))^{T} (y - x)$$

if n = 1, the curve is on top of the tangent

If f is twice continuously differentiable, then f is convex if and only if $\nabla^2 f(x)$ is positive semi-definite for all x.

Convex Functions: Why Convexity?

Examples of Convex Functions:

- $f(x) = a^T x + b$
- $f(x) = \frac{1}{2}x^TAx + a^Tx + b$, A symmetric positive definite
- the negative of the entropy function (i. e. $f(x) = -\sum_{i=1}^{n} x_i \ln(x_i)$)

Exercise:

Let $f: U \to \mathbb{R}$ be a convex and differentiable function on a convex open U.

Show that if $\nabla f(x^*) = 0$, then x^* is a global minimum of f

Why is convexity an important concept?

Constrained Optimization

Equality Constraint

Objective:

Generalize the necessary condition of $\nabla f(x) = 0$ at the optima of f when f is in C^1 , i.e. is differentiable and its differential is continuous

Theorem:

Be U an open set of (E, |I|), and $f: U \to \mathbb{R}$, $g: U \to \mathbb{R}$ in \mathcal{C}^1 . Let $a \in E$ satisfy

$$\begin{cases} f(a) = \inf \{ f(x) \mid x \in \mathbb{R}^n, g(x) = 0 \} \\ g(a) = 0 \end{cases}$$

i.e. a is optimum of the problem

If $\nabla g(a) \neq 0$, then there exists a constant $\lambda \in \mathbb{R}$ called *Lagrange multiplier*, such that

$$\nabla f(a) + \lambda \nabla g(a) = 0$$
 Euler – Lagrange equation

i.e. gradients of f and g in a are colinear

Geometrical Interpretation Using an Example

Exercise:

Consider the problem

inf
$$\{ f(x,y) \mid (x,y) \in \mathbb{R}^2, g(x,y) = 0 \}$$

$$f(x,y) = y - x^2$$
 $g(x,y) = x^2 + y^2 - 1 = 0$

- 1) Plot the level sets of f, plot g = 0
- 2) Compute ∇f and ∇g
- 3) Find the solutions with $\nabla f + \lambda \nabla g = 0$

equation solving with 3 unknowns (x, y, λ)

4) Plot the solutions of 3) on top of the level set graph of 1)

Interpretation of Euler-Lagrange Equation

Intuitive way to retrieve the Euler-Lagrange equation:

- In a local minimum a of a constrained problem, the hypersurfaces (or level sets) f = f(a) and g = 0 are necessarily tangent (otherwise we could decrease f by moving along g = 0).
- Since the gradients $\nabla f(a)$ and $\nabla g(a)$ are orthogonal to the level sets f = f(a) and g = 0, it follows that $\nabla f(a)$ and $\nabla g(a)$ are colinear.

Generalization to More than One Constraint

Theorem

- Assume $f: U \to \mathbb{R}$ and $g_k: U \to \mathbb{R}$ $(1 \le k \le p)$ are \mathcal{C}^1 .
- Let a be such that

$$\begin{cases} f(a) = \inf \{ f(x) \mid x \in \mathbb{R}^n, & g_k(x) = 0, \\ g_k(a) = 0 \text{ for all } 1 \le k \le p \end{cases}$$

• If $(\nabla g_k(a))_{1 \le k \le p}$ are linearly independent, then there exist p real constants $(\lambda_k)_{1 \le k \le p}$ such that

$$\nabla f(a) + \sum_{k=1}^{p} \lambda_k \nabla g_k(a) = 0$$

Lagrange multiplier

again: a does not need to be global but local minimum

The Lagrangian

■ Define the Lagrangian on $\mathbb{R}^n \times \mathbb{R}^p$ as

$$\mathcal{L}(x,\{\lambda_k\}) = f(x) + \sum_{k=1}^{p} \lambda_k g_k(x)$$

To find optimal solutions, we can solve the optimality system

Find
$$(x, \{\lambda_k\}) \in \mathbb{R}^n \times \mathbb{R}^p$$
 such that $\nabla f(x) + \sum_{k=1}^p \lambda_k \nabla g_k(x) = 0$

$$g_k(x) = 0 \text{ for all } 1 \le k \le p$$

$$\Leftrightarrow \begin{cases} \text{Find } (x, \{\lambda_k\}) \in \mathbb{R}^n \times \mathbb{R}^p \text{ such that } \nabla_x \mathcal{L}(x, \{\lambda_k\}) = 0 \\ \nabla_{\lambda_k} \mathcal{L}(x, \{\lambda_k\})(x) = 0 \text{ for all } 1 \le k \le p \end{cases}$$

Inequality Constraint: Definitions

Let
$$\mathcal{U} = \{x \in \mathbb{R}^n \mid g_k(x) = 0 \text{ (for } k \in E), \ g_k(x) \le 0 \text{ (for } k \in I)\}.$$

Definition:

The points in \mathbb{R}^n that satisfy the constraints are also called *feasible* points.

Definition:

Let $a \in \mathcal{U}$, we say that the constraint $g_k(x) \leq 0$ (for $k \in I$) is *active* in a if $g_k(a) = 0$.

Inequality Constraint: Karush-Kuhn-Tucker Theorem

Theorem (Karush-Kuhn-Tucker, KKT):

Let U be an open set of $(\mathbb{R}^n, ||\ ||)$ and $f: U \to \mathbb{R}, g_k: U \to \mathbb{R}$, all \mathcal{C}^1 Furthermore, let $a \in U$ satisfy

$$\begin{cases} f(a) = \inf(f(x) \mid x \in \mathbb{R}^n, g_k(x) = 0 \text{ (for } k \in E), g_k(x) \leq 0 \text{ (for } k \in I) \\ g_k(a) = 0 \text{ (for } k \in E) \\ g_k(a) \leq 0 \text{ (for } k \in I) \end{cases}$$
 also works again for a being a local minimum

Let I_a^0 be the set of constraints that are active in a. Assume that $(\nabla g_k(a))_{k \in E \cup I_a^0}$ are linearly independent.

Then there exist $(\lambda_k)_{1 \le k \le p}$ that satisfy

$$\begin{cases} \nabla f(a) + \sum_{k=1}^{p} \lambda_k \nabla g_k(a) = 0 \\ g_k(a) = 0 \text{ (for } k \in E) \\ g_k(a) \le 0 \text{ (for } k \in I) \\ \lambda_k \ge 0 \text{ (for } k \in I_a^0) \\ \lambda_k g_k(a) = 0 \text{ (for } k \in E \cup I) \end{cases}$$

Inequality Constraint: Karush-Kuhn-Tucker Theorem

Theorem (Karush-Kuhn-Tucker, KKT):

Let U be an open set of $(E, ||\ ||)$ and $f: U \to \mathbb{R}, g_k: U \to \mathbb{R}$, all \mathcal{C}^1 Furthermore, let $a \in U$ satisfy

$$\begin{cases} f(a) = \inf(f(x) \mid x \in \mathbb{R}^n, g_k(x) = 0 \text{ (for } k \in E), g_k(x) \leq 0 \text{ (for } k \in I) \\ g_k(a) = 0 \text{ (for } k \in E) \\ g_k(a) \leq 0 \text{ (for } k \in I) \end{cases}$$

Let I_a^0 be the set of constraints that are active in a. Assume that $\left(\nabla g_k(a)\right)_{k\in E\cup I_a^0}$ are linearly independent.

Then there exist $(\lambda_k)_{1 \le k \le p}$ that satisfy

$$\begin{cases} \nabla f(a) + \sum_{k=1}^{p} \lambda_k \nabla g_k(a) = 0 \\ g_k(a) = 0 \text{ (for } k \in E) \\ g_k(a) \le 0 \text{ (for } k \in I) \\ \lambda_k \ge 0 \text{ (for } k \in I_a^\circ) \\ \lambda_k g_k(a) = 0 \text{ (for } k \in E \cup I) \end{cases}$$

either active constraint or $\lambda_k = 0$

Descent Methods

Descent Methods

General principle

- choose an initial point x_0 , set t = 0
- while not happy
 - choose a descent direction $d_t \neq 0$
 - line search:
 - choose a step size $\sigma_t > 0$
 - set $x_{t+1} = x_t + \sigma_t d_t$
 - set t = t + 1

Remaining questions

- how to choose d_t ?
- how to choose σ_t ?

Gradient Descent

Rationale: $d_t = -\nabla f(x_t)$ is a descent direction indeed for f differentiable

$$f(x - \sigma \nabla f(x)) = f(x) - \sigma ||\nabla f(x)||^2 + o(\sigma ||\nabla f(x)||)$$

 $< f(x)$ for σ small enough

Step-size

- optimal step-size: $\sigma_t = \underset{\sigma}{\operatorname{argmin}} f(\mathbf{x}_t \sigma \nabla f(\mathbf{x}_t))$
- Line Search: total or partial optimization w.r.t. σ Total is however often too "expensive" (needs to be performed at each iteration step)

Partial optimization: execute a limited number of trial steps until a loose approximation of the optimum is found. Typical rule for partial optimization: Armijo rule (see next slides)

Typical stopping criterium:

norm of gradient smaller than ϵ

Choosing the step size:

- Only to decrease f-value not enough to converge (quickly)
- Want to have a reasonably large decrease in f

Armijo-Goldstein rule:

- also known as backtracking line search
- starts with a (too) large estimate of σ and reduces it until f is reduced enough
- what is enough?
 - assuming a linear f e.g. $m_k(x) = f(x_k) + \nabla f(x_k)^T (x x_k)$
 - expected decrease if step of σ_k is done in direction \boldsymbol{d} : $\sigma_k \nabla f(x_k)^T \boldsymbol{d}$
 - actual decrease: $f(x_k) f(x_k + \sigma_k d)$
 - stop if actual decrease is at least constant times expected decrease (constant typically chosen in [0, 1])

The Actual Algorithm:

Input: descent direction **d**, point **x**, objective function $f(\mathbf{x})$ and its gradient $\nabla f(\mathbf{x})$, parameters $\sigma_0 = 10$, $\theta \in [0, 1]$ and $\beta \in (0, 1)$

Output: step-size σ

Initialize
$$\sigma$$
: $\sigma \leftarrow \sigma_0$
while $f(\mathbf{x} + \sigma \mathbf{d}) > f(\mathbf{x}) + \theta \sigma \nabla f(\mathbf{x})^T \mathbf{d}$ do $\sigma \leftarrow \beta \sigma$
end while

Armijo, in his original publication chose $\beta=\theta=0.5$. Choosing $\theta=0$ means the algorithm accepts any decrease.

Newton Algorithm

Newton Method

- descent direction: $-[\nabla^2 f(x_k)]^{-1} \nabla f(x_k)$ [so-called Newton direction]
- The Newton direction:
 - minimizes the best (locally) quadratic approximation of f: $\tilde{f}(x + \Delta x) = f(x) + \nabla f(x)^T \Delta x + \frac{1}{2} (\Delta x)^T \nabla^2 f(x) \Delta x$
 - points towards the optimum on $f(x) = (x x^*)^T A(x x^*)$
- however, Hessian matrix is expensive to compute in general and its inversion is also not easy

quadratic convergence

(i.e.
$$\lim_{k\to\infty} \frac{|x_{k+1}-x^*|}{|x_k-x^*|^2} = \mu > 0$$
)

Remark: Affine Invariance

Affine Invariance: same behavior on f(x) and f(Ax + b) for $A \in GLn(\mathbb{R}) = \text{set of all invertible } n \times n \text{ matrices over } \mathbb{R}$

Newton method is affine invariant

```
See http://users.ece.utexas.edu/~cmcaram/EE381V_2012F/
Lecture_6_Scribe_Notes.final.pdf
```

- same convergence rate on all convex-quadratic functions
- Gradient method not affine invariant

Quasi-Newton Method: BFGS

 $x_{t+1} = x_t - \sigma_t H_t \nabla f(x_t)$ where H_t is an approximation of the inverse Hessian

Key idea of Quasi Newton:

successive iterates x_t , x_{t+1} and gradients $\nabla f(x_t)$, $\nabla f(x_{t+1})$ yield second order information

$$q_t \approx \nabla^2 f(x_{t+1}) p_t$$
 where $p_t = x_{t+1} - x_t$ and $q_t = \nabla f(x_{t+1}) - \nabla f(x_t)$

Most popular implementation of this idea: Broyden-Fletcher-Goldfarb-Shanno (BFGS)

 default in MATLAB's fminunc and python's scipy.optimize.minimize

Conclusions

I hope it became clear...

...what are the difficulties to cope with when solving numerical optimization problems

in particular dimensionality, non-separability and ill-conditioning

...what are gradient and Hessian

...what is the difference between gradient and Newton direction

...and that adapting the step size in descent algorithms is crucial.

Derivative-Free Optimization

Derivative-Free Optimization (DFO)

DFO = blackbox optimization

Why blackbox scenario?

- gradients are not always available (binary code, no analytical model, ...)
- or not useful (noise, non-smooth, ...)
- problem domain specific knowledge is used only within the black box, e.g. within an appropriate encoding
- some algorithms are furthermore function-value-free, i.e. invariant wrt. monotonous transformations of f.

Derivative-Free Optimization Algorithms

- (gradient-based algorithms which approximate the gradient by finite differences)
- coordinate descent
- pattern search methods, e.g. Nelder-Mead
- surrogate-assisted algorithms, e.g. NEWUOA or other trustregion methods
- other function-value-free algorithms
 - typically stochastic
 - evolution strategies (ESs) and Covariance Matrix Adaptation Evolution Strategy (CMA-ES)
 - differential evolution
 - particle swarm optimization
 - simulated annealing

Downhill Simplex Method by Nelder and Mead

While not happy do:

[assuming minimization of f and that $x_1, ..., x_{n+1} \in \mathbb{R}^n$ form a simplex]

- 1) Order according to the values at the vertices: $f(x_1) \le f(x_2) \le \cdots \le f(x_{n+1})$
- **2)** Calculate x_o , the centroid of all points except x_{n+1} .
- 3) Reflection

Compute reflected point $x_r = x_o + \alpha (x_o - x_{n+1}) (\alpha > 0)$

If x_r better than second worst, but not better than best: $x_{n+1} = x_r$, and go to 1)

4) Expansion

If x_r is the best point so far: compute the expanded point

$$x_e = x_o + \gamma (x_r - x_o)(\gamma > 0)$$

If x_e better than x_r then $x_{n+1} := x_e$ and go to 1)

Else $x_{n+1} := x_r$ and go to 1)

Else (i.e. reflected point is not better than second worst) continue with 5)

5) Contraction (here: $f(x_r) \ge f(x_n)$)

Compute contracted point $x_c = x_o + \rho(x_{n+1} - x_o)$ (0 < $\rho \le 0.5$)

If $f(x_c) < f(x_{n+1})$: $x_{n+1} := x_c$ and go to 1)

Else go to 6)

6) Shrink

 $x_i = x_1 + \sigma(x_i - x_1)$ for all $i \in \{2, ..., n+1\}$ ($\sigma < 1$) and go to 1)

J. A Nelder and R. Mead (1965). "A simplex method for function minimization".

Computer Journal. 7: 308–313. doi:10.1093/comjnl/7.4.308

Nelder-Mead: Reflection

- **2)** Calculate x_o , the centroid of all points except x_{n+1} .
- 3) Reflection

Compute reflected point $x_r = x_o + \alpha (x_o - x_{n+1}) (\alpha > 0)$ If x_r better than second worst, but not better than best: $x_{n+1} = x_r$, and go to 1)

Nelder-Mead: Reflection

- **2)** Calculate x_o , the centroid of all points except x_{n+1} .
- 3) Reflection

Compute reflected point $x_r = x_o + \alpha (x_o - x_{n+1}) (\alpha > 0)$ If x_r better than second worst, but not better than best: $x_{n+1} = x_r$, and go to 1)

Nelder-Mead: Reflection

- **2)** Calculate x_o , the centroid of all points except x_{n+1} .
- 3) Reflection

Compute reflected point $x_r = x_o + \alpha (x_o - x_{n+1}) (\alpha > 0)$ If x_r better than second worst, but not better than best: $x_{n+1} = x_r$, and go to 1)

2) Calculate x_o , the centroid of all points except x_{n+1} .

4) Expansion

If x_r is the best point so far: compute the expanded point

$$x_e = x_o + \gamma (x_r - x_o)(\gamma > 0)$$

If x_e better than x_r then $x_{n+1} := x_e$ and go to 1)

Else $x_{n+1} := x_r$ and go to 1)

2) Calculate x_o , the centroid of all points except x_{n+1} .

4) Expansion

If x_r is the best point so far: compute the expanded point

$$x_e = x_o + \gamma (x_r - x_o)(\gamma > 0)$$

If x_e better than x_r then $x_{n+1} := x_e$ and go to 1)

Else $x_{n+1} := x_r$ and go to 1)

2) Calculate x_o , the centroid of all points except x_{n+1} .

4) Expansion

If x_r is the best point so far: compute the expanded point

$$x_e = x_o + \gamma (x_r - x_o)(\gamma > 0)$$

If x_e better than x_r then $x_{n+1} := x_e$ and go to 1)

Else $x_{n+1} := x_r$ and go to 1)

2) Calculate x_o , the centroid of all points except x_{n+1} .

4) Expansion

If x_r is the best point so far: compute the expanded point

$$x_e = x_o + \gamma (x_r - x_o)(\gamma > 0)$$

If x_e better than x_r then $x_{n+1} := x_e$ and go to 1)

Else $x_{n+1} := x_r$ and go to 1)

- **2)** Calculate x_o , the centroid of all points except x_{n+1} .
- **5) Contraction** (here: $f(x_r) \ge f(x_n)$)
 Compute contracted point $x_c = x_o + \rho(x_{n+1} x_o)$ ($0 < \rho \le 0.5$)
 If $f(x_c) < f(x_{n+1})$: $x_{n+1} := x_c$ and go to 1)
 Else go to 6)

- **2)** Calculate x_o , the centroid of all points except x_{n+1} .
- **5) Contraction** (here: $f(x_r) \ge f(x_n)$)
 Compute contracted point $x_c = x_o + \rho(x_{n+1} x_o)$ ($0 < \rho \le 0.5$)
 If $f(x_c) < f(x_{n+1})$: $x_{n+1} := x_c$ and go to 1)
 Else go to 6)

- **2)** Calculate x_o , the centroid of all points except x_{n+1} .
- 6) Shrink

$$x_i = x_1 + \sigma(x_i - x_1)$$
 for all $i \in \{2, ..., n+1\}$ and go to 1)

- **2)** Calculate x_o , the centroid of all points except x_{n+1} .
- 6) Shrink

$$x_i = x_1 + \sigma(x_i - x_1)$$
 for all $i \in \{2, ..., n + 1\}$ and go to 1)

Nelder-Mead: Standard Parameters

- reflection parameter : $\alpha = 1$
- expansion parameter: $\gamma = 2$
- contraction parameter: $\rho = \frac{1}{2}$
- shrink parameter: $\sigma = \frac{1}{2}$

some visualizations of example runs can be found here: https://en.wikipedia.org/wiki/Nelder%E2%80%93Mead_method

stochastic algorithms

Stochastic Search Template

A stochastic blackbox search template to minimize $f: \mathbb{R}^n \to \mathbb{R}$

Initialize distribution parameters θ , set population size $\lambda \in \mathbb{N}$ While happy do:

- Sample distribution $P(x|\theta) \to x_1, ..., x_{\lambda} \in \mathbb{R}^n$
- Evaluate $x_1, ..., x_{\lambda}$ on f
- Update parameters $\theta \leftarrow F_{\theta}(\theta, x_1, ..., x_{\lambda}, f(x_1), ..., f(x_{\lambda}))$

• All depends on the choice of P and F_{θ}

deterministic algorithms are covered as well

• In Evolutionary Algorithms, P and F_{θ} are often defined implicitly via their operators.

Generic Framework of an Evolutionary Algorithm

stochastic operators

"Darwinism"

stopping criteria

Nothing else: just interpretation change

The CMA-ES

Input: $m \in \mathbb{R}^n$, $\sigma \in \mathbb{R}_+$, λ

Initialize: C = I, and $p_c = 0$, $p_{\sigma} = 0$,

Set: $c_c \approx 4/n$, $c_\sigma \approx 4/n$, $c_1 \approx 2/n^2$, $c_\mu \approx \mu_w/n^2$, $c_1 + c_\mu \le 1$, $d_\sigma \approx 1 + \sqrt{\frac{\mu_w}{n}}$,

and $w_{i=1...\lambda}$ such that $\mu_w = \frac{1}{\sum_{i=1}^{\mu} w_i^2} \approx 0.3 \lambda$

While not terminate

$$\begin{aligned} & \boldsymbol{x}_i = \boldsymbol{m} + \sigma \, \boldsymbol{y}_i, \quad \boldsymbol{y}_i \ \sim \ \mathcal{N}_i(\mathbf{0}, \mathbf{C}) \,, \quad \text{for } i = 1, \dots, \lambda \\ & \boldsymbol{m} \leftarrow \sum_{i=1}^{\mu} w_i \, \boldsymbol{x}_{i:\lambda} = \boldsymbol{m} + \sigma \, \boldsymbol{y}_w \quad \text{where } \boldsymbol{y}_w = \sum_{i=1}^{\mu} w_i \, \boldsymbol{y}_{i:\lambda} \\ & \boldsymbol{p}_{\mathbf{c}} \leftarrow (1 - c_{\mathbf{c}}) \, \boldsymbol{p}_{\mathbf{c}} + 1\!\!1_{\{\parallel p_{\sigma} \parallel < 1.5\sqrt{n}\}} \sqrt{1 - (1 - c_{\mathbf{c}})^2} \sqrt{\mu_w} \, \boldsymbol{y}_w \end{aligned} \quad \text{update mean} \\ & \boldsymbol{p}_{\sigma} \leftarrow (1 - c_{\sigma}) \, \boldsymbol{p}_{\sigma} + \sqrt{1 - (1 - c_{\sigma})^2} \sqrt{\mu_w} \, \mathbf{C}^{-\frac{1}{2}} \boldsymbol{y}_w \end{aligned} \quad \text{cumulation for } \boldsymbol{C} \\ & \boldsymbol{C} \leftarrow (1 - c_1 - c_{\mu}) \, \boldsymbol{C} + c_1 \, \boldsymbol{p}_{\mathbf{c}} \boldsymbol{p}_{\mathbf{c}}^{\mathrm{T}} + c_{\mu} \sum_{i=1}^{\mu} w_i \, \boldsymbol{y}_{i:\lambda} \boldsymbol{y}_{i:\lambda}^{\mathrm{T}} \end{aligned} \quad \text{update } \boldsymbol{C} \\ & \boldsymbol{\sigma} \leftarrow \boldsymbol{\sigma} \times \exp\left(\frac{c_{\sigma}}{d_{\sigma}} \left(\frac{\parallel p_{\sigma} \parallel}{\mathbf{E} \parallel \mathcal{N}(\mathbf{0},\mathbf{D}) \parallel} - 1\right)\right) \end{aligned} \quad \text{update of } \boldsymbol{\sigma} \end{aligned}$$

Not covered on this slide: termination, restarts, useful output, boundaries and encoding

The CMA-ES

Input: $m \in \mathbb{R}^n$, $\sigma \in \mathbb{R}_+$, λ

Initialize: C = I, and $p_c = 0$, $p_{\sigma} = 0$,

Set: $c_c \approx 4/n$, $c_\sigma \approx 4/n$, $c_1 \approx 2/n^2$, $c_\mu \approx \mu_w/n^2$, $c_1 + c_\mu \leq 1$, $d_\sigma \approx 1 + \sqrt{\frac{\mu_w}{n}}$,

and $w_{i=1...\lambda}$ such that $\mu_w = \frac{1}{\sum_{i=1}^{\mu} w_i^2} \approx 0.3 \lambda$

While not terminate

$$egin{aligned} x_i &= m{m} + \sigma \, m{y}_i, \quad m{y}_i \sim \mathcal{N}_i(\mathbf{0}, \mathbf{C}) \,, \quad \text{for } i = 1, \dots, \lambda \ m{m} \leftarrow \sum_{i=1}^{\mu} w_i \, m{x}_{i:\lambda} &= m{m} + \sigma \, m{y}_w \quad \text{where } m{y}_w = \sum_{i=1}^{\mu} w_i \, m{y}_{i:\lambda} \quad \text{update mean} \ m{p}_c \leftarrow (1-c_c) \, m{p}_c + \mathbb{1}_{\{\parallel p_\sigma \parallel < 1.5 \sqrt{n}\}} \sqrt{1-(1-c_c)^2} \sqrt{\mu_w} \, m{y}_w \quad \text{cumulation for } \mathbf{C} \ m{p}_\sigma \leftarrow (1-c_\sigma) \, m{p}_\sigma + \sqrt{1-(1-c_\sigma)^2} \sqrt{\mu_w} \, \mathbf{C}^{-\frac{1}{2}} \, m{y}_w \quad \text{cumulation for } \sigma \ \mathbf{C} \leftarrow (1-c_1-c_\mu) \, \mathbf{C} + c_1 \, m{p}_c \, m{p}_c^{\, \mathrm{T}} + \mathbf{C}^{\, \mu} \, \mbox{where} \, \mathbf{C} \ \mbox{where} \ \mbox{where} \, \mathbf{C} \ \mbox{where} \, \mathbf{C} \ \mbox{where} \, \mathbf{C} \ \mbox{where} \ \mbox{where} \, \mathbf{C} \ \mbox{where} \ \mbox{where} \ \mbox{where} \ \mbox{w$$

 $\sigma \leftarrow \sigma \times \exp\left(\frac{c_{\sigma}}{d_{\sigma}} \left(\frac{\|p_{\sigma}\|}{\mathsf{E}\|\mathcal{N}(\mathbf{0},\mathbf{I})\|} - 1\right)\right)$

Not covered on this slide: termination

Goal of next lecture:

Understand the main principles of this state-of-the-art algorithm.

16/81