

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Analyzing Hypervolume Indicator Based Algorithms

MOTIVATION

recent trend in multiobjective evolutionary algorithms (MOEAs): explicit incorporation of user preferences by using indicators

hypervolume indicator based MOEAs showed better performance in experiments than classical MOEAs

why?

Goals:

understand why hypervolume-based search is that successful understand basic properties of hypervolume indicator

Approach:

rigorous running time analyses of a hypervolume-based MOEA for (i) approaching the Pareto front (ii) approximating large Pareto fronts

THE HYPERVOLUME INDICATOR

 f_{2} *I_H* (Pareto-front approximation) = area dominated by more than one solution + single hypervolume contributions

(unary) hypervolume indicator

 I_H (A) = hypervolume/area of dominated part of search space between front A and reference point

Pareto-dominance compliant: finding the Pareto front \Leftrightarrow maximizing I_H [flei2003a]

reference point

RUNNING TIME ANALYSES

Goal:

give upper bound for expected running time until Pareto-front is reached or approximated

Here: only 2 objectives; w.l.o.g. maximization

$(\mu+1)$ SIBEA

SIBEA: Simple Indicator-Based EA [zbt2007a] $(\mu+1)$ -selection also used in SMS-EMOA [bne2007a] and MO-CMA-ES [ihr2007a]

(µ**+1)SIBEA**

generate initial population $P \subseteq \{0,1\}^n$ at random

repeat:

1 mutate randomly selected $x \in P$ to x' by flipping each bit of x with probability 1/n $P' = P \cup \{x'\}$ 2 for all solutions $x \in P$, determine the hypervolume loss $d(x) = I_H(P') - I_H(P' \setminus \{x\})$

Ideas:

- consider no worsening in I_H
- if a set of solutions is dominated by another set ⇒ hypervolume indicator value is higher for the latter
- local improvement is possible if single point is placed optimally with respect to its neighbors

3 choose a $z \in P$ with smallest loss d(z) $P = P' \setminus \{z\}$

 $n - 2|\ell(z)|_1 + 1 - 2^{-n/2}$

 $n-2|\ell(z)|_1+1-2^{-n/2}$

 $n-2|\ell(z)|_1-1-2^{-n/2}$

 $n-2|\ell(z)|_1 -$

Properties:

- no worsenings of I_H over time
- duplicated solutions are removed first
- in general, no global convergence to Pareto-front! [ztb2008a]

APPROACHING THE PARETO FRONT

Theorem: Choosing $\mu \ge n + 1$, the (μ +1)SIBEA optimizes LOTZ in $\mathcal{O}(\mu n^2)$ generations.

APPROXIMATING LARGE PARETO FRONTS

Sketch of Proof:

wlog, reference point is (-1,-1) and $\{x_1, \ldots, x_n\}$ are the non-dominated solutions in P2k possible mutations that increases I_H with prob. $\frac{1}{\mu} \cdot \frac{1}{n} (1 - 1/n)^{n-1} \ge \frac{1}{e\mu n}$ each total increase of all mutations is at least $\max\{X_{\max}, Y_{\max}\} \ge \sqrt{X_{\max}} \cdot Y_{\max} \ge \sqrt{I_H}$ expected increase of 1 mutation is therefore $\ge \sqrt{I_H}/2k$; with Markov, the increase of I_H in 8k good mutations is $\sqrt{I_H}$ w.h.p. expected running time for an increase of $\sqrt{I_H}$ is $\mathcal{O}(\frac{\mu n}{2k} \cdot 8k) = \mathcal{O}(\mu n)$ by induction, $\mathcal{O}(n)$ increases by $\sqrt{I_H}$ are sufficient to reach the front once on the front, SIBEA needs time $\mathcal{O}(\mu n)$ to find one of the at most n non-visited Pareto-optimal points

Conclusion: For $\mu = \Theta(n)$, SIBEA is as fast as global SEMO [giel2003a] although the population contains more than one solution when approaching the front.

Sketch of Proof:

wlog, reference point is $((1 + \varepsilon)^{-1}, (1 + \varepsilon)^{-1})$, and we call a solution , s with $\{x \in P : |l(x)|_1 = k\} = \{s\}$ sole we need to prove that in all cases, a sole solution stays in $P < \zeta$ an ε -approximation is reached if for all possible k we have at least one solution with $|\ell(x)|_1 = k$ [hn2008a] prob. to mutate to an x with $|\ell(x)|_1 = b$ is $\geq \frac{1}{\mu} \frac{\min\{b+1, n/2 - b + 1\}}{en}$ summing up over all possible b yields the theorem

Conclusion: Optimizing the hypervolume allows for a faster search on LF_{ε} without the need to adjust ε as in [hn2008a].

Dimo Brockhoff¹, Tobias Friedrich², and Frank Neumann² ¹ ETH Zurich, 8092 Zurich, Switzerland, dimo.brockhoff@tik.ee.ethz.ch ² Max-Planck-Institut für Informatik, 66123 Saarbrücken, Germany, firstname.lastname@mpi-inf.mpg.de