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Pareto-optimal front
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Manual of Political Economy
(in French), 1896
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finding the good
solutions
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selecting a
solution

decision making

optimization
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Approaches: supply more important than cost (ranking)
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Approaches: supply more important than cost (ranking)
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When to Make the Decision

Before Optimization:

ranks objectives,
defines constraints,…

searches for one 
(blue) solution
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After Optimization:

searches for a set of       
(blue) solutions

selects one solution
considering constraints, etc.

When to Make the Decision

Before Optimization:

ranks objectives,
defines constraints,…

searches for one 
(blue) solution
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After Optimization:

searches for a set of       
(blue) solutions

selects one solution
considering constraints, etc.

When to Make the Decision

Before Optimization:

ranks objectives,
defines constraints,…

searches for one 
(blue) solution

Focus: learning about a problem

trade-off surface

interactions among criteria

structural information
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Multiple Criteria Decision Making (MCDM)

MCDM can be defined as the study of methods and procedures by which 
concerns about multiple conflicting criteria can be formally incorporated into 
the management planning process 

Definition: MCDM

model

μ3                

μ2μ1

trade-off surface

decision making

(exact) optimization
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Multiple Criteria Decision Making (MCDM)

MCDM can be defined as the study of methods and procedures by which 
concerns about multiple conflicting criteria can be formally incorporated into 
the management planning process 

Definition: MCDM

model

μ3                

μ2μ1decision making

(exact) optimization

non-linear objectives
huge search spacesmultiple objectives

uncertainty
integrated simulations

noise
many constraints / objectives

non-differentiable objectives
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Multiple Criteria Decision Making (MCDM)

MCDM can be defined as the study of methods and procedures by which 
concerns about multiple conflicting criteria can be formally incorporated into 
the management planning process 

Definition: MCDM

model

μ3                

μ2μ1decision making

(exact) optimization

non-linear objectives
huge search spacesmultiple objectives

uncertainty
integrated simulations

noise
many constraints / objectives

non-differentiable objectives

Black box optimization trade-off surface

?          
nonlinear function, simulation, experiment
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Evolutionary Multiobjective Optimization (EMO)

water
supply

cost

EMO = evolutionary algorithms / randomized search algorithms
applied to multiple criteria decision making (in general)
used to approximate the Pareto-optimal set (mainly)

Definition: EMO

Pareto set approximation
survivalmutation

x2

x1

f

matingrecombination
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The History of EMO At A Glance

http://www.lania.mx/~ccoello/EMOO/EMOOstatistics.html

1984

1990

1995

2000

2007

first EMO approaches

dominance-based EMO algorithms with diversity preservation techniques

elitist EMO algorithms

quantitative performance assessment

attainment functions

MCDM + EMO                       EMO algorithms based on set quality measures

preference articulation convergence proofs

running time analyses quality measure designuncertainty and robustness

statistical performance assessment

test problem design

high-dimensional objective spaces

multiobjectivization

dominance-based population ranking

1984

2007

Overall: 2615 references by 11/2006
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2009

first EMO approaches

dominance-based EMO algorithms with diversity preservation techniques

elitist EMO algorithms

quantitative performance assessment

attainment functions

MCDM + EMO           EMO algorithms based on set quality measures

preference articulation convergence proofs

running time analyses quality measure designuncertainty and robustness

statistical performance assessment

test problem design

high-dimensional objective spaces

multiobjectivization

dominance-based population ranking



18An Introduction to EMO, École des Ponts, December 3, 2009© Dimo Brockhoff and Eckart Zitzler INRIA Saclay and ETH Zurich 18

1984

1990

1995

2000

2007

first EMO approaches

dominance-based EMO algorithms with diversity preservation techniques

elitist EMO algorithms

quantitative performance assessment

attainment functions
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test problem design
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multiobjectivization

dominance-based population ranking
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2009

The History of EMO At A Glance

http://delta.cs.cinvestav.mx/~ccoello/EMOO/EMOOstatistics.html

Overall: 4646 references by 22/11/2009
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The EMO conference series:

EMO2001 EMO2003 EMO2005 EMO2007        EMO2009
Zurich Faro Guanajuato Matsushima Nantes

Switzerland Portugal Mexico Japan             France

45 / 87 56 / 100 59 / 115 65 / 124          39 / 72

Many further activities:
special sessions, special journal issues, workshops, tutorials, ...

The EMO Community
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Overview

The Big Picture

Basic Principles of Multiobjective Optimization

Algorithm Design Principles and Concepts

Performance Assessment

A Few Examples From Practice
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Starting Point

What makes evolutionary multiobjective optimization
different from single-objective optimization?  

performance performance

cost

single objective multiple objectives

?



22An Introduction to EMO, École des Ponts, December 3, 2009© Dimo Brockhoff and Eckart Zitzler INRIA Saclay and ETH Zurich 22

A General (Multiobjective) Optimization Problem
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(X, Z, f: X → Z, rel ⊆ Z × Z)

A Single-Objective Optimization Problem

decision space objective space objective function

total order
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decision space objective space objective function

total order

total preorder where
a prefrel b :⇔ f(a) rel f(b)

(X, Z, f: X → Z, rel ⊆ Z × Z)

A Single-Objective Optimization Problem

(X, prefrel) 
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Example: Leading Ones Problem

({0,1}n, {0,1, 2, ..., n}, fLO, ≥) where fLO(a) =

(X, Z, f: X → Z, rel ⊆ Z × Z)

A Single-Objective Optimization Problem

(X, prefrel) 
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Simple Graphical Representation

Example: ≥ (total order)

totally orderedoptimum
a ≥ b

ab

a, b ∈ X



27An Introduction to EMO, École des Ponts, December 3, 2009© Dimo Brockhoff and Eckart Zitzler INRIA Saclay and ETH Zurich 27

Preference Relations

decision space objective space objective functions

partial order

preorder where
a prefrel b :⇔ f(a) rel f(b)

weak
Pareto dominance

(X, Z, f: X → Z, rel ⊆ Z × Z)

(X, prefrel) 
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(X, Z, f: X → Z, rel ⊆ Z × Z)

A Multiobjective Optimization Problem

Example: Leading Ones Trailing Zeros Problem

(X, prefrel) 

f2

f1

0 0 0 0 0 0 0

trailing 0s

leading 1s

1 1 1 1 1 1 1

1 1 1 1 0 0 0
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(X, Z, f: X → Z, rel ⊆ Z × Z)

A Multiobjective Optimization Problem

Example: Leading Ones Trailing Zeros Problem

(X, prefrel) 

({0,1}n,

f2

f1

0 0 0 0 0 0 0

trailing 0s

leading 1s

1 1 1 1 1 1 1

1 1 1 1 0 0 0
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(X, Z, f: X → Z, rel ⊆ Z × Z)

A Multiobjective Optimization Problem

Example: Leading Ones Trailing Zeros Problem

(X, prefrel) 

({0,1}n, {0,1, 2, ..., n} × {0,1, 2, ..., n},

f2

f1

0 0 0 0 0 0 0

trailing 0s

leading 1s

1 1 1 1 1 1 1

1 1 1 1 0 0 0
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Example: Leading Ones Trailing Zeros Problem

fLO(a) =                          fTZ(a) =

(X, Z, f: X → Z, rel ⊆ Z × Z)

A Multiobjective Optimization Problem

(X, prefrel) 

({0,1}n, {0,1, 2, ..., n} × {0,1, 2, ..., n}, (fLO, fTZ), 

f2

f1

0 0 0 0 0 0 0

trailing 0s

leading 1s

1 1 1 1 1 1 1

1 1 1 1 0 0 0
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Example: Leading Ones Trailing Zeros Problem

fLO(a) =                          fTZ(a) =

(X, Z, f: X → Z, rel ⊆ Z × Z)

A Multiobjective Optimization Problem

(X, prefrel) 

({0,1}n, {0,1, 2, ..., n} × {0,1, 2, ..., n}, (fLO, fTZ), ? )

f2

f1

0 0 0 0 0 0 0

trailing 0s

leading 1s

1 1 1 1 1 1 1

1 1 1 1 0 0 0



33An Introduction to EMO, École des Ponts, December 3, 2009© Dimo Brockhoff and Eckart Zitzler INRIA Saclay and ETH Zurich 33
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Pareto dominance

ε-dominance

cone dominance

Different Notions of Dominance
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The Pareto-optimal Set

f2

f1

x2

x1

decision
space 

objective
space 

Pareto-optimal set                              
non-optimal decision vector

Pareto-optimal front
non-optimal objective vector
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Visualizing Preference Relations

optima
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Remark: Properties of the Pareto-optimal Set

f2

f1

f2

f1

nadir point

ideal point

Computational complexity: 
multiobjective variants can be become NP- and #P-complete

Size: Pareto set can be exponential in the input length
(shortest path [Serafini 1986], MSP [Camerini et al. 1984] )

Shape

Range
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Approaches To Multiobjective Optimization

A multiobjective problem is as such underspecified…
…because not any Pareto-optimum is equally suited!

Additional preferences are needed to tackle the problem: 

Solution-Oriented Problem Transformation:
Induce a total order on the decision space, e.g., by aggregation.

Set-Oriented Problem Transformation:
First transform problem into a set problem and then define an 
objective function on sets.

Preferences are needed in any case, but the latter are weaker!
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Problem Transformations and Set Problems

search space

objective space

(partially) ordered set

(totally) ordered set

single solution problem set problem
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Solution-Oriented Problem Transformations

transformation

parameters

f(f1, f2, …, fk)

multiple
objectives

single
objective
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Aggregation-Based Approaches

f2

f1

transformation

parameters

f(f1, f2, …, fk)

multiple
objectives

single
objective

Example: weighting approach

y = w1y1 + … + wkyk

(w1, w2, …, wk)

Other example: Tchebycheff
y= max wi(ui – zi)
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Set-Oriented Problem Transformations
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weakly dominates
= not worse in all objectives

and sets not equal

dominates
= better in at least one objective

strictly dominates
= better in all objectives

is incomparable to
= neither set weakly better 

Pareto Set Approximations 

performance

cheapness

A B

C D

A C

B C

Pareto set approximation (algorithm outcome) =
set of (usually incomparable) solutions



44An Introduction to EMO, École des Ponts, December 3, 2009© Dimo Brockhoff and Eckart Zitzler INRIA Saclay and ETH Zurich 44

What Is the Optimization Goal (Total Order)?

Find all Pareto-optimal solutions?
Impossible in continuous search spaces

How should the decision maker handle 10000 solutions?

Find a representative subset of the Pareto set?
Many problems are NP-hard

What does representative actually mean?

Find a good approximation of the Pareto set?
What is a good approximation?

How to formalize intuitive
understanding:

close to the Pareto front
well distributed

y2

y1
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Quality of Pareto Set Approximations

f2

f1

f2

f1

reference set

ε

ε

hypervolume indicator epsilon indicator
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General Remarks on Problem Transformations

Idea:
Transform a preorder into a total preorder

Methods:

Define single-objective function based on the multiple criteria
(shown on the previous slides)

Define any total preorder using a relation
(not discussed before)

Question:
Is any total preorder ok resp. are there any requirements concerning
the resulting preference relation?

⇒ Underlying dominance relation rel should be reflected
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Refinements and Weak Refinements

refines a preference relation iff

A   B ∧ B A ⇒ A    B ∧ B A                      (better ⇒ better)

⇒ fulfills requirement

weakly refines a preference relation iff

A   B ∧ B A ⇒ A    B                            (better ⇒ weakly better)

⇒ does not fulfill requirement, but does not contradict

…sought are total refinements…
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Example: Refinements Using Set Quality Measures

I(A)
A

B

A

I(A) = volume of the
weakly dominated area

in objective space

I(A,B) = how much needs A to
be moved to weakly dominate B

A    B :⇔ I(A) ≥ I(B) A     B :⇔ I(A,B) ≤ I(B,A)

unary hypervolume indicator binary epsilon indicator

A’
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Example: Weak Refinement and No Refinement

R

A

I(A,R) = how much needs A to
be moved to weakly dominate R

A     B :⇔ I(A,R) ≤ I(B,R)

unary epsilon indicator

A’

I(A)
A

I(A) = variance of pairwise
distances

A     B :⇔ I(A) ≤ I(B)

unary diversity indicator

weak refinement no refinement
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Overview

The Big Picture

Basic Principles of Multiobjective Optimization

Algorithm Design Principles and Concepts

Performance Assessment

A Few Examples From Practice
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Algorithm Design: Particular Aspects

0100

0011 0111

0011
0000

0011

1011

representation

environmental selection

parameters

fitness assignment mating selection

variation operators
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Fitness Assignment: Principal Approaches

y1

y2

y1

y2y2

y1

aggregation-based criterion-based dominance-based

parameter-oriented
scaling-dependent

set-oriented
scaling-independent

weighted sum                     VEGA                           SPEA2
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Criterion-Based Selection: VEGA

M

T2

T3

Tk-1

Tk

M’

T1

select
according to

f1

f2
f3

fk-1

fk

shuffle

population                 k separate selections           mating pool

[Schaffer 1985]
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feasible region
constraint

Aggregation-Based: Multistart Constraint Method

Underlying concept:
Convert all objectives except of one into constraints
Adaptively vary constraints

y2

y1

maximize f1
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feasible region
constraint

Aggregation-Based: Multistart Constraint Method

Underlying concept:
Convert all objectives except of one into constraints
Adaptively vary constraints

y2

y1

maximize f1
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feasible region
constraint

feasible region
constraint

Aggregation-Based: Multistart Constraint Method

Underlying concept:
Convert all objectives except of one into constraints
Adaptively vary constraints

y2

y1

maximize f1
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A General Scheme of a Dominance-Based MOEA

Note: good in terms of set quality = good in terms of search?

(archiv)population offspring

environmental selection (greedy heuristic)

mating selection (stochastic) fitness assignment
partitioning into

dominance classes

rank refinement within
dominance classes

+
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Ranking of the Population Using Dominance

... goes back to a proposal by David Goldberg in 1989.

... is based on pairwise comparisons of the individuals only.

dominance rank: by how
many individuals is an
individual dominated?
MOGA, NPGA
dominance count: how many
individuals does an individual
dominate?
SPEA, SPEA2
dominance depth: at which
front is an individual located?
NSGA, NSGA-II

f2

f1

dominance
count

dominance
rank



59An Introduction to EMO, École des Ponts, December 3, 2009© Dimo Brockhoff and Eckart Zitzler INRIA Saclay and ETH Zurich 59

Illustration of Dominance-based Partitioning

f2

f1

dominance depth

1

2

3

f2

f1

dominance rank

4

1

8

6

3
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Refinement of Dominance Rankings

Goal: rank incomparable solutions within a dominance class

Density information (good for search, but usually no refinements)

Quality indicator (good for set quality): soon...

f
f

f

Kernel method

density =
function of the 

distances

k-th nearest neighbor

density =
function of distance

to k-th neighbor

Histogram method

density =
number of elements

within box
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Example: SPEA2 Dominance Ranking

Basic idea: the less dominated, the fitter...
Principle: first assign each solution a weight (strength), 

then add up weights of dominating solutions

f2

f1

0

0
0

4+3+2
2+1+4+3+2

2

4
4+3

S (strength) =
#dominated solutions 

R (raw fitness) =  
∑ strengths of dominators
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Example: SPEA2 Diversity Preservation

Density Estimation

k-th nearest neighbor method: 

Fitness = R + 1 / (2 + Dk)

Dk = distance to the k-th
nearest individual

Usually used: k = 2

< 1

Dk
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Hypervolume-Based Selection

Problem of many secondary selection criterions: no refinement

Latest Approach (SMS-EMOA, MO-CMA-ES, HypE, …)
use hypervolume indicator to guide the search: refinement!

Main idea
Delete solutions with
the smallest
hypervolume loss
d(s) = IH(P)-IH(P / {s})
iteratively
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Sampling New Points: Covariance Matrix Adaptation

Concept
use single-objective mutation of CMA-ES for each individual [ihr2007a]
Sample multivariate normal distribution m+σ N(0,C)
m, σ, and C are updated every generation depending on success

© 
A.

 A
ug

er
 an

d N
. H

an
se

n
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Articulating User Preferences During Search

What we thought: EMO is preference-less

What we learnt: EMO just uses weaker preference information

⇒ (almost) all MOEAs implicitly implement specific preferences

[Zitzler 1999]

preferable?environmental
selection

3 out of 6



66An Introduction to EMO, École des Ponts, December 3, 2009© Dimo Brockhoff and Eckart Zitzler INRIA Saclay and ETH Zurich 66

Example: Weighted Hypervolume Indicator

Moreover: HypE [bz2009d]

Sampling
Contribution if >1
solution deleted
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Weighted Hypervolume in Practice
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Overview

The Big Picture

Basic Principles of Multiobjective Optimization

Algorithm Design Principles and Concepts

Performance Assessment

A Few Examples From Practice
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Once Upon a Time...

... multiobjective EAs were mainly compared visually:

ZDT6 benchmark problem: IBEA, SPEA2, NSGA-II
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Two Approaches for Empirical Studies

Attainment function approach:

Applies statistical tests directly to 
the samples of approximation sets
Gives detailed information about 
how and where performance 
differences occur

Quality indicator approach:

First, reduces each approximation 
set to a single value of quality
Applies statistical tests to the 
samples of quality values
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Empirical Attainment Functions

three runs of two multiobjective optimizers

frequency of attaining regions
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Attainment Plots

50% attainment surface for IBEA, SPEA2, NSGA2 (ZDT6)
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Quality Indicator Approach

Goal: compare two Pareto set approximations A and B

Comparison method C = quality measure(s) + Boolean function

reduction             interpretation                                          

A
B

Rn
quality

measure
Boolean
function statementA, B

hypervolume 432.34 420.13
distance 0.3308      0.4532
diversity 0.3637 0.3463
spread 0.3622 0.3601
cardinality 6 5          

A B

“A better”



74An Introduction to EMO, École des Ponts, December 3, 2009© Dimo Brockhoff and Eckart Zitzler INRIA Saclay and ETH Zurich 74

Example: Box Plots
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[Fonseca et al. 2005]
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Example: Box Plots
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Statistical Assessment (Kruskal Test)

ZDT6
Epsilon

DTLZ2
R

IBEA NSGA2 SPEA2

IBEA ~0 ~0

NSGA2 1 ~0

SPEA2 1 1

Overall p-value = 6.22079e-17.
Null hypothesis rejected (alpha 0.05)

is better than

IBEA NSGA2 SPEA2

IBEA ~0 ~0

NSGA2 1 1

SPEA2 1 ~0

Overall p-value = 7.86834e-17.
Null hypothesis rejected (alpha 0.05)

is better than

Knapsack/Hypervolume: H0 = No significance of any differences
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Problems With Non-Compliant Indicators
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What Are Good Set Quality Measures?

There are three aspects [Zitzler et al. 2000]

Wrong! [Zitzler et al. 2003]

f2

f1

An infinite number of unary set measures is needed to detect
in general whether A is better than B
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Overview

The Big Picture

Basic Principles of Multiobjective Optimization

Algorithm Design Principles and Concepts

Performance Assessment

A Few Examples From Practice
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EMO Provides Information About a Problem

The question:
Why at all should one try to approximate the 
entire Pareto-optimal set?

An answer:
Because it provides useful information about 
the problem...

Problem

Decision
Making

EMO

Model

Solution
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Application: Design Space Exploration

Cost          

Latency Power

Specification Optimization Implementation

Environmental
SelectionMutation

x2

x1

f

Mating
SelectionRecombination

Evaluation
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Application: Design Space Exploration

Cost          

Latency Power

Specification Optimization Implementation

Environmental
SelectionMutation

x2

x1

f

Mating
SelectionRecombination

Evaluation

Water resource
management
[Siegfried et al. 2009]
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Application: Trade-Off Analysis

Module identification from biological data [Calonder et al. 2006]

Find group of genes wrt
different data types:

similarity of gene
expression profiles

overlap of protein
interaction partners

metabolic pathway
map distances
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Application: Approximation Set Analysis

Multiple disk clutch brake design [Deb, Srinivasan 2006]
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Conclusions: EMO as Interactive Decision Support

problem solution

decision making

modeling

optimization

analysis

specification

visualization

preference
articulation

adjustment
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The EMO Community

Links:
EMO mailing list:
http://w3.ualg.pt/lists/emo-list/
EMO bibliography:
http://www.lania.mx/~ccoello/EMOO/

Events:
Conference on Evolutionary Multi-Criterion Optimization

Books:
Multi-Objective Optimization using Evolutionary Algorithms
Kalyanmoy Deb, Wiley, 2001
Evolutionary Algorithms for Solving Multi Evolutionary Algorithms for 
Solving Multi-Objective Problems Objective Problems, Carlos A. Coello
Coello, David A. Van Veldhuizen & Gary B. Lamont, Kluwer, 2nd Ed. 2006
and more…
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PISA: http://www.tik.ee.ethz.ch/sop/pisa/

Questions?
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