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Key questions

= Objective reduction possible without changing the
problem?

= How to compute a minimum objective set?

= Applicable to real problems?
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Related Work

= Omitting redundant objectives:

= Agrell (1997), Gal and Leberling (1977)
— Not suitable for black-box optimization

= PCA based objective reduction:
= Deb and Saxena (2005)
— Cannot guarantee preservation of dominance structure
= Various conflict definitions:

= Deb (2001); Tan et al. (2005)
— conflict as a property of the problem itself

= Purshouse and Fleming (2003):

— objective pairs conflict if =~ 2 solutions incomparable wrt
the objective pair

© Eckart Zitzler, Dimo Brockhoff ETH Zurich

Dimensionality Reduction in Multiobiective Optimization



Open Questions

= Conflicts between arbitrary objective sets

= Objective reduction with preservation of problem
structure Iin a black-box scenario

= “Real” problems
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Key Contributions

= Generalization of Objective Conflicts

* The Minimum Objective Subset Problem
= Exact and heuristic algorithms

= Objective reduction for selected problems
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Relation Graphs and Dominance

= For a multiobjective problem, the question is to find the

minimal elements of a given (pre)order (X, <)
= Here, we restrict to the weak dominance relation =

=r={(xy)|x,y € XAVfi € F: fi(x) < fi(y)}
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(reflexive and transitive edges are omitted)
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Intersection of Linear (Pre)Orders

»= Single objectives induce linear (pre)orders =y,
= Their intersection yields <#=\;,cr =#

*» Thus, the omission of objectives can only
make incomparable solution pairs comparable and

comparable solutions indifferent
add edges in relation graph
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Objective conflicts

= Objective sets conflict if they induce different relations
= Definition: Fi nonconflicting with 72 iff 27 =27,

= Omit objectives in F\ F' if 7/ CF is nonconflicting
with F and preserve the dominance structure
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Key Contributions

= Generalization of Objective Conflicts

* The Minimum Objective Subset Problem
= Exact and heuristic algorithms

= Objective reduction for selected problems
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The Minimum Objective Subset Problem

Minimum objective set
F' C F is called minimum if =7 ==~
and AF" CFAN|F'| <|F|:Zpn==F

Minimum Objective Subset Problem (MOSS)

Given: Set A of solutions with weak dominance relations
=Fr=(\t,er 3 and = C AXx A

Task:  Compute a minimum objective set 7 C F with
~F=2F

MOSS is NP-hard
= reduction from set cover problem (SCP)
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Algorithms for the MOSS Problem

. S:=10
ExaCt a|gOrIthm for each pair x,y € A of solutions do
Sy i= {{iH1 € {1 b} AX =iy Ay £ %)
= Correctness proof S, = {{i} i€ {Lo...k} Ay 2 xAx 20 y)
] Szy = Sz U S, where
«  Runtime: O(|A]*- k- 2%) S1U S i= {1 Usy| 51 € Sy Asz € S
N(Ap1 € S1,p2 € S2 : p1Upa C s1Us2)}
= Worst case: Q(|A]?-2k/3) 1 Sy =0 then S, = {1,.... b}
end for ’

Output a smallest set Spin in S

Simple greedy heuristic

E := <% where <% := (A x A)\ <r

= Correctness proof [:=0
: . Ok - |A|2) WEEEOi?HQiio({l kY\I)
. Runtlme such that | jid ﬂE’| is maximal
_ . : - E:=E\ =<¢
Be_st possible approximation I=10(])
ratlo O.I: (_)(log |A|) end while
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Objective Reduction for Selected Problems

= Solutions with randomly chosen objective values (i.e.,
random orders as =y):

= ODbjective reduction possible?

= Size of minimum set influenced by solution set size and
number of objective?

= Greedy vs. exact algorithm
» Realistic scenarios for test problems
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Varying |A| and k for Random Orders

Various solution set sizes |A| with random orders as =y,
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number of objectives

= The more objectives, the smaller the minimum sets
* The more solutions in A, the fewer objectives omissable
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Greedy vs. Exact Algorithm for Random Orders

Heuristic vs. exact algorithm on random orders = with |A| = 32
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* The greedy algorithm's objective sets are not too large

= Greedy algorithm has clearly lower running time:

= can handle 50 objectives instead of <20 compared to
exact algorithm within the same time
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Realistic Scenarios for Test Problems

=  Approximation of efficient set computed by evolutionary
algorithm used as A
= |A| =200 for £ =15 and |A| = 300 for k = 25
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= Objective reduction of <50% possible for various test

problems
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Conclusions and Outlook

= Generalization of Objective Conflicts

* The MOSS Problem and algorithms
= Often: preservation of structure too strict

= Extension of approach to allow small changes in
dominance structure: Brockhoff and Zitzler (2006)

» Method feasable for selected problems
= Also for real world problems?
= Method usable within generating methods?
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Parallel Coordinates Plot for Example
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