An Introduction to Evolutionary Multiobjective Optimization

Dimo Brockhoff

École des Ponts, December 3, 2009

copyright in part by Eckart Zitzler

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

A hypothetical problem: all solutions plotted

A hypothetical problem: all solutions plotted

Observations: ① there is no single optimal solution, but
 ② some solutions (○) are better than others (○)

Decision Making: Selecting a Solution

Approaches: • supply more important than cost (ranking)

Decision Making: Selecting a Solution

Before Optimization:

Before Optimization:

© Dimo Brockhoff and Eckart Zitzler

When to Make the Decision

After Optimization:

When to Make the Decision

Before Optimization:

After Optimization:

Focus: learning about a problem

- trade-off surface
- interactions among criteria
- structural information

Multiple Criteria Decision Making (MCDM)

Definition: MCDM

MCDM can be defined as the study of methods and procedures by which concerns about multiple conflicting criteria can be formally incorporated into the management planning process

MOM

Multiple Criteria Decision Making

Multiple Criteria Decision Making (MCDM)

Definition: MCDM

MCDM can be defined as the study of methods and procedures by which concerns about multiple conflicting criteria can be formally incorporated into the management planning process

International Society on Multiple Criteria Decision Making

Multiple Criteria Decision Making (MCDM)

Definition: MCDM

MCDM can be defined as the study of methods and procedures by which concerns about multiple conflicting criteria can be formally incorporated into the management planning process

International Society on Multiple Criteria Decision Making

Evolutionary Multiobjective Optimization (EMO)

Definition: EMO

EMO = **evolutionary algorithms** / randomized search algorithms

- applied to multiple criteria decision making (in general)
- used to approximate the Pareto-optimal set (mainly)

The History of EMO At A Glance

1984	first EMO approaches					
1990	dominance-based population ranking dominance-based EMO algorithms with diversity preservation techniques					
1995	attainment function	S				
	elitist EMO algorithms	preferer	nce articulation	convergend	ce proofs	
2000	test problem design	quantita	quantitative performance assessment		mu	Itiobjectivization
	uncertainty and robustness	runnir	running time analyses		quality measure design	
	MCDI	MCDM + EMO		EMO algorithms based on set quality		
2009	high-dimensional objective s	statistical performance assessment				

© Dimo Brockhoff and Eckart Zitzler

INRIA Saclay and ETH Zurich An Introduction to EMO, École des Ponts, December 3, 2009

The History of EMO At A Glance

http://delta.cs.cinvestav.mx/~ccoello/EMOO/EMOOstatistics.html

© Dimo Brockhoff and Eckart Zitzler

INRIA Saclay and ETH Zurich An Introduction to EMO, École des Ponts, December 3, 2009

The EMO conference series:

Many further activities:

special sessions, special journal issues, workshops, tutorials, ...

© Dimo Brockhoff and Eckart Zitzler

The Big Picture

Basic Principles of Multiobjective Optimization

Algorithm Design Principles and Concepts

Performance Assessment

A Few Examples From Practice

What makes evolutionary multiobjective optimization different from single-objective optimization?

© Dimo Brockhoff and Eckart Zitzler

A General (Multiobjective) Optimization Problem

A multiobjective optimization problem is defined by a 5-tuple $(X, Z, \mathbf{f}, \mathbf{g}, \leq)$ where

- X is the decision space,
- $Z = \mathbb{R}^n$ is the objective space,
- **f** = (f₁,...,f_n) is a vector-valued function consisting of n objective functions f_i: X → ℝ,
- g = (g₁,...,g_m) is a vector-valued function consisting of m constraint functions g_i : X → ℝ, and
- $\leq \subseteq Z \times Z$ is a binary relation on the objective space.

The goal is to identify a decision vector $\mathbf{a} \in X$ such that (i) for all $1 \le i \le m$ holds $g_i(\mathbf{a}) \le 0$ and (ii) for all $\mathbf{b} \in X$ holds $\mathbf{f}(\mathbf{b}) \le \mathbf{f}(\mathbf{a}) \Rightarrow \mathbf{f}(\mathbf{a}) \le \mathbf{f}(\mathbf{b})$.

A Single-Objective Optimization Problem

A Single-Objective Optimization Problem

A Single-Objective Optimization Problem

Example: Leading Ones Problem

where
$$f_{LO}(a) = \sum_{i} (\prod_{j \le i} a_j)$$

Simple Graphical Representation

Example: \geq (total order)

Preference Relations

decision space objective space objective functions

$$\begin{array}{c} (X, Z, f: X \rightarrow Z, rel \subseteq Z \times Z) \\ (X, prefrel) \end{array}$$
preorder where
a prefrel b : \Leftrightarrow f(a) rel f(b)

$$\begin{array}{ll} (X,\preccurlyeq_{par}) & \downarrow \\ \downarrow & & \\ a \preccurlyeq_{par} b : \Leftrightarrow f(a) \leqslant_{par} f(b) & \text{weak} \\ & \text{Pareto dominance} \end{array}$$

Example: Leading Ones Trailing Zeros Problem

© Dimo Brockhoff and Eckart Zitzler

Example: Leading Ones Trailing Zeros Problem

 $(\{0,1\}^n,$

Example: Leading Ones Trailing Zeros Problem

 $({0,1}^n, {0,1,2,...,n} \times {0,1,2,...,n},$

Example: Leading Ones Trailing Zeros Problem

© Dimo Brockhoff and Eckart Zitzler

INRIA Saclay and ETH Zurich An Introduction to EMO, École des Ponts, December 3, 2009

Example: Leading Ones Trailing Zeros Problem

Pareto Dominance

© Dimo Brockhoff and Eckart Zitzler

Different Notions of Dominance

The Pareto-optimal Set

The minimal set of a preordered set (Y, \leq) is defined as

 $Min(Y, \leq) := \{ a \in Y \, | \, \forall b \in Y : b \leq a \Rightarrow a \leq b \}$

Visualizing Preference Relations

Remark: Properties of the Pareto-optimal Set

Computational complexity:

multiobjective variants can be become NP- and #P-complete

Size: Pareto set can be exponential in the input length (shortest path [Serafini 1986], MSP [Camerini et al. 1984])

Approaches To Multiobjective Optimization

A multiobjective problem is as such underspecified... ...because not any Pareto-optimum is equally suited!

Additional preferences are needed to tackle the problem:

 Solution-Oriented Problem Transformation: Induce a total order on the decision space, e.g., by aggregation.

Set-Oriented Problem Transformation:

First transform problem into a set problem and then define an objective function on sets.

Preferences are needed in any case, but the latter are weaker!

Problem Transformations and Set Problems

© Dimo Brockhoff and Eckart Zitzler

Solution-Oriented Problem Transformations

A *scalarizing function s* is a function $s : Z \mapsto \mathbb{R}$ that maps each objective vector $(u_1, \ldots, u_n) \in Z$ to a real value $s(u_1, \ldots, u_n) \in \mathbb{R}$.

© Dimo Brockhoff and Eckart Zitzler

Aggregation-Based Approaches

Example: weighting approach

$$(W_1, W_2, \dots, W_k)$$

$$\downarrow$$

$$\downarrow$$

$$y = W_1y_1 + \dots + W_ky_k$$

Other example: Tchebycheff $y = \max w_i(u_i - z_i)$

Set-Oriented Problem Transformations

For a multiobjective optimization problem $(X, Z, \mathbf{f}, \mathbf{g}, \leq)$, the associated *set problem* is given by $(\Psi, \Omega, F, \mathbf{G}, \leq)$ where

- $\Psi = 2^X$ is the space of decision vector sets, i.e., the powerset of X,
- $\Omega = 2^Z$ is the space of objective vector sets, i.e., the powerset of Z,
- F is the extension of \mathbf{f} to sets, i.e., $F(A) := {\mathbf{f}(\mathbf{a}) : \mathbf{a} \in A}$ for $A \in \Psi$,
- $\mathbf{G} = (G_1, \dots, G_m)$ is the extension of \mathbf{g} to sets, i.e., $G_i(A) := \max \{g_i(\mathbf{a}) : \mathbf{a} \in A\}$ for $1 \le i \le m$ and $A \in \Psi$,
- \leq extends \leq to sets where $A \leq B : \Leftrightarrow \forall \mathbf{b} \in B \exists \mathbf{a} \in A : \mathbf{a} \leq \mathbf{b}.$

Pareto set approximation (algorithm outcome) =
 set of (usually incomparable) solutions

A weakly dominates B

= not worse in all objectives and sets not equal

C dominates D

= better in at least one objective

= better in all objectives

What Is the Optimization Goal (Total Order)?

- Find all Pareto-optimal solutions?
 - Impossible in continuous search spaces
 - How should the decision maker handle 10000 solutions?
- Find a representative subset of the Pareto set?
 - Many problems are NP-hard
 - What does representative actually mean?
- Find a good approximation of the Pareto set?
 - What is a good approximation?
 - How to formalize intuitive understanding:
 - close to the Pareto front
 - **2** well distributed

Quality of Pareto Set Approximations

A (unary) *quality indicator I* is a function $I : \Psi \mapsto \mathbb{R}$ that assigns a Pareto set approximation a real value.

General Remarks on Problem Transformations

Idea:

Transform a preorder into a total preorder

Methods:

- Define single-objective function based on the multiple criteria (shown on the previous slides)
- Define any total preorder using a relation (not discussed before)

Question:

Is any total preorder ok resp. are there any requirements concerning the resulting preference relation?

 \Rightarrow Underlying dominance relation *rel* should be reflected

Refinements and Weak Refinements

 $\bullet \stackrel{\rm ref}{\prec} refines a preference relation \prec iff$

$$A \preccurlyeq B \land B \preccurlyeq A \Rightarrow A \preccurlyeq B \land B \preccurlyeq A$$

(better
$$\Rightarrow$$
 better)

\Rightarrow fulfills requirement

2 $\stackrel{\mathrm{ref}}{\prec}$ weakly refines a preference relation $\stackrel{\mathrm{ref}}{\prec}$ iff

$$A \preccurlyeq B \land B \preccurlyeq A \Rightarrow A \preccurlyeq B$$

(better \Rightarrow weakly better)

 \Rightarrow does not fulfill requirement, but $\stackrel{\mathrm{ref}}{\preccurlyeq}$ does not contradict \preccurlyeq

...sought are total refinements...

© Dimo Brockhoff and Eckart Zitzler

Example: Refinements Using Set Quality Measures

 $A \stackrel{\mathrm{ref}}{\preccurlyeq} B : \Leftrightarrow I(A) \ge I(B)$

I(A) = volume of the weakly dominated area in objective space

unary hypervolume indicator

binary epsilon indicator

Example: Weak Refinement and No Refinement

© Dimo Brockhoff and Eckart Zitzler

The Big Picture

Basic Principles of Multiobjective Optimization

Algorithm Design Principles and Concepts

Performance Assessment

A Few Examples From Practice

Algorithm Design: Particular Aspects

Fitness Assignment: Principal Approaches

aggregation-based

weighted sum

criterion-based VEGA

dominance-based SPEA2

scaling-dependent

© Dimo Brockhoff and Eckart Zitzler

Criterion-Based Selection: VEGA

© Dimo Brockhoff and Eckart Zitzler

INRIA Saclay and ETH Zurich An Introduction to EMO, École des Ponts, December 3, 2009

Aggregation-Based: Multistart Constraint Method

Underlying concept:

- Convert all objectives except of one into constraints
- Adaptively vary constraints

Aggregation-Based: Multistart Constraint Method

Underlying concept:

- Convert all objectives except of one into constraints
- Adaptively vary constraints

Aggregation-Based: Multistart Constraint Method

Underlying concept:

- Convert all objectives except of one into constraints
- Adaptively vary constraints

A General Scheme of a Dominance-Based MOEA

Note: good in terms of set quality = good in terms of search?

© Dimo Brockhoff and Eckart Zitzler

Ranking of the Population Using Dominance

... goes back to a proposal by David Goldberg in 1989.

... is based on pairwise comparisons of the individuals only.

- dominance rank: by how many individuals is an individual dominated?
 MOGA, NPGA
- dominance count: how many individuals does an individual dominate?
 SPEA, SPEA2
- dominance depth: at which front is an individual located? NSGA, NSGA-II

Illustration of Dominance-based Partitioning

Refinement of Dominance Rankings

Goal: rank incomparable solutions within a dominance class

• Density information (good for search, but usually no refinements)

Kernel method

density = function of the distances

k-th nearest neighbor

density = function of distance to k-th neighbor

Histogram method

density = number of elements within box

Quality indicator (good for set quality): soon...

Example: SPEA2 Dominance Ranking

Basic idea: the less dominated, the fitter...

Principle:first assign each solution a weight (strength),
then add up weights of dominating solutions

S (strength) =
 #dominated solutions

• R (raw fitness) = \sum strengths of dominators •

Density Estimation

k-th nearest neighbor method:

- D_k = distance to the k-th nearest individual
- Usually used: k = 2

Hypervolume-Based Selection

Problem of many secondary selection criterions: no refinement

Latest Approach (SMS-EMOA, MO-CMA-ES, HypE, ...) use hypervolume indicator to guide the search: refinement!

Sampling New Points: Covariance Matrix Adaptation

Concept

- use single-objective mutation of CMA-ES for each individual [ihr2007a]
- Sample multivariate normal distribution $m+\sigma N(0,C)$
- m, σ , and C are updated every generation depending on success

Articulating User Preferences During Search

What we thought: EMO is preference-less

given by the Divi.

Search before decision making: Optimization is performed without any preference information given. The result of the search process is a set of (ideally Pareto-optimal) candidate solutions from which the final choice is made by the DM.

Decision making during search: The DM can articulate preferences during

What we learnt: EMO just uses weaker preference information

[Zitzler 1999]

Example: Weighted Hypervolume Indicator

Weighted Hypervolume in Practice

The Big Picture

Basic Principles of Multiobjective Optimization

Algorithm Design Principles and Concepts

Performance Assessment

A Few Examples From Practice

Once Upon a Time...

... multiobjective EAs were mainly compared visually:

Two Approaches for Empirical Studies

Attainment function approach:

- Applies statistical tests directly to the samples of approximation sets
- Gives detailed information about how and where performance differences occur

Quality indicator approach:

- First, reduces each approximation set to a single value of quality
- Applies statistical tests to the samples of quality values

Indicator	Α	В
Hypervolume indicator	6.3431	7.1924
ϵ -indicator	1.2090	0.12722
R_2 indicator	0.2434	0.1643
R_3 indicator	0.6454	0.3475

Empirical Attainment Functions

three runs of two multiobjective optimizers

frequency of attaining regions

Attainment Plots

50% attainment surface for IBEA, SPEA2, NSGA2 (ZDT6)

Quality Indicator Approach

Goal: compare two Pareto set approximations A and B

Comparison method C = quality measure(s) + Boolean function A, B $\xrightarrow{\text{quality}}_{\text{measure}}$ $R^n \xrightarrow{\text{Boolean}}_{\text{function}}$ statement interpretation

Example: Box Plots

[Fonseca et al. 2005]

© Dimo Brockhoff and Eckart Zitzler

Example: Box Plots

Statistical Assessment (Kruskal Test)

ZDT6 Epsilon					DTLZ2 R					
is better than					is better than					
$ \longrightarrow $	IBEA	NSGA2	SPE	EA2	$ \frown $	IBEA	NSGA2		SPEA2	
IBEA		~0 🕐	~0	\odot	IBEA		~0		~0	
NSGA2	1		~0	\odot	NSGA2	1			1	
SPEA2	1	1			SPEA2	1	~0			
Overall p-value = 6.22079e-17. Null hypothesis rejected (alpha 0.05)					Overall p-value = 7.86834e-17. Null hypothesis rejected (alpha 0.05)					

Knapsack/Hypervolume: H0 = No significance of any differences

© Dimo Brockhoff and Eckart Zitzler

Problems With Non-Compliant Indicators

What Are Good Set Quality Measures?

There are three aspects [Zitzler et al. 2000]

of performance. In the case of multiobjective optimization, the definition of quality is substantially more complex than for single-objective optimization problems, because the optimization goal itself consists of multiple objectives:

- The distance of the resulting nondominated set to the Pareto-optimal front should be minimized.
- A good (in most cases uniform) distribution of the solutions found is desirable. The assessment of this criterion might be based on a certain distance metric.
- The extent of the obtained nondominated front should be maximized, i.e., for each objective, a wide range of values should be covered by the nondominated solutions.

In the literature, some attempts can be found to formalize the above definition (or parts

Wrong! [Zitzler et al. 2003]

An infinite number of unary set measures is needed to detect in general whether A is better than B

© Dimo Brockhoff and Eckart Zitzler

The Big Picture

Basic Principles of Multiobjective Optimization

Algorithm Design Principles and Concepts

Performance Assessment

A Few Examples From Practice

EMO Provides Information About a Problem

The question:

Why at all should one try to approximate the entire Pareto-optimal set?

An answer:

Because it provides useful information about the problem...

Application: Design Space Exploration

© Dimo Brockhoff and Eckart Zitzler

INRIA Saclay and ETH Zurich An Introduction to EMO, École des Ponts, December 3, 2009

Application: Design Space Exploration

© Dimo Brockhoff and Eckart Zitzler

INRIA Saclay and ETH Zurich An Introduction to EMO, École des Ponts, December 3, 2009

Application: Trade-Off Analysis

Module identification from biological data [Calonder et al. 2006]

Find group of genes wrt different data types:

- similarity of gene expression profiles
- overlap of protein interaction partners
- metabolic pathway map distances

Application: Approximation Set Analysis

Multiple disk clutch brake design [Deb, Srinivasan 2006]

Conclusions: EMO as Interactive Decision Support

© Dimo Brockhoff and Eckart Zitzler

INRIA Saclay and ETH Zurich An Introduction to EMO, École des Ponts, December 3, 2009

The EMO Community

Links:

- EMO mailing list: http://w3.ualg.pt/lists/emo-list/
- EMO bibliography: *http://www.lania.mx/~ccoello/EMOO/*

Events:

Conference on Evolutionary Multi-Criterion Optimization

Books:

- Multi-Objective Optimization using Evolutionary Algorithms Kalyanmoy Deb, Wiley, 2001
- Evolutionary Algorithms for Solving Multi Evolutionary Algorithms for Solving Multi-Objective Problems Objective Problems, Carlos A. Coello Coello, David A. Van Veldhuizen & Gary B. Lamont, Kluwer, 2nd Ed. 2006
- and more...

PISA: http://www.tik.ee.ethz.ch/sop/pisa/

