

On Objective Conflicts and Objective Reduction in Multiobjective Optimization

Dimo Brockhoff Aachen, October 2, 2006

Motivation

(Approximation of) efficient set

Outline

- Objective Reduction in Decision Making Step
 - Objective reduction possible without changing/slightly changing the problem?
 - How to compute a minimum objective set?
- Objective Reduction During Search
 - How can a objective reduction method be used within the search?
 - Is objective reduction suitable in general?
 - What's the problem structure "on the way towards the Pareto front"?

Outline

- Objective Reduction in Decision Making Step
 - Objective reduction possible without changing/slightly changing the problem?
 - How to compute a minimum objective set?
 - **Objective Reduction During Search**
 - How can a objective reduction method be used within the search?
 - Is objective reduction suitable in general?
 - What's the problem structure "on the way towards the Pareto front"?

- Objective reduction possible without changing/slightly changing the problem?
 - How to describe conflicts between objective sets?
- How to compute a minimum objective set?
 - Can we guarantee a lower bound on the error we make?

Related Work

- Omitting redundant objectives:
 - Agrell (1997), Gal and Leberling (1977)
 - Not suitable for black-box optimization
- PCA based objective reduction:
 - Deb and Saxena (2005)
 - Cannot guarantee preservation of dominance structure
- Various conflict definitions:
 - Deb (2001); Tan et al. (2005)
 - conflict as a property of the problem itself
 - Purshouse and Fleming (2003):
 - objective pairs conflict if \geq 2 solutions incomparable wrt the objective pair

- Conflicts between arbitrary objective sets
- Objective reduction with
 - preservation of problem structure
 - slight changes in problem structure

in a black-box scenario

"Real" problems

- Generalization of Objective Conflicts
- The Minimum Objective Subset Problems
 - Exact and heuristic algorithms
- Objective reduction for selected problems

Generalization of Objective Conflicts

- The Minimum Objective Subset Problem
 - Exact and heuristic algorithms
- Objective reduction for selected problems

Relation Graphs and Dominance

- For a multiobjective problem, the question is to find the minimal elements of a given (pre)order (X, \leq)
- Here, we restrict to the weak dominance relation $\preceq_{\mathcal{F}}$

(reflexive and transitive edges are omitted)

Intersection of Linear (Pre)Orders

- Single objectives induce linear (pre)orders \leq_{f_i}
- Their intersection yields $\preceq_{\mathcal{F}} = \bigcap_{f_i \in \mathcal{F}} \preceq_{f_i}$
- Thus, the omission of objectives can only
 - make incomparable solution pairs comparable and
 - comparable solutions indifferent
 - add edges in relation graph

Objective Conflicts

- Objective sets conflict if they induce different relations
 - **Definition:** \mathcal{F}_1 nonconflicting with \mathcal{F}_2 iff $\preceq_{\mathcal{F}_1} = \preceq_{\mathcal{F}_2}$
 - Omit objectives in $\mathcal{F} \setminus \mathcal{F}'$ if $\mathcal{F}' \subseteq \mathcal{F}$ is nonconflicting with \mathcal{F} and preserve the dominance structure

Generalization of Objective Conflicts

- Sometimes the limitation of preserving the problem structure is too strict
- Generalization to δ -conflict based on ε -dominance relation needed (now, objective values are used)

 $\preceq^{\boldsymbol{\delta}}_{\mathcal{F}} := \{ (\mathbf{x}, \mathbf{y}) \, | \, \mathbf{x}, \mathbf{y} \in X \land \forall f_i \in \mathcal{F} : f_i(\mathbf{x}) - \boldsymbol{\delta} \le f_i(\mathbf{y}) \}$

δ –Conflict

- **Definition:** \mathcal{F}_1 δ -nonconflicting with \mathcal{F}_2 iff $\preceq_{\mathcal{F}_1} \subseteq \preceq^{\delta}_{\mathcal{F}_2}$ and $\preceq_{\mathcal{F}_2} \subseteq \preceq^{\delta}_{\mathcal{F}_1}$
- Omission of objectives in $\mathcal{F} \setminus \mathcal{F}'$ if $\mathcal{F}' \subseteq \mathcal{F}$ is δ -nonconflicting with \mathcal{F} guarantees that $\mathbf{x} \preceq^{\delta}_{\mathcal{F}} \mathbf{y}$ whenever $\mathbf{x} \preceq_{\mathcal{F}'} \mathbf{y}$

- Generalization of Objective Conflicts
- The Minimum Objective Subset Problems
 - Exact and heuristic algorithms
- Objective reduction for selected problems

The Minimum Objective Subset Problem

Minimum objective set

 $\mathcal{F}' \subseteq \mathcal{F}$ is called minimum if $\preceq_{\mathcal{F}'} = \preceq_{\mathcal{F}}$ and $\not\exists \mathcal{F}'' \subseteq \mathcal{F} \land |\mathcal{F}''| < |\mathcal{F}'| : \preceq_{\mathcal{F}''} = \preceq_{\mathcal{F}}$

Minimum Objective Subset Problem (MOSS)

- Given: Set *A* of solutions with weak dominance relations $\preceq_{\mathcal{F}} = \bigcap_{f_i \in \mathcal{F}} \preceq_{f_i}$ and $\preceq_{f_i} \subseteq A \times A$
- Task: Compute a minimum objective set $\mathcal{F}' \subseteq \mathcal{F}$ with $\preceq_{\mathcal{F}'} = \preceq_{\mathcal{F}}$

MOSS is NP-hard

- Reduction from set cover problem (SCP)
- As a result, consideration of objective sets of fixed size is not sufficient

Generalized Minimum Objective Subset Problems

δ –Minimum objective set

 $\mathcal{F}' \subseteq \mathcal{F} \text{ is called } \delta\text{-minimum if } \preceq_{\mathcal{F}'} = \preceq_{\mathcal{F}}^{\delta} , \forall \delta' < \delta : \preceq_{\mathcal{F}'} \neq \preceq_{\mathcal{F}}^{\delta'} \\ \text{and } \exists \mathcal{F}'' \subseteq \mathcal{F} \land |\mathcal{F}''| < |\mathcal{F}'| : \preceq_{\mathcal{F}''} = \preceq_{\mathcal{F}}^{\delta} \end{cases}$

δ -Minimum Objective Subset Problem (δ -MOSS)

Given: Set *A* of solutions with weak dominance relations $\leq_{f_i} \subseteq A \times A \text{ and } \leq_{\mathcal{F}} = \bigcap_{f_i \in \mathcal{F}} \leq_{f_i} \text{ and } a \delta \geq 0$

Task: Compute a δ -minimum objective set $\mathcal{F}' \subseteq \mathcal{F}$ wrt \mathcal{F}

Objective Subset of size k with minimum error (kEMOSS)

- Given: Set *A* of solutions with weak dominance relations $\preceq_{f_i} \subseteq A \times A \text{ and } \preceq_{\mathcal{F}} = \bigcap_{f_i \in \mathcal{F}} \preceq_{f_i} \text{ and } a k$
- Task:Compute an objective subset $\mathcal{F}' \subseteq \mathcal{F}$, δ -nonconflicting
with \mathcal{F} , $|\mathcal{F}'| \leq k$ and minimal δ

Algorithms for the MOSS Problem

Exact algorithm

- Correctness proof
- Runtime: $O(|A|^2 \cdot k \cdot 2^k)$
- Worst case: $\Omega(|A|^2 \cdot 2^{k/3})$

Simple greedy heuristics

- Correctness proof
- Runtime
 - $O(\min\{k^3 \cdot |A|^2, k^2 \cdot |A|^4\}) (\delta \text{ MOSS})^{\frac{8}{9}: \text{ end while}} \\ O(k^3 \cdot |A|^2) (\text{kEMOSS})$
- Best possible approximation ratio of $\Theta(\log |A|)$ for the case $\delta = 0$

- 1: Init: $M := \emptyset, \quad S_M := \emptyset$ 2: 3: for all pairs $\mathbf{x}, \mathbf{y} \in A$, $\mathbf{x} \neq \mathbf{y}$ of solutions do $S_{\{(\mathbf{x},\mathbf{v})\}} := \emptyset$ for all objective pairs $i, j \in \mathcal{F}$, not necessary $i \neq j$ do 5: compute $\delta_{ij} := \delta_{\min}(\{i\} \cup \{j\}, \mathcal{F})$ wrt \mathbf{x}, \mathbf{y} 6: $S_{\{(\mathbf{x},\mathbf{y})\}} := S_{\{(\mathbf{x},\mathbf{y})\}} \sqcup (\{i\} \cup \{j\}, \delta_{ij})$ 7: end for 8: $S_{M \cup \{(\mathbf{x}, \mathbf{y})\}} := S_M \sqcup S_{\{(\mathbf{x}, \mathbf{y})\}}$ 9: $M := M \cup \{(\mathbf{x}, \mathbf{y})\}$ 10: 11: end for 12: Output for δ -MOSS: $(s_{\min}, \delta_{\min})$ in S_M with minimal size $|s_{\min}|$ and $\delta_{\min} < \delta$ 13:
- 14: Output for **kEMOSS**:

5: end while

15: (s, δ) in S_M with size $|s| \leq \mathbf{k}$ and minimal δ

```
1: Init:

2: compute the relations \leq_i for all 1 \leq i \leq k and \leq_{\mathcal{F}}

3: \mathcal{F}' := \emptyset

4: R := A \times A \setminus \leq_{\mathcal{F}} S -MOSS

5: while R \neq \emptyset do

6: i^* = \underset{i \in \mathcal{F} \setminus \mathcal{F}'}{\operatorname{argmin}} \{|(R \cap \leq_i) \setminus (\leq_{\mathcal{F}' \cup \{i\}}^0 \cap \leq_{\mathcal{F} \setminus (\mathcal{F}' \cup \{i\})}^\delta)|\}

7: R := (R \cap \leq_{i*}) \setminus (\leq_{\mathcal{F}' \cup \{i^*\}}^0 \cap \leq_{\mathcal{F} \setminus (\mathcal{F}' \cup \{i^*\})}^\delta)

8: \mathcal{F}' := \mathcal{F}' \cup \{i^*\}

9: end while

5S)

1: Init:

2: \mathcal{F}' := \emptyset KEMOSS
```

 $\mathcal{F}' := \mathcal{F}' \cup \operatorname*{argmin}_{i \in \mathcal{F} \setminus \mathcal{F}'} \{ \delta_{\min} \left(\mathcal{F}' \cup \{i\}, \mathcal{F} \right) \text{ wrt } A \}$

- Generalization of Objective Conflicts
- The Minimum Objective Subset Problems
 - Exact and heuristic algorithms
- Objective reduction for selected problems

Objective Reduction for Selected Problems

No error:

- Solutions with randomly chosen objective values (i.e., random orders as \leq_{f_i}):
 - Objective reduction possible?
 - Size of minimum set influenced by solution set size and number of objective?
 - Greedy vs. exact algorithm
- Realistic scenarios for test problems

Influence of δ and k:

Comparison between greedy and exact algorithms

Varying |A| and k for Random Orders

Various solution set sizes |A| with random orders as \leq_{f_i}

- The more objectives, the smaller the minimum sets
- The more solutions in A, the fewer objectives omissable

Greedy vs. Exact Algorithm for Random Orders

Heuristic vs. exact algorithm on random orders \preceq_{f_i} with |A| = 32

- The greedy algorithm's objective sets are not too large
- Greedy algorithm has clearly lower running time:
 - can handle 50 objectives instead of \leq 20 compared to exact algorithm within the same time

Realistic Scenarios for Test Problems

- Approximation of efficient set computed by evolutionary algorithm used as A
- |A| = 200 for k = 15 and |A| = 300 for k = 25

• Objective reduction of \leq 50% possible for various test problems

Comparison of Algorithms for δ -MOSS

Entire Search Space of 0-1-Knapsack Problem with 7 Items

- heuristic slightly worse results, but clearly faster
- \Rightarrow the more objectives, the more objectives can be omitted
 - The larger the error, the smaller the sets

Outline

- Objective Reduction in Decision Making Step
 - Objective reduction possible without changing/slightly changing the problem?
 - How to compute a minimum objective set?
 - Objective Reduction During Search
 - How can a objective reduction method be used within the search?
 - Is objective reduction suitable in general?
 - What's the problem structure "on the way towards the Pareto front"?

Problems with Many Objectives

- MOEAs, working on 2D and 3D problems are not suitable for many objective optimization (NSGA-II, SPEA2, ...)
 - Why?
 - Not clear in general
 - Number of incomparable solution pairs increases
- Widely believed, that problems become harder with more objectives

Related Work

Reducing number of objectives:

- Maneeratana et al. (2006):
 - Reducing of MOP to 2D-problem (drawback: new objectives, no preservation of dominance relation)
- Deb and Saxena (2005):
 - Multiple starts of NSGA-II with reduced number of objectives, choice of objectives based on PCA

General Investigations:

- Neumann and Wegener (2006), Scharnow et al. (2002):
 - Few examples where more objectives help
- But nearly every textbook says that more objectives makes the problem harder, e.g., Deb (2001)
- P. Winkler (1985):
 - Random orders as objectives with n points in k dimensions
 - Width between $e^{-1}n^{(k-1)/k}$ and $n^{(k-1)/k}\ln(n)$

Reducing Number of Objectives Within Search:

 How to include (adaptive) objective reduction into EA while using subset of given objectives?

General Investigations:

- Does all problems become harder with more objectives?
- Is it due to more incomparable solutions?

Reducing Number of Objectives Within Search

- If EA detects, that objectives can be omitted, then objective reduction is not necessary any more
 - Exception: objective function evaluations are expensive
- Problem is not the number of objectives but the number of incomparable solutions
 - No direction to better solutions observable
 - Potential way out:
 - use indicator to refine Pareto dominance relation (e.g. Hypervolume indicator/S-metric/Lebesgue-measure)

General Investigations

Do all problems become harder with more objectives? Is it due to more incomparable solutions?

- 4 simple (toy) problems based on 2D problem
- LOTZ, resp. modified LOTZ
- Add third objective
 - This can both increase or decrease the difficulty of the problem
 - Both when
 - making indifferent solutions comparable, and
 - making comparable solutions incomparable!

LOTZ - Leading Ones Trailing Zeros

Third Objectives Makes Indifferent Comparable

Problem 1 (harder than LOTZ):

$$f_1(\mathbf{x})$$
 := LEADING ONES (\mathbf{x})

$$f_2(\mathbf{x})$$
 := TRAILING ZEROS (\mathbf{x})

 $f_3(\mathbf{x})$:= $|\mathbf{x}_M| - \texttt{LEADING} \ \texttt{ONES}(\mathbf{x}_M) - \texttt{TRAILING} \ \texttt{ZEROS}(\mathbf{x}_M)$

Problem 2 (easier than LOTZ):

$$f_1(\mathbf{x})$$
 := leading ones (\mathbf{x})

$$f_2(\mathbf{x})$$
 := TRAILING ZEROS (\mathbf{x})

$$f_3(\mathbf{x})$$
 := ONEMAX (\mathbf{x}_M)

Third Objectives Makes Indifferent Comparable (2)

Average runtimes for 10 IBEA runs with population size 200

© Eckart Zitzler, Dimo Brockhoff

ETH Zurich On Objective Conflicts and Objective Reduction

Modified LOTZ

© Eckart Zitzler, Dimo Brockhoff

ETH Zurich On Objective Conflicts and Objective Reduction

35

Third Objectives Makes Comparable Incomparable

- Problem 3 (harder than modified LOTZ):
 - $f_1(\mathbf{x}) := \text{modified LEADING ONES}(\mathbf{x})$
 - $f_2(\mathbf{x}) := \text{modified TRAILING ZEROS}(\mathbf{x})$

$$f_3(\mathbf{x}) := \frac{n}{2} - |\frac{n}{2} - |\mathbf{x}_M||$$

- Problem 4 (easier than modified LOTZ):
 - $f_1(\mathbf{x}) := \text{modified LEADING ONES}(\mathbf{x})$
 - $f_2(\mathbf{x}) := \text{modified TRAILING ZEROS}(\mathbf{x})$
 - $f_3(\mathbf{x}) := |\mathbf{x}_M|$

Third Objectives Makes Comparable Incomparable (2)

Average runtimes for 10 IBEA runs with population size 100

© Eckart Zitzler, Dimo Brockhoff

ETH Zurich On Objective Conflicts and Objective Reduction

Conclusions and Outlook

- Generalization of Objective Conflicts
- The MOSS Problem and algorithms
- Method feasable for decision making process for selected problems
 - Also for real world problems?
- General discussion of problems with many objectives
 - Current work: general indicator properties

Literature

- P. J. Agrell (1997): On redundancy in multi criteria decision making, European Journal of Operational Research Eur J Oper Res 98(3), p. 571-586
- D. Brockhoff and E. Zitzler (2006): Are All Objectives Necessary? On Dimensionality Reduction in Evolutionary Multiobjective Optimization, PPSN IX – Proceedings, p. 533-542
- K. Deb (2001) Multi-objective optimization using evolutionary algorithms, Wiley, UK
- K. Deb and D. K. Saxena (2005): On Finding Pareto-Optimal Solutions Through Dimensionality Reduction for Certain Large-Dimensional Multi-Objective Optimization Problems, KanGAL Report No. 2005011
- T. Gal and H. Leberling (1977): Redundant objective functions in linear vector maximum problems and their determination, European Journal of Operational Research 1(3), p. 176-184
- K. Maneeratana, K. Boonlong, and N. Chaiyaratana (2006): Compressed-Objective Genetic Algorithm, PPSN IX - Proceedings, p. 473-482
- F. Neumann and I. Wegener (2006): Minimum Spanning Trees Made Easier Via Multi-Objective Optimization. Natural Computing 5(3) Springer, p. 305-319
- R. C. Purshouse and P. J. Fleming (2003): Conflict, Harmony, and Independence: Relationships in Evolutionary Multi-criterion Optimisation, EMO 2003 Proceedings, Springer Berlin, p. 16-30
- J. Scharnow, K. Tinnefeld, and I. Wegener (2002): Fitness landscapes based on sorting and shortest paths problems, PPSN VII - Proceedings, p. 54-63
- K. C. Tan, E. F. Khor, and T. H. Lee (2005): Multiobjective Evolutionary Algorithms and Applications, Springer
- P. Winkler (1985): Random Orders, Order 1, p. 317-331

Parallel Coordinates Plot for Example

Parallel Coordinates Plot for Example

