Optimization for Machine Learning

Lecture 6: Discrete Optimization

December 8, 2022
TC2 - Optimisation
Université Paris-Saclay

s’ p Anne Auger and Dimo Brockhoff
A Inria Saclay — lle-de-France

INVENTOI THI ITAL WORLD

Course Overview

Date | |Topc
Thu, 3.11.2022 DB Introduction

Thu, 10.11.2022 AA Continuous Optimization [: differentiability, gradients,
convexity, optimality conditions

Thu, 17.11.2022 AA Continuous Optimization Il: constrained optimization,
gradient-based algorithms, stochastic gradient

Thu, 24.11.2022 AA Continuous Optimization lll: stochastic algorithms,
derivative-free optimization
written test / « contréle continue »

Thu, 1.12.2022 DB Constrained optimization, BDiserete-Optimizationt:
graph theory, greedy-algerithms

Thu, 8.12.2022 DB Discrete Optimization: greedy algorithms, branch and
bound, dynamic programming

Thu 15.12.2022 DB Written exam (2 hours starting at 1:30pm)

classes from 13h30 — 16h45 (2" break at end)

TC2: Optimization for ML, U. Paris-Saclay, Dec. 8, 2022

Concrete Information About Exam

= on site, offline exam
= multiple choice, typically 4 answers each (1-4 answers correct)
= closed book (nothing allowed but pen)
= - easier questions ©
» like in mini-exam
= next Thursday (Dec. 15) @ 1:30pm
= 2 hours

TC2: Optimization for ML, U. Paris-Saclay, Dec. 8, 2022

Overview Discrete Optimization

Algorithms for discrete problems:
= often highly problem-specific
= but some general concepts are repeatedly used:
= greedy algorithms
= branch and bound
= dynamic programming
» randomized search heuristics

Motivation for this Last Part of the Lecture:

= get an idea of the most common algorithm design principles
= we cannot

» go into details and present many examples of algorithms

...but for a few

» analyze algorithms theoretically with respect to their
runtime

TC2: Optimization for ML, U. Paris-Saclay, Dec. 8, 2022

Greedy Algorithms

© Anne Auger and Dimo Brockhoff, Inria TC2: Optimization for ML, U. Paris-Saclay, Dec. 8, 2022

Greedy Algorithms

From Wikipedia:

“A greedy algorithm is an algorithm that follows the problem
solving heuristic of making the locally optimal choice at each
stage with the hope of finding a global optimum.”

= Note: typically greedy algorithms do not find the global optimum

TC2: Optimization for ML, U. Paris-Saclay, Dec. 8, 2022

Lecture Outline Greedy Algorithms

What we will see:
O Example 1: Money Change problem
® Example 2: e-Greedy Algorithm for Multi-Armed Bandits

TC2: Optimization for ML, U. Paris-Saclay, Dec. 8, 2022

Example 1: Money Change

Change-making problem

= Given n coins of distinct values w,=1, w,, ..., w, and a total
change W (where w,, ..., w,, and W are integers).

= Minimize the total amount of coins 2x; such that 2wx, = W and
where x; is the number of times, coin i is given back as change.

Greedy Algorithm
Unless total change not reached:

add the largest coin which is not larger than the remaining
amount to the change

Note: only optimal for standard coin sets, not for arbitrary ones!

Related Problem:
finishing darts (from 501 to O with 9 darts)

© Anne Auger and Dimo Brockhoff, Inria TC2: Optimization for ML, U. Paris-Saclay, Dec. 8, 2022

Example 2: Multi-Armed Bandits

= generic problem of
resource allocation

» classic reinforcement learning
problem showing the

exploration—exploitation tradeoff
dilemma

- e flf 4
L}
PRS-

4 R

Yamaguch
i%EE

© Anne Auger and Dimo Brockhoff, Inria TC2: Optimization for ML, U. Paris-Saclay, Dec. 8, 20

Example 2: Multi-Armed Bandits

Yamaguh
isEAE
= K single-arm bandits with a lever

» Each bandit has a fixed but unknown probability distribution R_i
attached to it with a mean y;

= At each time step t, we decide to pull a lever (i) and get a
reward r, according to R_i

= Qverall, we want to maximize the sum of the rewards
= The regret after T steps is defined as p = Tgy — Diteq Tt

© Anne Auger and Dimo Brockhoff, Inria TC2: Optimization for ML, U. Paris-Saclay, Dec. 8

Exploration vs. Exploitation: The e-Greedy Alg

Exploration: pull new levers (or underexplored ones) to get better
estimates on the expected rewards

Exploitation: pull the arm, we think is the best arm

...the latter being the greedy approach here

The e-Greedy Algorithm
= With probability 1-€: pull the lever, we think is best
= With probability €: pull a random lever (uniformly)

To be decided (not discussed further here):
How to estimate the probabilities (e.g. pulling each lever once at first)

How to choose € (constant vs. decreasing over time)
constant e gives linear regret

TC2: Optimization for ML, U. Paris-Saclay, Dec. 8, 2022

Branch and Bound

© Anne Auger and Dimo Brockhoff, Inria TC2: Optimization for ML, U. Paris-Saclay, Dec. 8, 2022

Idea Behind Branch and Bound

= Basically enumerates the entire search space
= But uses clever strategies to avoid enumerations in bad areas

[Whole problem

/ branch

subproblem 1 J [subproblem 2

brancN l branch

[subproblem 1.1} [subproblem 1.2} [subproblem 2.1} and so forth...

© Anne Auger and Dimo Brockhoff, Inria TC2: Optimization for ML, U. Paris-Saclay, Dec. 8, 2022

Idea Behind Branch and Bound

[Whole problem

fopt < UBq fopt < UB,
LB < fop pf branch LB, < fopr
subproblem 1 J [subproblem 2

brancN l branch

[subproblem 1.1} [subproblem 1.2} [subproblem 2.1} and so forth...

fopt < UB11 fopt < UB1 > fopt < UB34
LBy 1 < fopt LBy 7 < fopt LBy 1 < fopt

TC2: Optimization for ML, U. Paris-Saclay, Dec. 8, 2022

Idea Behind Branch and Bound

[Whole problem

fopt UBl fopt UBZ
LBl = fopt / branch LBZ = fopt
subproblem 1 J [subproblem 2

brancN l branch

[subproblem 1.1} [subproblem 1.2} [subproblem 2.1} and so forth...

fopt = UBl.l fopt UBl 2 fopt UBZ 1
LBl.l = fopt LBl.Z = fopt LBZ.l = fopt

when can we actually avoid evaluating all solutions?

© Anne Auger and Dimo Brockhoff, Inria TC2: Optimization for ML, U. Paris-Saclay, Dec. 8, 2022

Idea Behind Branch and Bound

[Whole problem

fopt < UBq fopt < UB,
LBl = fopt / branch LBZ = fopt
subproblem 1 J [subproblem 2

brancN l branch

[subproblem 1.1} [subproblem 1.2} [subproblem 2.1} and so forth...

fopt < UBq41 fopt < UBy fopt < UB34
LBy 1 < fopt LB1 3 < fopt LBy 1 < fopt max.
A
We can stop exploring/branching if Y
= UB=LB X
= UB for new subproblem lower than LB for another

[when maximizing]

TC2: Optimization for ML, U. Paris-Saclay, Dec. 8, 2022

How do we get Upper and Lower Bounds?

We assume again maximization here...

= A feasible solution gives us a lower bound

the optimum will be at least as good as a solution, we know

Hence, fast (non-exact) algorithms such as greedy can give us
lower bounds

= For upper bounds, we can relax the problem

for example, by removing constraints

TC2: Optimization for ML, U. Paris-Saclay, Dec. 8, 2022

Example: The Knapsack Problem (KP)

Knapsack Problem

max. Z p;jx; with x; € {0,1}

ZW]x] < W

j=1

© Anne Auger and Dimo Brockhoff, Inria TC2: Optimization for ML, U. Paris-Saclay, Dec. 8, 2022

KP: How to Branch?

[Whole problem

branch

J [X1 = 1
brancr\ J branch

[xl—O&xz—O xl—O&xz—I}[x1=1&x2=0J and so forth...

I order of variables plays an important role
optimally, the subproblems don’t overlap

TC2: Optimization for ML, U. Paris-Saclay, Dec. 8, 2022

KP: How to Bound?

[Whole problem

branch

[X1 = 1
brancr\ J branch

[xl—O&xz—O 1—0&x2—1}[x1=1&x2=0J and so forth...

Maximization, so LB by greedy approach for example:
Choose items in decreasing profit/weight ratio until knapsack full

UB by relaxation of constraints (on the variables here):

Use greedy algorithm and pack add. item partially if there is space
...this variable can be used to branch next

© Anne Auger and Dimo Brockhoff, Inria TC2: Optimization for ML, U. Paris-Saclay, Dec. 8, 2022

Dynamic Programming

© Anne Auger and Dimo Brockhoff, Inria TC2: Optimization for ML, U. Paris-Saclay, Dec. 8, 2022

Dynamic Programming

Wikipedia:
‘[Dynamic programming] refers to simplifying a complicated

problem by breaking it down into simpler sub-problems in a
recursive manner.”

But that’s not all:

= dynamic programming also makes sure that the subproblems are
not solved too often but only once by keeping the solutions of
simpler subproblems in memory (“trading space vs. time”)

= jtis an exact method, i.e. in comparison to the greedy approach, it
always solves a problem to optimality

© Anne Auger and Dimo Brockhoff, Inria TC2: Optimization for ML, U. Paris-Saclay, Dec. 8, 2022

Two Properties Needed

Optimal Substructure

A solution can be constructed efficiently from optimal solutions of
sub-problems

Overlapping Subproblems

Wikipedia: “[...] a problem is said to have overlapping
subproblems if the problem can be broken down into
subproblems which are reused several times or a recursive
algorithm for the problem solves the same subproblem over and
over rather than always generating new subproblems.”

TC2: Optimization for ML, U. Paris-Saclay, Dec. 8, 2022

Main Ildea Behind Dynamic Programming

Main idea: solve larger subproblems by breaking them down to
smaller, easier subproblems in a recursive manner

Typical Algorithm Design:

© decompose the problem into subproblems and think about how
to solve a larger problem with the solutions of its subproblems

® specify how you compute the value of a larger problem
recursively with the help of the optimal values of its subproblems
("“Bellman equation”)

® bottom-up solving of the subproblems (i.e. computing their
optimal value), starting from the smallest by using the Bellman
equality and a table structure to store the optimal values

® eventually construct the final solution (can be omitted if only the
value of an optimal solution is sought)

© Anne Auger and Dimo Brockhoff, Inria TC2: Optimization for ML, U. Paris-Saclay, Dec. 8, 202

Example: The Knapsack Problem (KP)

Knapsack Problem

max. Z p;jx; with x; € {0,1}

ZW]x] < W

j=1

© Anne Auger and Dimo Brockhoff, Inria TC2: Optimization for ML, U. Paris-Saclay, Dec. 8, 2022

What are Good Subproblem Definitions

Consider the following subproblems:

1) P(i): optimal profit when packing exactly i items

2) P(i): optimal profit when packing at most i items

3) P(i,j): optimal profit when allowing to pack the first i items into a
knapsack of size j

Which one allows us to solve larger subproblems from the solutions
of smaller ones?

Which value are we actually interest in, when trying to solve the
problem?

)

© Anne Auger and Dimo Brockhoff, Inria

Opt. Substructure and Overlapping Subprok

Consider the following subproblem:

P(i, j): optimal profit when allowing to pack the first i items into a
knapsack of size j

Optimal Substructure

The optimal choice of whether taking item i or not can be made
easily for a knapsack of weight j if we know the optimal choice
foritems 1..i—1:

0 ifi=00rj=0
P(i,j)) = P(i—1,)) ifw; >j
max{P(i —1,/),p; + P —1,j—wy)} ifw; <j

Overlapping Subproblems

a recursive implementation of the Bellman equation is simple,
but the P(i,j) might need to be computed more than once!

© Anne Auger and Dimo Brockhoff, Inria TC2: Optimization for ML, U. Paris-Saclay, Dec. 8, 2022

Dynamic Programming Approach to the KP

To circumvent solving the subproblems more than once, we can
store their results (in a matrix for example)...

knapsack weight

nllﬂnﬂ--mlﬂl

P(i.j)

best achievable
profit with items 1...i
and a knapsack of
size |

TC2: Optimization for ML, U. Paris-Saclay, Dec. 8, 2022

Dynamic Programming Approach to the KP

Example instance with 5 items with weights and profits
(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is W=11.

knapsack weight

nlln-nnn-nnmn

initialization:
P(i,j)=0ifi=0o0rj=0

TC2: Optimization for ML, U. Paris-Saclay, Dec. 8, 2022

Dynamic Programming Approach to the KP

Example instance with 5 items with weights and profits
(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is W=11.

knapsack weight

nlln-nnn-nnmn

o O O O O

initialization:
P(i,j)=0ifi=0o0rj=0

TC2: Optimization for ML, U. Paris-Saclay, Dec. 8, 2022

Dynamic Programming Approach to the KP

Example instance with 5 items with weights and profits
(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is W = 11.

knapsack weight

nnnnnnn-nnmm

7))

-

..cl)a 0 ———
0 ——ee ——

| B — —+—
0 ——eee ——-
O = — >

fori =1 ton:

forj=1to W:

max{P(i —1,)),p; + P(i — 1,j — w;)}itw; =

© Anne Auger and Dimo Brockhoff, Inria TC2: Optimization for ML, U. Paris-Saclay, Dec. 8, 2022

Dynamic Programming Approach to the KP

Example instance with 5 items with weights and profits
(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is W = 11.

knapsack weight

nlln-nnn-nnmn

0

o O O O O

fori =1 ton:
forj=1to W:

’ max{P(i —1,)),p; + P(i — 1,j — w;)}ifw; =]

TC2: Optimization for ML, U. Paris-Saclay, Dec. 8, 2022

Dynamic Programming Approach to the KP

Example instance with 5 items with weights and profits
(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is W = 11.

knapsack weight

nlln-nnn-nnmn

0 0

o O O O O

fori =1 ton:
forj=1to W:

’ max{P(i —1,)),p; + P(i — 1,j — w;)}ifw; =]

TC2: Optimization for ML, U. Paris-Saclay, Dec. 8, 2022

Dynamic Programming Approach to the KP

Example instance with 5 items with weights and profits
(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is W = 11.

knapsack weight

nlln-nnn-nnmn

0 0 0 0

o O O O O

fori =1 ton:
forj=1to W:

’ max{P(i —1,)),p; + P(i — 1,j — w;)}ifw; =]

TC2: Optimization for ML, U. Paris-Saclay, Dec. 8, 2022

Dynamic Programming Approach to the KP

Example instance with 5 items with weights and profits
(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is W = 11.

knapsack weight

nlln-nnn-nnmn

<;O 0 0 TO 0 0
0 0 0 0 6
+p1(= 4)
0
0
0
0
fori =1 ton:
forj=1to W:
1 ifw;, >7j
P(i,) = P(i—1,)) i =)

max{P(i — 1,)),p; + P(i — 1,j —w;)}itw; =j

TC2: Optimization for ML, U. Paris-Saclay, Dec. 8, 2022

Dynamic Programming Approach to the KP

Example instance with 5 items with weights and profits
(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is W = 11.

knapsack weight

nlln-nnn-nnmn

Sy 10
0 0 0 0 04— 4
+p1(=4)
0
0
0
0
fori =1ton:
forj=1to W:
R if w: > j
P(i,) = P(i—1,)) 1w ~J

max{P(i — 1,)),p; + P(i — 1,j —w;)}itw; =j

TC2: Optimization for ML, U. Paris-Saclay, Dec. 8, 2022

Dynamic Programming Approach to the KP

Example instance with 5 items with weights and profits
(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is W = 11.

knapsack weight

nlln-nnn-nnmn

0 0 0 0 4 4 4 4 4 4 4

o O O O O

fori =1 ton:
forj=1to W:

’ max{P(i —1,)),p; + P(i — 1,j —w;)}ifw; =

TC2: Optimization for ML, U. Paris-Saclay, Dec. 8, 2022

Dynamic Programming Approach to the KP

Example instance with 5 items with weights and profits
(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is W = 11.

knapsack weight

nlln-nnn-nnmn

0 0 0 0 4 4 4 4 4 4 4
0 0 0 0 4 4

o O O O O

fori =1 ton:
forj=1to W:

’ max{P(i —1,)),p; + P(i — 1,j —w;)}ifw; =

TC2: Optimization for ML, U. Paris-Saclay, Dec. 8, 2022

Dynamic Programming Approach to the KP

Example instance with 5 items with weights and profits
(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is W = 11.

knapsack weight

nlln-nnn-nnmn

w
-
9 oﬁo 0 0 0 4 4 4 4 4 4 4
0 0 0 0 0 4
l Pa(=10)
0
0
0
fori =1 ton:
forj=1to W:
1 i ifw;, >j

max{P(i — 1,)),p; + P(i — 1,j —w;)}itw; =j

TC2: Optimization for ML, U. Paris-Saclay, Dec. 8, 2022

Dynamic Programming Approach to the KP

Example instance with 5 items with weights and profits
(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is W = 11.

knapsack weight

nlln-nnn-nnmn

O O O 0 4 4 4 4 4 4 4
o O O o0 4 4 10 10 10 10 10

o O O O O

fori =1 ton:
forj=1to W:

’ max{P(i —1,)),p; + P(i — 1,j —w;)}ifw; =

TC2: Optimization for ML, U. Paris-Saclay, Dec. 8, 2022

Dynamic Programming Approach to the KP

Example instance with 5 items with weights and profits
(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is W = 11.

knapsack weight

nlln-nnn-nnmn

4 4 4 4 4 4 4
4 4 10 10 10 10 10

o O
o O
o O
o O

o O O O O
o
w
w
w

fori =1 ton:
forj=1to W:

’ max{P(i —1,)),p; + P(i — 1,j —w;)}ifw; =

TC2: Optimization for ML, U. Paris-Saclay, Dec. 8, 2022

Dynamic Programming Approach to the KP

Example instance with 5 items with weights and profits
(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is W = 11.

knapsack weight

nlln-nnn-nnmn

0 0 0 0 0 4 4 4 4 4 4 4
0 0 0 0 0 4 4 10 10 10 10 10
gl @ | o | @ '\14
+p3(=3
0
0
fori =1 ton:
forj=1to W:
S ifw; >

max{P(i — 1,)),p; + P(i — 1,j —w;)}itw; =j

TC2: Optimization for ML, U. Paris-Saclay, Dec. 8, 2022

Dynamic Programming Approach to the KP

Example instance with 5 items with weights and profits
(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is W = 11.

knapsack weight

nlln-nnn-nnmn

0 0 0 0 0 4 4 4 4 4 4 4
0 0 0 0 0 4 4 10 10 10 10 10
o 0 3 3 3 '4\14
+p3(= 3)
0
0
fori =1 ton:
forj=1to W:
S ifw; >

max{P(i — 1,)),p; + P(i — 1,j —w;)}itw; =j

TC2: Optimization for ML, U. Paris-Saclay, Dec. 8, 2022

Dynamic Programming Approach to the KP

Example instance with 5 items with weights and profits
(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is W = 11.

knapsack weight

nlln-nnn-nnmn

0 0 0 0 0 4 4 4 4 4 4 4
0 0 0 0 0 4 4 10 10 10 10 10
o 0 3 3 3 4'4\110 etc.
+p3(= 3)
0
0
fori =1 ton:
forj=1to W:
S ifw; >

max{P(i — 1,)),p; + P(i — 1,j —w;)}itw; =j

TC2: Optimization for ML, U. Paris-Saclay, Dec. 8, 2022

Dynamic Programming Approach to the KP

Example instance with 5 items with weights and profits
(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is W = 11.

knapsack weight

nlln-nnn-nnmn

0 0 0 0 0 4 4 4 4 4 4 4

0 0 0 0 0 4 4 10 10 10 10 10

0 0 3 3 3 4 4 10 10 13 13 13

0 0 3 3 5 5 8 10 10 13 13 15

0 0 3 3 5 6 8 10 10 13 13 15
fori =1 ton:

forj=1to W:

max{P(i — 1,)),p; + P(i — 1,j —w;)}itw; =j

TC2: Optimization for ML, U. Paris-Saclay, Dec. 8, 2022

Dynamic Programming Approach to the KP

Example instance with 5 items with weights and profits
(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is W = 11.

knapsack weight

nlln-nnn-nnmn

0 0 0 0 0 4 4 4 4 4 4 4

0o 0 0 0 0 4 4 10 10 10 10 10

0o 0 3 3 3 4 4 10 10 13 13 13

o 0 3 3 5 5 8 10 10 13 13 15

o o 3 3 5 6 8 10 10 13 13 KB
fori =1 ton:

forj=1to W:

max{P(i — 1,)),p; + P(i — 1,j —w;)}itw; =j

TC2: Optimization for ML, U. Paris-Saclay, Dec. 8, 2022

Dynamic Programming Approach to the KP

Question: How to obtain the actual packing?
Answer: we just need to remember where the max came from!

knapsack weight

nnn-nﬂn-nnmn
gn 0. _ 9

X1 = 0
o N 00 O 0x2=41 4 4 4 4 4 4
BEl o o o o szom 10 10 10
ln 0 0 3 3 3 4 4 «e_10 13,13 13
B o o 3 3 5 5 8 10 10 13 15
B o o 3 3 5 6 8 10 10 137:715

fori =1 ton:
forj=1to W:

’ max{P(i —1,)),p; + P(i — 1,j —w;)}ifw; =

TC2: Optimization for ML, U. Paris-Saclay, Dec. 8, 2022

(Randomized) Search Heuristics

ne Auger and Dimo Brockhoff, Inria TC2: Optimization for ML, U. Paris-Saclay, Dec. 8, 2022

Motivation General Search Heuristics

= often, problem complicated and not much time available to
develop a problem-specific algorithm

= search heuristics are a good choice:
= relatively easy to implement
= easy to adapt/change/improve

= e.g. when the problem formulation changes in an early
product design phase

= or when slightly different problems need to be solved
over time

» randomized/stochastic algorithms are a good choice because
they are robust to noise

TC2: Optimization for ML, U. Paris-Saclay, Dec. 8, 2022

Lecture Outline Randomized Search Heuristics

Which algorithms will we touch?
© Randomized Local Search (RLS)

® Variable Neighborhood Search (VNS)
©® Tabu Search (TS)

® Evolutionary Algorithms (EAs)

TC2: Optimization for ML, U. Paris-Saclay, Dec. 8, 2022

Neighborhoods

For most (stochastic) search heuristics, we need to define a
neighborhood structure

= which search points are close to each other?

Example: k-bit flip / Hamming distance k neighborhood
» search space: bitstrings of length n (QQ={0,1}")
» two search points are neighbors if their Hamming
distance is k

* in other words: x and y are neighbors if we can flip
exactly k bits in x to obtain y

= (0001001101 is neighbor of
0001000101 for k=1
0101000101 for k=2
1101000101 for k=3

TC2: Optimization for ML, U. Paris-Saclay, Dec. 8, 2022

Neighborhoods II

Example:

possible neighborhoods for the knapsack problem
search space again bitstrings of length n (Q={0,1}")
Hamming distance 1 neighborhood:

* add an item or remove it from the packing
replacing 2 items neighborhood:

= replace one chosen item with an unchosen one

= makes only sense in combination with other
neighborhoods because the number of items stays
constant

Hamming distance 2 neighborhood on the contrary:
= allows to change 2 arbitrary items, e.g.
» add 2 new items
= remove 2 chosen items
= or replace one chosen item with an unchosen one

TC2: Optimization for ML, U. Paris-Saclay, Dec. 8, 2022

Randomized Local Search (RLS)

Idea behind (Randomized) Local Search:
= explore the local neighborhood of the current solution (randomly)

Pure Random Search:
= go to randomly chosen neighbor

First Improvement Local Search:
= go to first (randomly) chosen neighbor which is better

Best Improvement strategy:

= always go to the best neighbor

= not random anymore

= computationally expensive if neighborhood large

TC2: Optimization for ML, U. Paris-Saclay, Dec. 8, 2022

Variable Neighborhood Search

Main Idea: [N. Mladenovic and P. Hansen, 1997]
= change the neighborhood from time to time

» |ocal optima not necessarily the same for different
neighborhood operators

» but often close to each other
= global optimum is local optimum for all neighborhoods
* rather a framework than a concrete algorithm
= e.g. deterministic and stochastic neighborhood changes

= typically combined with (i) first improvement, (ii) a random
order in which the neighbors are visited and (iii) restarts

N. Mladenovic and P. Hansen (1997). "Variable neighborhood search". Computers
and Operations Research 24 (11): 1097-1100.

© Anne Auger and Dimo Brockhoff, Inria TC2: Optimization for ML, U. Paris-Saclay, Dec. 8, 2022

Tabu Search

Disadvantages of local searches (with or without varying
neighborhoods)

= they get stuck in local optima

= have problems to traverse large plateaus of equal objective
function value (“random walk”)

Tabu search addresses these by
= allowing worsening moves if all neighbors are explored
* introducing a tabu list of temporarily not allowed moves
= those restricted moves are
= problem-specific and

= can be specific solutions or not permitted “search
directions” such as “don’t include this edge anymore” or
“do not flip this specific bit”

= the tabu list is typically restricted in size and after a while,
restricted moves are permitted again

© Anne Auger and Dimo Brockhoff, Inria TC2: Optimization for ML, U. Paris-Saclay, Dec. 8, 2022

Stochastic Optimization Algorithms

One class of (bio-inspired) stochastic optimization algorithms:
Evolutionary Algorithms (EAs)
1859

;-:y\‘_..‘-" =

THE ORIGIN OF SPECIES L

» Class of optimization algorithms

originally inspired by the idea of -
biological evolution |
= selection, mutation, recombination CoMAN

TC2: Optimization for ML, U. Paris-Saclay, Dec. 8, 2022

Metaphors

Classical Optimization Evolutionary Computation
variables or parameters variables or chromosomes
candidate solution individual, offspring, parent

vector of decision variables /
design variables / object

variables
set of candidate solutions population
objective function fitness function

loss function
cost function
error function

iteration generation

TC2: Optimization for ML, U. Paris-Saclay, Dec. 8, 2022

Generic Framework of an EA

initialization best individual

; mating
evaluation :
selection
environmental
selection

crossover/

evaluation :
mutation

stochastic operators
it
e representation (search space)
stopping criteria

TC2: Optimization for ML, U. Paris-Saclay, Dec. 8, 2022

The Historic Roots of EAs

Genetic Algorithms (GA)
J. Holland 1975 and D. Goldberg (USA)
Q={0,1}"

Evolution Strategies (ES)
|. Rechenberg and H.P. Schwefel, 1965 (Berlin)
() =R"

Evolutionary Programming (EP)

L.J. Fogel 1966 (USA)

Genetic Programming (GP)

J. Koza 1990 (USA)
() = space of all programs

nowadays one umbrella term: evolutionary algorithms

TC2: Optimization for ML, U. Paris-Saclay, Dec. 8, 2022

Note: Handling Constraints

Several generic ways to handle constraints, e.g.:

resampling until a new feasible point is found (“often bad idea”)

penalty function approach: add constraint violation term
(potentially scaled)

repair approach: after generation of a new point, repair it (e.g.
with a heuristic) to become feasible again if infeasible

= continue to use repaired solution in the population or
» use repaired solution only for the evaluation?

multiobjective approach: keep objective function and constraint
functions separate and try to optimize all of them in parallel

© Anne Auger and Dimo Brockhoff, Inria TC2: Optimization for ML, U. Paris-Saclay, Dec. 8, 2022

Examples for some EA parts

ne Auger and Dimo Brockhoff, Inria TC2: Optimization for ML, U. Paris-Saclay, Dec. 8, 2022

Selection is the major determinant for specifying the trade-off
between exploitation and exploration

Selection is either

stochastic or deterministic
e.g. fitness proportional Disadvantage: e.g. (U+A), (u,A)
depends on T A
scaling of f
best y from
e.g. via a tournament offspring and

parents
'@ best p from
offspring only

Mating selection (selection for variation): usually stochastic
Environmental selection (selection for survival): often deterministic

© Anne Auger and Dimo Brockhoff, Inria TC2: Optimization for ML, U. Paris-Saclay, Dec. 8, 202

Variation Operators

Variation aims at generating new individuals on the basis of those
individuals selected for mating

Variation = Mutation and Recombination/Crossover

mutation: mut: | R
recombination: recomb: NINEGEGINIG:G@0M where I and I

= choice always depends on the problem and the chosen
representation

= however, there are some operators that are applicable to a wide
range of problems and tailored to standard representations such
as vectors, permutations, trees, etc.

© Anne Auger and Dimo Brockhoff, Inria TC2: Optimization for ML, U. Paris-Saclay, Dec. 8, 2022

Variation Operators: Guidelines

Two desirable properties for mutation operators:

= every solution can be generation from every other with a
probability greater than 0 (“exhaustiveness”)

" d(z,7') <d(z,z”) => Prob(mut(z) = ') > Prob(mut(z) = z")
(“locality”)

Desirable property of recombination operators (“in-between-ness”):
z" = recomb(z,z’) = d(z”,z) < d(z,z") Nd(z",z") < d(z,z’)

TC2: Optimization for ML, U. Paris-Saclay, Dec. 8, 2022

Examples of Mutation Operators on Permutations

Swap: 1]12]3]4]5]6
N4

swap

Scramble: [1]2]8]4]5]6] —— [1]3]4]2]5]6
T 1

realrrange

Invert: 1[2[3]4]5[6] - [1[4[3]2]5]6
! t
reverse

Insert: 1]12]3]4]5]6] - [1]4]2]3]|5]6
N4

TC2: Optimization for ML, U. Paris-Saclay, Dec. 8, 2022

Examples of Recombination Operators: {0,1}"

1-point crossover

__.._01

1[o[1]0}0]1

n-point crossover
[1}1]o0]of1]0] K

1:0[1]0}0][1

uniform crossover

_ . . choose each bit
s 0 0

0[0] independently from
1/0[1/0]0]1 one parent or another

TC2: Optimization for ML, U. Paris-Saclay, Dec. 8, 2022

A Canonical Genetic Algorithm

= binary search space, maximization
= uniform initialization
= generational cycle: of the population
= evaluation of solutions
* mating selection (e.g. roulette wheel)
= crossover (e.g. 1-point)
= environmental selection (e.g. plus-selection)

TC2: Optimization for ML, U. Paris-Saclay, Dec. 8, 2022

Conclusions

= EAs are generic algorithms (randomized search heuristics,
meta-heuristics, ...) for black box optimization

no or almost no assumptions on the objective function

* They are typically less efficient than problem-specific
(exact) algorithms (in terms of #funevals)

less differences in the continuous case (as we have seen)

= Allow for an easy and rapid implementation and therefore
to find good solutions fast

easy to incorporate (and recommended!) to incorporate
problem-specific knowledge to improve the algorithm

TC2: Optimization for ML, U. Paris-Saclay, Dec. 8, 2022

