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Introduction

Continuous Optimization I: differentiability, gradients,
convexity, optimality conditions

Continuous Optimization Il: constrained optimization,
gradient-based algorithms, stochastic gradient

Continuous Optimization Ill: stochastic algorithms,
derivative-free optimization
written test / « contrdle continue »

Discrete Optimization |: graph theory, greedy
algorithms

Discrete Optimization Il: dynamic programming,
branch&bound

Written exam

classes from 13h30 — 16h45 (2"d break at end)
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Details on Continuous Optimization Lectures

Introduction to Continuous Optimization
= examples (from ML / black-box problems)
= typical difficulties in optimization

Mathematical Tools to Characterize Optima
= reminders about differentiability, gradient, Hessian matrix
* unconstraint optimization

= first and second order conditions

" convexity

= constraint optimization

Gradient-based Algorithms
= stochastic gradient
» quasi-Newton method (BFGS)

Learning in Optimization / Stochastic Optimization
= CMA-ES (adaptive algorithms / Information Geometry)
= PhD thesis possible on this topic

method strongly related to ML / new promising research area
Interesting open questions
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Reminder: Continuous Optimization

QcR*" >R
X = (X1, ., Xp) = f(X1, eer, Xp)

eER

=  Optimize f: {
unconstrained optimization

= Search space is continuous, i.e. composed of real vectors x € R"

. _ | dimension of the problem
=7 dimension of the search space R™ (as vector space)

b problem 2-D level sets

=/ M
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Reminder: Mathematical Characterization of C

Objective: Derive general characterization of optima

Example: if f: R — R differentiable,
f'(x) = 0 at optimal points

= generalizationto f:R" > R ?
»= generalization to constrained problems?
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Reminder: Geometrical Interpretation of Gradie

The gradient of a differentiable
function is orthogonal to its level sets. ’\j
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Differentiability in R™

Taylor Formula — Order One

fx+h) = f@) + (V@) h+o(h]])
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Reminder: Second Order Derivability in 1D

= Let f:R — R be a differentiable function and let f":x — f'(x) be
Its derivative.

= If f"is differentiable in x, then we denote its derivative as "' (x)
= f"(x) is called the second order derivative of f.
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Taylor Formula: Second Order Derivative

= |f f:R - Ristwo times differentiable then
fGx+h)=fx)+f'h+f"(x)h? + o(]|h]]?)
i.e. for h small enough, h - f(x) + hf'(x) + h?f"(x)
approximates h = f(x + h)

= h- f(x)+hf'(x) + h%f"(x) is a quadratic approximation (or
order 2) of f in a neighborhood of x

! RS (AT ANNILTA

{(x)

s Jo)th ()

4

= The second derivative of f: R - R generalizes naturally to larger
dimension.
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In (R™, (x,y) = xTy), V2f(x) is represented by a symmetric matrix
called the Hessian matrix. It can be computed as

o 0 0%f
c’)_x12 0x10x,  0x10x,
02f  8%f 02f

V2(f) = |ox,0x, axz 7 0x,0x,
02f  8%f a2 f
0x,0x; 0x,0x, a_x,% |
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Exercise on Hessian Matrix
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Second Order Differentiability in R™

Taylor Formula — Order Two

1
fa+h) = f@)+(7f@) h+5hT(7f(0) h+o(|RI?)
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Back to llI-Conditioned Problems

We have seen that for a convex quadratic function
f(x) = %(x —x9)TA(x —xy) + b of x € R™, A € R™", A SPD, b € R™:

1) The level sets are ellipsoids. The eigenvalues of A determine
the lengths of the principle axes of the ellipsoid.

or n=2,let A, 1, be
the eigenvalues of A.
N

2) The Hessian matrix of f equals to A.

lll-conditioned convex quadratic problems are problems with large
ratio between largest and smallest eigenvalue of A which means large
ratio between longest and shortest axis of ellipsoid.

This corresponds to having an ill-conditioned Hessian matrix.
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Gradient Direction Vs. Newton Direction

Gradient direction: Vf(x)

Newton direction: (H(x))_1 - Vf(x)
with H(x) = 7%f(x) being the Hessian at x

Exercise:

Let again f(x) = %xTA x,x ER? A= (g 2) e R%*2.

Plot the gradient and Newton direction of f in a point x € R"
of your choice (which should not be on a coordinate axis) into
the same plot with the level sets, we created before.
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Optimality Conditions
for Unconstrained Problems
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Optimality Conditions: First Order Necessary «

For 1-dimensional optimization problems f: R - R
Assume f is differentiable
= x*isalocal optimum = f'(x*) =0
not a sufficient condition: consider f(x) = x3
proof via Taylor formula: f(x* + h) = f(x*) + f'(x*)h + o(||h]|)

= points y such that f'(y) = 0 are called critical or stationary points

Generalization to n-dimensional functions

If f:U c R™ — R is differentiable

= necessary condition: If x* is a local optimum of f, then Vf(x*) =0
proof via Taylor formula
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Second Order Necessary and Sufficient Opt.

If £ is twice continuously differentiable
= Necessary condition: if x* is a local minimum, then V'f(x*) =0
and V4f (x*) is positive semi-definite
proof via Taylor formula at order 2
= Sufficient condition: if V£ (x*) = 0 and 74f(x*) is positive definite,
then x* is a strict local minimum

Proof of Sufficient Condition:

= Let A > 0 be the smallest eigenvalue of V2 f(x*), using a second
order Taylor expansion, we have for all h:

= f(x"+h)- f(x*) = Vf(x) h+ hTV2f (xR + o(||hI[?)

—IIhI|2+o(IIhII ) = (2 (llllhllllz )) ||R]]?
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Convex Functions

Let U be a convex open set of R" and f: U — R. The function f is
said to be convex if for all x,y € U and for all t € [0,1]

f(A-Dx+ty) <A -Ofx) +tf(y)

Theorem
If £ Is differentiable, then f is convex if and only if for all x, y

f) - @ = (V@) -

If n = 1, the curve is on top of the tangent

If f is twice continuously differentiable, then f is convex if and only if
V2f(x) is positive semi-definite for all x.
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Convex Functions: Why Convexity?

Examples of Convex Functions:
= f(x)=a'x+b
= f(x) = %xTAx + a’x + b, A symmetric positive definite

= the negative of the entropy function (i.e. f(x) = =YX, x; In(x;) )

Exercise:

Let f: U — R be a convex and differentiable function on a

convex open U.
Show that if Vf(x*) = 0, then x* is a global minimum of f

Why is convexity an important concept?
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Constrained Optimization
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Equality Constraint

Objective:

Generalize the necessary condition of V'f(x) = 0 at the optima of f
when f isin 1, i.e. is differentiable and its differential is continuous

Theorem:
Be U anopensetof (E,|| ||),and f:U >R, g:U > Rinc.
Let a € E satisfy

{f (a) = inf {f(x) | x € R", g(x) = 0}
g(a) =0
l.e. a IS optimum of the problem

If Vg(a) + 0, then there exists a constant A € R called Lagrange
multiplier, such that

‘ Vf(a) + AVg(a) = q Euler — Lagrange equation
|
l.e. gradients of f and g in a are colinear
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Geometrical Interpretation Using an Ex

Exercise:

Consider the problem
inf {f(x,y) | (x,¥) € R? g(x,y) = 0}

2 gley)=xt+y?-1=0

1) Plotthe level sets of f, plot g =0
2) Compute IV'f and Vg
3) Find the solutions with Vf + AVg =0
equation solving with 3 unknowns (x, y, )
4) Plot the solutions of 3) on top of the level set graph of 1)
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Interpretation of Euler-Lagrange Equation

Intuitive way to retrieve the Euler-Lagrange equation:

= |n alocal minimum a of a constrained problem, the
hypersurfaces (or level sets) f = f(a) and g = 0 are necessarily
tangent (otherwise we could decrease f by moving along g = 0).

= Since the gradients Vf(a) and Vg(a) are orthogonal to the level
sets f = f(a) and g = 0, it follows that Vf (a) and Vg(a) are
colinear.
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Generalization to More than One Constraint

Theorem

= Assume f:U » Rand g,:U > R (1 <k <p)are cL.
= Let a be such that

f(a) =inf {f(x) | x € R", gx(x) =0, 1<k<p}
gr(@) =0 foralll<k<p

= |f (ng(a))1<k<p are linearly independent, then there exist p real
constants (Ax);<k<p Such that

p
Vf(a) + 2 AV gr(a) =0
k=1

|

Lagrange multiplier

again: a does not need to be global but local minimum
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The Lagrangian

= Define the Lagrangian on R™ x R? as

p
L0 D = O+ ) Agic(0)
k=1

= To find optimal solutions, we can solve the optimality system
(

p
Find (x, {Ax}) € R™ X R? such that Vf(x) + z A Vg (x) =0
k=1
gr(x) =0 foralll<k<p
Find (x, {1x}) € R™ x RP such that V,, L(x,{1;}) =0
72, L {4 (x) =0 foralll <k <p

A

.
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Inequality Constraint: Definitions

LetU ={x e R"| gx(x) =0 (fork € E), gir(x) <0 (for k € I)}.

Definition:
The points in R" that satisfy the constraints are also called feasible
points.

Definition:
Let a € U, we say that the constraint g, (x) < 0 (for k € I) is active
in aif g,(a) = 0.
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Inequality Constraint: Karush-Kuhn-Tucker T

Theorem (Karush-Kuhn-Tucker, KKT):
Let U be an open set of (R®, || ||]) and f:U - R, g,:U - R, all ¢?
Furthermore, let a € U satisfy

(f(@) = inf(f(x) | x € R™, g (x) = 0 (for k € E), g (x) < 0 (for k € 1)
) 9k (a) =0 (fork € E) also works again for a
L gi(a) <0 (fork €1) being a local minimum

Let 12 be the set of constraints that are active in a. Assume that
(Vs (a))k < L o are linearly independent.
a

Then there exist (1 )1<k<p that satisfy
(

Vf(a) + z AV gr(a) =0

gx(a) = 0 (fork € E)
grx(a) <0 (fork €1)
Ay = 0 (fork € 12)
\Argrx(a) =0 (fork € EUI)

AN
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Inequality Constraint: Karush-Kuhn-Tucker

Theorem (Karush-Kuhn-Tucker, KKT):

Let U be an open setof (E,|||]) and f:U - R, g,:U - R, all ¢!
Furthermore, let a € U satisfy

(f(@) = inf(f(x) | x € R™, g (x) = 0 (for k € E), g (x) < 0 (for k € 1)
3 gix(a) =0 (fork € E)

\ gr(a) <0 (fork €1)

Let 12 be the set of constraints that are active in a. Assume that
(Vs (a))k < L o are linearly independent.

Then there exist (1 )1<k<p that satisfy
(

Vf(a) + z AV gr(a) =0

gi(a) = 0 (fork € E) either active constraint
gx(a) <0 (fork € 1) or 1, =0
A = 0 (for k-ciy)
Argr(a) =0 (fork € EUI)

A
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Descent Methods
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Descent Methods

General principle
© choose an initial point x4, sett =0
® while not happy
» choose a descent directiond; # 0
* |ine search:
= choose a step size g; > 0
" setx;p1 =X +o0:d;
= sett=t+1

Remaining questions
= how to choose d;?
= how to choose g;?
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Gradient Descent

Rationale: d; = —Vf(x;) IS a descent direction
indeed for f differentiable

fx—oVf(x)) = f(x) = alIVFEOII? + o(al|Vf(X)]])
< f(x) for ¢ small enough
Step-size
= optimal step-size: g; = argmin f(x; — aVf(x;))
o

= Line Search: total or partial optimization w.r.t. o
Total is however often too "expensive" (needs to be performed at
each iteration step)
Partial optimization: execute a limited number of trial steps until a
loose approximation of the optimum is found. Typical rule for
partial optimization: Armijo rule (see next slides)

Typical stopping criterium:
norm of gradient smaller than ¢
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The Armijo-Goldstein Rule

Choosing the step size:
= Only to decrease f-value not enough to converge (quickly)
= Want to have a reasonably large decrease in f

Armijo-Goldstein rule:
= also known as backtracking line search

= starts with a (too) large estimate of o and reduces it until f is
reduced enough

= what is enough?
= assuming alinear f e.g. my(x) = f(xx) + V f(x) T (x — x3,)
= expected decrease If step of gy, Is done In direction d.
ok Vf(x)'d
= actual decrease: f(x;) — f (xy + 05, d)

» stop if actual decrease is at least constant times expected
decrease (constant typically chosen in [0, 1])
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The Armijo-Goldstein Rule

The Actual Algorithm:

Input: descent direction d, point x. objective function f(x) and its gra-
dient V f(x), parameters oy = 10, 6§ € [0, 1] and g € (0,1)
Output: step-size o

Initialize o: 0 <+ oy

while f(x +od) > f(x) + 0oV f(x)"d do
o+ [o

end while

Armijo, in his original publication chose g = 6 = 0.5.
Choosing 8 = 0 means the algorithm accepts any decrease.
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The Armijo-Goldstein Rule

Graphical Interpretation
A actual increase
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The Armijo-Goldstein Rule

Graphical Interpretation
A
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The Armijo-Goldstein Rule

Graphical Interpretation
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Newton Algorithm

Newton Method

= descent direction: —[V?f(x;)] 1V f(x;) [so-called Newton
direction]

= The Newton direction:
= minimizes the best (locally) quadratic approximation of f:
fla+Ax) = f(x) + Vf()TAx + = (M) V2 f (x) Ax

= points towards the optimum on f(x) = (x — x*)TA(x — x*)
= however, Hessian matrix is expensive to compute in general and
Its inversion is also not easy

guadratic convergence

(i.e. lim =2 | =u > O)
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Remark: Affine Invariance

Affine Invariance: same behavior on f(x) and f(Ax + b) for A €
GLn(R) = set of all invertible n X n matrices over R

= Newton method iIs affine invariant

see http://users.ece.utexas.edu/~cmcaram/EE381V_2012F/
Lecture 6 Scribe Notes.final.pdf

= same convergence rate on all convex-gquadratic functions
» Gradient method not affine invariant
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Quasi-Newton Method: BFGS

Xep1 = X — 0 H{Vf (x;) Where H; is an approximation of the inverse
Hessian

Key idea of Quasi Newton:

successive iterates x;, x;,, and gradients Vf (x;), Vf(x;+1) yield
second order information

Qe = V2 f (Xe11)De
where py = xt4q —xe and q; = Vf(xpyq) — Vf(xe)

Most popular implementation of this idea: Broyden-Fletcher-
Goldfarb-Shanno (BFGS)

= default in MATLAB's £fminunc and python's
scipy.optimize.minimize
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Conclusions

| hope it became clear...

...what are the difficulties to cope with when solving numerical
optimization problems

In particular dimensionality, non-separability and ill-conditioning
...what are gradient and Hessian
...what Is the difference between gradient and Newton direction
...and that adapting the step size in descent algorithms is crucial.
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Derivative-Free Optimization
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Derivative-Free Optimization (DFO)

DFO = blackbox optimization

Why blackbox scenario?

= gradients are not always available (binary code, no analytical
model, ...)

= or not useful (noise, non-smooth, ...)

= problem domain specific knowledge is used only within the black
box, e.g. within an appropriate encoding

= some algorithms are furthermore function-value-free, i.e. invariant
wrt. monotonous transformations of f.
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Derivative-Free Optimization Algorithms

(gradient-based algorithms which approximate the gradient by
finite differences)

coordinate descent
pattern search methods, e.g. Nelder-Mead

surrogate-assisted algorithms, e.g. NEWUOA or other trust-
region methods

other function-value-free algorithms

typically stochastic

evolution strategies (ESs) and Covariance Matrix Adaptation
Evolution Strategy (CMA-ES)

differential evolution
particle swarm optimization
simulated annealing
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Downhill Simplex Method by Nelder and M

While not happy do:
[assuming minimization of f and that x4, ..., x,,.1 € R" form a simplex]

1) Order according to the values at the vertices: f(x;) < f(x,) < < f(xp41)
2) Calculate x,, the centroid of all points except x,,. 1.
3) Reflection
Compute reflected point x,, = x, + a (x, — x,41) (@ > 0)
If x,- better than second worst, but not better than best: x,,,,: = x,, , and go to 1)
4) Expansion
If x,- IS the best point so far. compute the expanded point
Xe =X +V (% — x0)(¥y > 0)
If x, better than x,. then x,,,; = x, and go to 1)
Else x,,,1 = x,, and go to 1)
Else (i.e. reflected point is not better than second worst) continue with 5)
5) Contraction (here: f(x,) = f(x,))
Compute contracted point x, = x, + p(x,,4+1 — x,) (0 < p < 0.5)
If f(xc) < f(xnt1)i Xn41 = X and go to 1)
Else go to 6)
6) Shrink
x; = x; +o(x; — xy)forallie{2,..,n+1} (e <1)andgoto 1)

J. A Nelder and R. Mead (1965). "A simplex method for function minimization".
Computer Journal. 7: 308-313. doi:10.1093/comjnl/7.4.308
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Nelder-Mead: Reflection

2) Calculate x,, the centroid of all points except x,,,1.
3) Reflection
Compute reflected point x,, = x, + a (x, — x,,41) (@ > 0)
If x,- better than second worst, but not better than best: x,,,,: = x,-, and go to 1)

X3
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Nelder-Mead: Reflection

2) Calculate x,, the centroid of all points except x,,,1.
3) Reflection
Compute reflected point x,, = x, + a (x, — x,,41) (@ > 0)
If x,- better than second worst, but not better than best: x,,,,: = x,-, and go to 1)

X3
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Nelder-Mead: Reflection

2) Calculate x,, the centroid of all points except x,,,1.
3) Reflection
Compute reflected point x,, = x, + a (x, — x,,41) (@ > 0)
If x,- better than second worst, but not better than best: x,,,,: = x,-, and go to 1)
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Nelder-Mead: Expansion

2) Calculate x,, the centroid of all points except x,,,1.
4) Expansion
If x,- is the best point so far: compute the expanded point
Xe =X +V (X — x0)(¥y > 0)
If x, better than x,. then x,,,; == x, and go to 1)
Else x,,,, == x, and goto 1)
Else (i.e. reflected point is not better than second worst) continue with 5)
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Nelder-Mead: Expansion
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Nelder-Mead: Expansion
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Nelder-Mead: Expansion

2) Calculate x,, the centroid of all points except x,,,1.
4) Expansion
If x,- is the best point so far: compute the expanded point
Xe =X +V (X — x0)(¥y > 0)
If x, better than x,. then x,,,; == x, and go to 1)
Else x,,,, == x, and goto 1)
Else (i.e. reflected point is not better than second worst) continue with 5)

X3
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Nelder-Mead: Expansion

2) Calculate x,, the centroid of all points except x,,,1.

5) Contraction (here: f(x,) = f(x;,))
Compute contracted point x, = x, + p(x,+1 — X,) (0 < p < 0.5)
If fCxe) < f(xnt1) Xn41 = xc and go to 1)
Else go to 6)

© Anne Auger and Dimo Brockhoff, Inria TC2: Optimization for ML, U. Paris-Saclay, Nov. 10, 2022




Nelder-Mead: Expansion

2) Calculate x,, the centroid of all points except x,,,1.

5) Contraction (here: f(x,) = f(x;,))
Compute contracted point x, = x, + p(x,+1 — X,) (0 < p < 0.5)
If fCxe) < f(xnt1) Xn41 = xc and go to 1)
Else go to 6)

X3
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Nelder-Mead: Expansion

2) Calculate x,, the centroid of all points except x,,,1.
6) Shrink

x; = x; +o(x; — xy)foralli € {2,...,n+1}and goto 1)

X3
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Nelder-Mead: Expansion

2) Calculate x,, the centroid of all points except x,,,1.
6) Shrink

x; = x; +o(x; — xy)foralli € {2,...,n+1}and goto 1)

AY
AY
\
\
X
\
\
N
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Nelder-Mead: Standard Parameters

= reflection parameter : a = 1
= expansion parameter. y = 2

. 1
= contraction parameter: p = >

. 1
» shrink parameter: ¢ = 5

some visualizations of example runs can be found here:
https://en.wikipedia.org/wiki/Nelder%E2%80%93Mead_method
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stochastic algorithms
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Stochastic Search Template

A stochastic blackbox search template to minimize f: R"™ - R
Initialize distribution parameters @, set population size 1 € N
While happy do:

=  Sample distribution P(x|0) —» x4, ...,x; € R"

» Evaluate x4,...,x;0nf

» Update parameters 6 « Fy(0, x4, ..., X3, f(x1), ..., f(x))

= All depends on the choice of P and Fy
deterministic algorithms are covered as well

= |n Evolutionary Algorithms, P and Fy are often defined implicitly
via their operators.
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Generic Framework of an Evolutionary Algori

Initialization best individual

. potentia mating
evaluation :
parents selection

environmental
selection

crossover/
mutation

evaluation

stochastic operators

eroratation shan
<AL Interpretation change

>
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CMA-ES in a Nutshell

Evolution Strategies (ES)

The CMA-ES

Input: m € R”, 0 € Ry, A

Initialize: C =1, andp. =0, p, =0,

Set: cc ~4/n, co = 4/n, ¢y = 2/n?, Cp & [y /1%, C1 + cp <1,de =1+ \/?,
and wi—; _, such that s, = —<+— ~ 0.3\

.
i=1 Wi

While not terminate

xi=m+oy. y; ~ N;j(0,C), fori=1,....\ sampling
m<— Y b wixpy =m+ oy, wherey, =31 wiyi\ update mean
pe (1 =co)pe + Mgy <t5ym v/ 1 — (1 — ce)®/iwyw  cumulation for C
Po — (1 —co)ps + \/1 — (1 — CJ)Z\/;TWC—%J:W cumulation for &
C(I—cp—¢cu)C + crpepe’ + cu St wiviayiy update C
o 4 0 X exp ({j—z (%—1)) update of o

Not covered on this slide: termination, restarts, useful output, boundaries and
encoding

| 16/ 81
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CMA-ES In a Nutshell

Evolution Strategies (ES) A Search Template

The CMA-ES

Input: m € R”, 0 € Ry, A

Initialize: C =1, andp. =0, p, =0,

Set: cc & 4/n, co = 4/n, ¢ = f_/fz Cp A /NP, 1+ cp < 1, de = 1+ /B2,
and w;— . such that p,, = Zp, 7~ 0.3\

While not terminate

xi=m+oy. y; ~ N;j(0,C), fori=1,....\ sampling
m <=y 1L wixiy =m+ oy, Wherey, =31 wiyia update mean
pe (1 =co)pe + Mgy <t5ym v/ 1 — (1 — ce)®/iwyw  cumulation for C
Po (1 = co)po + /1= (1 = )2 /Tty C 2y, cumulation for &

L T P P

C—(1-c1—¢y)C + C1 PP’ amee

o (el
7 €70 X CeXp (a (EIIN(OJ)H 1), Goal of next lecture:
Understand the main principles

Not covered on this slide: terminati ) _
of this state-of-the-art algorithm.

encoding
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