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Example
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Key questions

Objective reduction possible without changing the
problem?

How to compute a minimum objective set?

Applicable to real problems?
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Omitting redundant objectives:
Agrell (1997), Gal and Leberling (1977)
– Not suitable for black-box optimization

PCA based objective reduction:
Deb and Saxena (2005)
– Cannot guarantee preservation of dominance structure

Various conflict definitions:
Deb (2001); Tan et al. (2005)
– conflict as a property of the problem itself

Purshouse and Fleming (2003):
–– objectiveobjective pairspairs conflict if 2 solutions incomparable wrt

the objective pair

Related Work
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Open Questions

Conflicts between arbitrary objective sets

Objective reduction with preservation of problem
structure in a black-box scenario

“Real“ problems
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Key Contributions

Generalization of Objective Conflicts

The Minimum Objective Subset Problem
Exact and heuristic algorithms

Objective reduction for selected problems
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Key Contributions

Generalization of Objective Conflicts

The Minimum Objective Subset Problem
Exact and heuristic algorithms

Objective reduction for selected problems
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Relation Graphs and Dominance

For a multiobjective problem, the question is to find the
minimal elements of a given (pre)order
Here, we restrict to the weak dominance relation

indifferent

incomparable

minimal
(reflexive and transitive edges are omitted)
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Intersection of Linear (Pre)Orders
Single objectives induce linear (pre)orders
Their intersection yields
Thus, the omission of objectives can only

make incomparable solution pairs comparable and 
comparable solutions indifferent
add edges in relation graph
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Objective conflicts

Objective sets conflict if they induce different relations
Definition: nonconflicting with iff
Omit objectives in             if is nonconflicting
with and preserve the dominance structure
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Key Contributions

Generalization of Objective Conflicts

The Minimum Objective Subset Problem
Exact and heuristic algorithms

Objective reduction for selected problems
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Minimum objective set
is called minimum if

and

Minimum Objective Subset Problem (MOSS)
Given: Set     of solutions with weak dominance relations

and
Task: Compute a minimum objective set              with           

MOSS is NP-hard
reduction from set cover problem (SCP)

The Minimum Objective Subset Problem
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Exact algorithm
Correctness proof
Runtime:
Worst case:

Simple greedy heuristic
Correctness proof
Runtime:
Best possible approximation
ratio of

Algorithms for the MOSS Problem
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Key Contributions

Generalization of Objective Conflicts

The Minimum Objective Subset Problem
Exact and heuristic algorithms

Objective reduction for selected problems
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Objective Reduction for Selected Problems

Solutions with randomly chosen objective values (i.e., 
random orders as      ):

Objective reduction possible?
Size of minimum set influenced by solution set size and 
number of objective?
Greedy vs. exact algorithm

Realistic scenarios for test problems
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Various solution set sizes with random orders as

The more objectives, the smaller the minimum sets
The more solutions in    , the fewer objectives omissable

Varying |A| and k for Random Orders
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Heuristic vs. exact algorithm on random orders with

The greedy algorithm's objective sets are not too large
Greedy algorithm has clearly lower running time:

can handle 50 objectives instead of     20 compared to 
exact algorithm within the same time

Greedy vs. Exact Algorithm for Random Orders
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Approximation of efficient set computed by evolutionary
algorithm used as      

for and                 for

Objective reduction of     50% possible for various test 
problems

Realistic Scenarios for Test Problems
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Conclusions and Outlook

Generalization of Objective Conflicts

The MOSS Problem and algorithms
Often: preservation of structure too strict
Extension of approach to allow small changes in 
dominance structure: Brockhoff and Zitzler (2006)

Method feasable for selected problems
Also for real world problems?
Method usable within generating methods?
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Parallel Coordinates Plot for Example
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