

## **Multiobjective Optimization**

Almost all problems are multiobjective in nature...

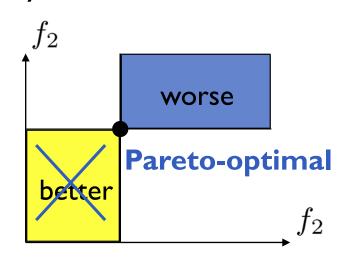
#### **Scenario**

Minimize > I objective functions simultaneously

$$\min_{x \in X} \mathcal{F}(x) = (f_1(x), \dots, f_k(x))$$
where  $x \in X \to \mathcal{F}(x) \in \mathbb{R}^k$ 

Pareto dominance

$$x \leq y$$
 iff  $\forall 1 \leq i \leq k : f_i(x) \leq f_i(y)$ 



- Pareto set/Pareto front
- ⇒ set problem: generalize Pareto dominance on sets

## **Multiobjective Optimization**

Almost all problems are multiobjective in nature...

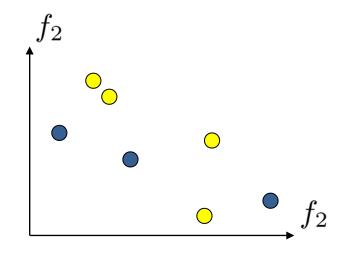
#### **Scenario**

Minimize > I objective functions simultaneously

$$\min_{x \in X} f(x) = (f_1(x), \dots, f_k(x))$$
where  $x \in X \to f(x) \in \mathbb{R}^k$ 

Pareto dominance

$$x \leq y$$
 iff  $\forall 1 \leq i \leq k : f_i(x) \leq f_i(y)$ 



- Pareto set/Pareto front
- set problem: generalize Pareto dominance on sets

$$A \leq B \text{ iff } \forall b \in B : \exists a \in A : a \leq b$$

## **Unary Quality Indicators**

Take set  $A \Rightarrow$  assign real value  $I(A) \in \mathbb{R}$ 

### Why?

Performance assessment (provides a total order on sets via ≥)

Nowadays also used in selection of EAs (explicit preference articulation)

#### Result

Transforms multiobjective problem to single-objective one:

max. 
$$I(A)$$
  
s.t.  $|A| \le \mu$ 

Not any indicator interesting: we need also a refinement

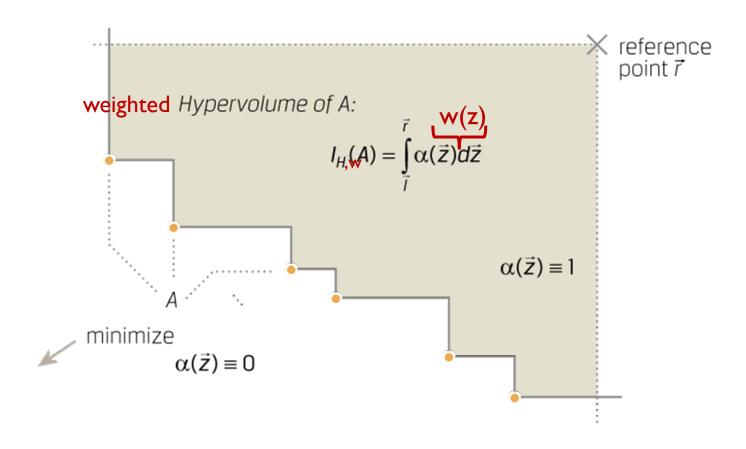
Definition 2.4: Given a set  $\Psi$ . Then the preference relation  $\preceq_{\text{ref}}$  refines  $\preceq$  if for all  $A, B \in \Psi$  we have

$$(A \preceq B) \land (B \not\preceq A) \Rightarrow (A \preceq_{\text{ref}} B) \land (B \not\preceq_{\text{ref}} A).$$

from [Zitzler et al. in IEEETEC'10]

# The (Weighted) Hypervolume Indicator

The only unary indicators that are refinements are the (weighted) hypervolume indicators

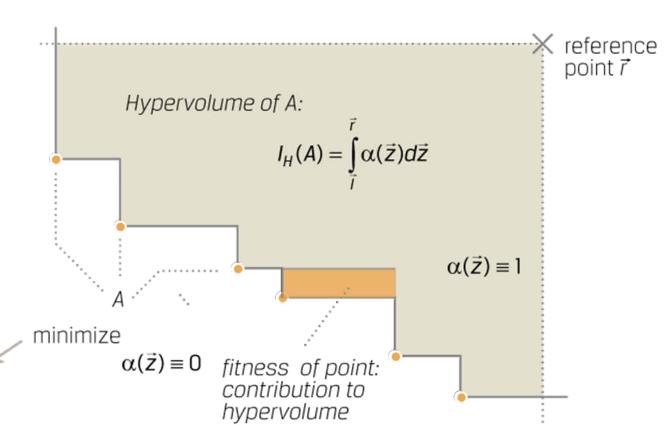


# Hypervolume-Based Evolutionary Algorithms

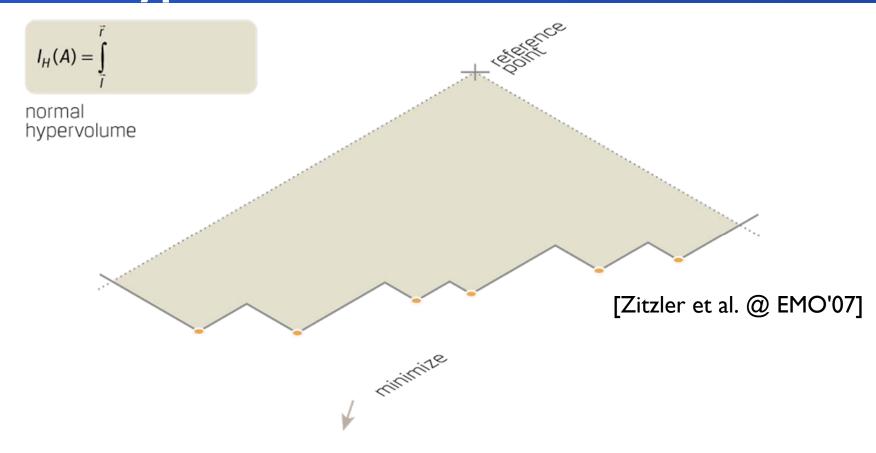
State-of-the-art algorithms (SMS-EMOA, MO-CMA-ES, HypE, ...) use hypervolume indicator as 2<sup>nd</sup> selection criterion: refinement!

#### Main idea

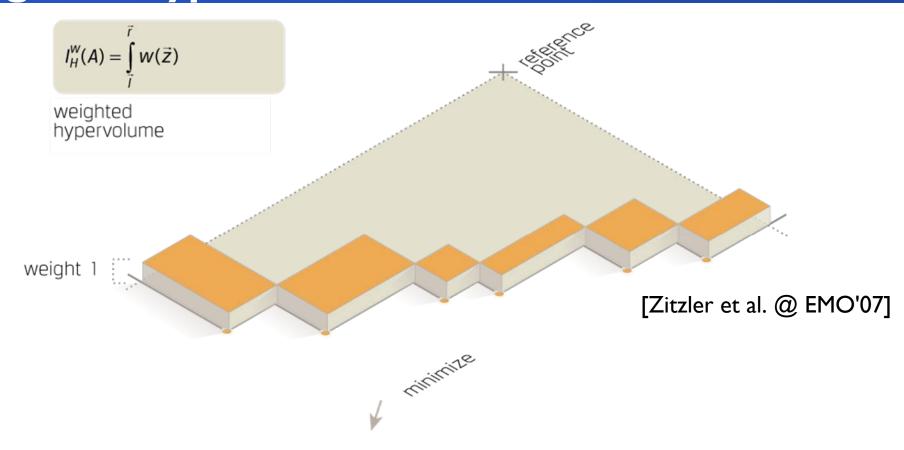
Delete solutions with the smallest hypervolume loss  $d(s) = I_H(P)-I_H(P / \{s\})$ iteratively



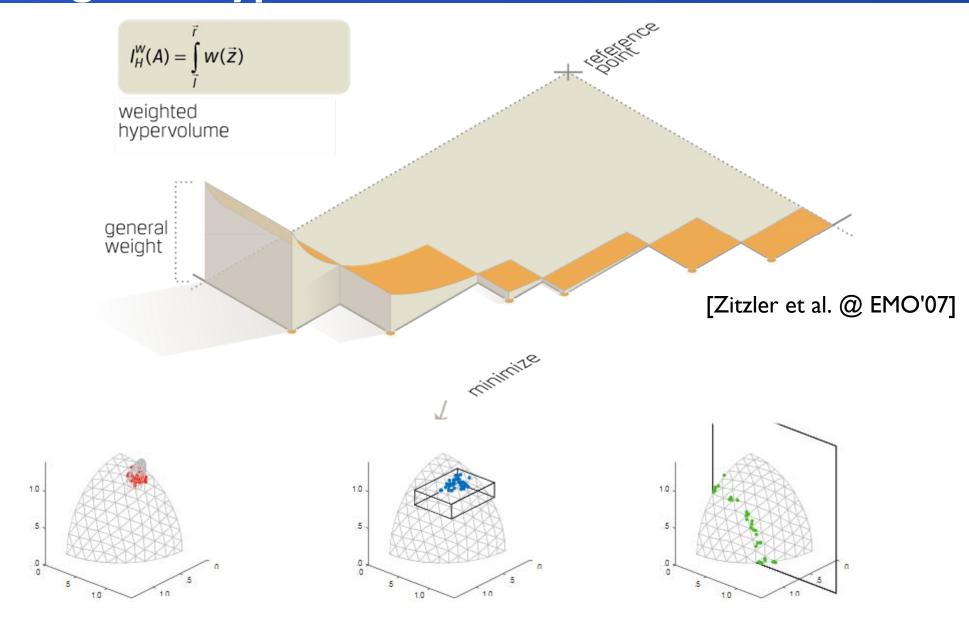
## Weighted Hypervolume Selection



# Weighted Hypervolume Selection



# Weighted Hypervolume Selection



## Optimal µ-Distributions

#### When the goal is to maximize the hypervolume...

- this yields sets with only Pareto-optimal solutions [Fleischer @ EMO'03]
- those sets, if unrestricted in size, cover the entire Pareto front
- many hypervolume-based evolutionary algorithms have a population size µ

#### Optimal µ-Distribution:

A set of  $\mu$  solutions that maximizes the hypervolume indicator among all sets of  $\mu$  solutions is called optimal  $\mu$ -distribution.

#### **Questions:**

- How distributed? ⇒ performance assessment
- Do algorithms converge to it?
- And even before: do optimal μ-distributions exist?

### Overview

### **Today:**

New existence results

[submitted to TCS]

2 An exact and exhaustive result for linear bi-objective fronts

[Brockhoff @ SEAL'10]

### Overview

#### **Today:**

New existence results

[submitted to TCS]

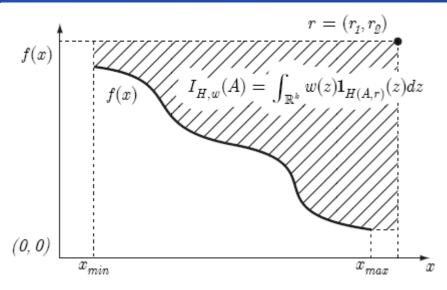
2 An exact and exhaustive result for linear bi-objective fronts

[Brockhoff @ SEAL'10]

## Existence of Optimal µ-Distributions

#### **Scenario**

f:  $[x_{min},x_{max}] \rightarrow \mathbb{R}$  strictly monotone reference point  $r = (r_1,r_2)$ 



#### **Known results on Existence**

- if f continuous [Auger et al. @ FOGA'09]
- if f upper semi-continuous for maximization

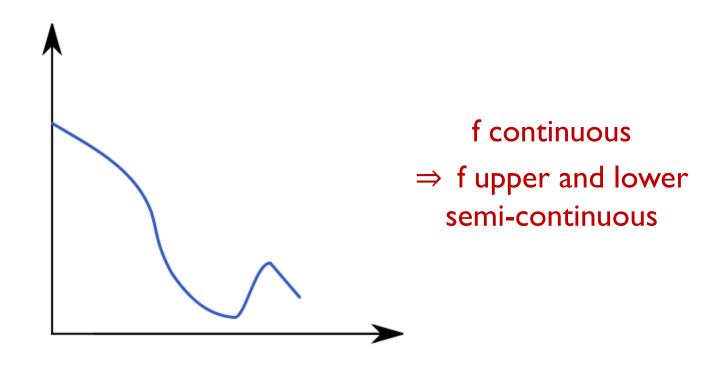
[Bringmann and Friedrich @ GECCO'10]

### **Upper and Lower Semi-Continuity**

A function f is upper (lower) semi-continuous if for all  $x_0$  lim  $\sup_{x\to x_0} f(x) \le f(x_0)$  (  $\lim \inf_{x\to x_0} f(x) \ge f(x_0)$  ) holds.

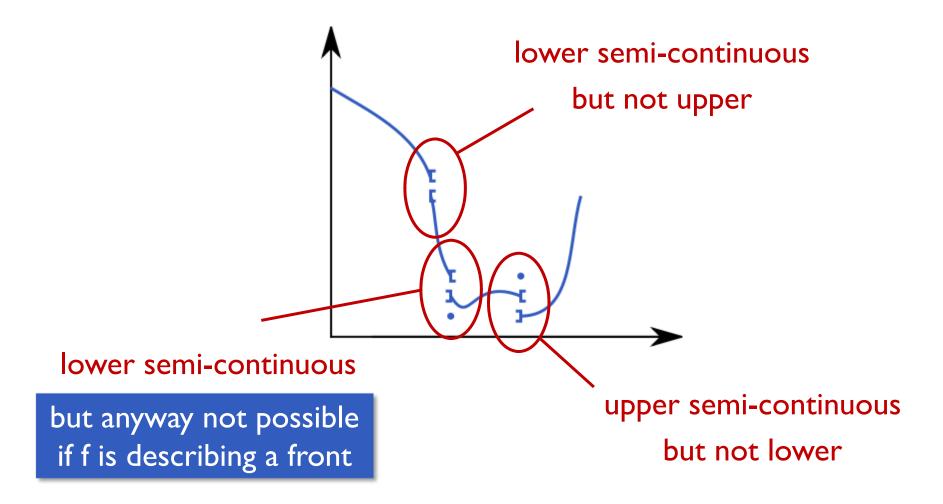
# **Upper and Lower Semi-Continuity**

Definition not overly intuitive at first sight:  $\forall x_0$ :  $\lim \inf_{x \to x_0} f(x) \ge f(x_0)$ 



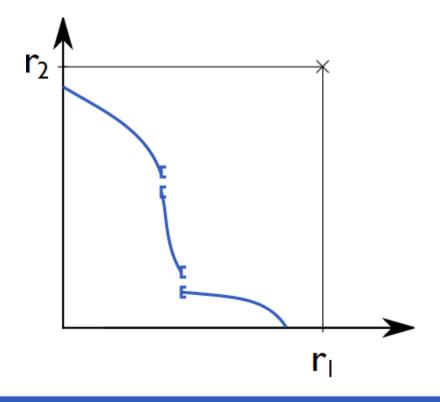
## **Upper and Lower Semi-Continuity**

Definition not overly intuitive at first sight:  $\forall x_0$ :  $\lim \inf_{x \to x_0} f(x) \ge f(x_0)$ 



# **Upper and Lower Semi-Continuity**

Definition not overly intuitive at first sight:  $\forall x_0$ :  $\lim \inf_{x \to x_0} f(x) \ge f(x_0)$ 



if f is describing a front:

lower semi-continuity  $\Leftrightarrow$  continuous from the right

#### **Interesting Questions**

- Why upper semi-continuous? What about minimization?
- Existence for the weighted hypervolume indicator?
- Sufficent and/or necessary criteria?

#### **Today:**

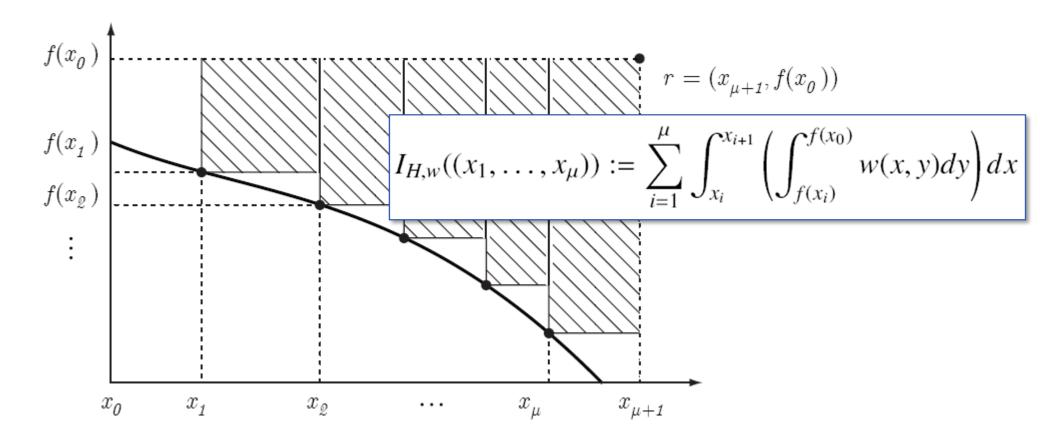
- Lower semi-continuity for minimization is a sufficient criterion in the weighted hypervolume case
- There are fronts for which no optimal I-distribution exists
- Lower semi-continuity is not a necessary condition for existence

## **Again: The Scenario**

#### **Given**

f:  $[x_{min}, x_{max}] \rightarrow \mathbb{R}$  strictly monotone reference point  $r=(r_1, r_2)$ 

 $\mu$  x-values enough to characterize optimal  $\mu$  -distribution



## General Result on Existence for Weighted Case

Theorem Let  $\mu \in \mathbb{N}$ . If f is lower semi-continuous, there exists (at least) one set of  $\mu$  points maximizing the hypervolume.

Proof. We are going to prove that  $I_{H,w}$  is upper semi-continuous if f is lower semi-continuous, and then apply the Extreme Value Theorem. Since  $I_{H,w}$  is the sum of  $\mu$  functions  $g(x_i, x_{i+1})$  where  $g(\alpha, \beta) = \int_{\alpha}^{\beta} \left( \int_{f(\alpha)}^{f(x_0)} w(x, y) dy \right) dx$ , we will prove the upper semi-continuity of  $g(x_i, x_{i+1})$  for  $(x_i, x_{i+1}) \in [x_{\min}, x_{\max}]$ . This will imply the upper semi-continuity of  $I_{H,w}$  (Bourbaki, 1989, p 362). Let  $(x_i, x_{i+1}) \in [x_{\min}, x_{\max}]$  and let  $(x_i^n, x_{i+1}^n)_{n \in \mathbb{N}}$  converging to  $(x_i, x_{i+1})$ . We will now prove that  $\limsup g(x_i^n, x_{i+1}^n) \leq g(x_i, x_{i+1})$  (see Knapp, 2005, p 481). Since

$$\limsup_{n \to \infty} g(x_i^n, x_{i+1}^n) = \limsup_{n \to \infty} \int \int \mathbf{1}_{[x_i^n, x_{i+1}^n]}(x) \mathbf{1}_{[f(x_i^n), f(x_0)]}(y) w(x, y) dy dx ,$$

and  $\mathbf{1}_{[x_i^n,x_{i+1}^n]}(x)\mathbf{1}_{[f(x_i),f(x_0)]}(x)w(x,y) \leq \mathbf{1}_{[x_{\min},x_{\max}]}(x)\mathbf{1}_{[f(x_{\max}),f(x_0)]}(x)w(x,y)$  we can use the (Reverse) Fatou Lemma (Knapp, 2005, p 252) that implies  $\limsup g(x_i^n,x_{i+1}^n) \leq \int \int \limsup \mathbf{1}_{[x_i^n,x_{i+1}^n]}(x)\mathbf{1}_{[f(x_i^n),f(x_0)]}(y)w(x,y)dydx$ . Since f is lower semicontinuous,  $\liminf f(x_i^n) \geq f(x_i)$  holds which is equivalent to  $\limsup (f(x_0) - f(x_i^n)) = f(x_0) - \liminf f(x_i^n) \leq f(x_0) - f(x_i^n)$ . Hence,  $\limsup \mathbf{1}_{[f(x_i^n),f(x_0)]}(y) \leq \mathbf{1}_{[f(x_i),f(x_0)]}(y)$  and thus

$$\limsup_{n\to\infty} g(x_i^n, x_{i+1}^n) \le \int \int \mathbf{1}_{[x_i, x_{i+1}]}(x) \mathbf{1}_{[f(x_i), f(x_0)]}(y) w(x, y) dy dx = g(x_i, x_{i+1}) .$$

We have proven the upper semi-continuity of g which implies the upper semi-continuity of  $I_{H,w}$ . Since in addition  $I_{H,w}$  is upper bounded by the hypervolume contribution of the entire front which is finite, we can imply from the Extreme Value Theorem that there exists a set of  $\mu$  points maximizing the hypervolume indicator.

## General Result on Existence for Weighted Case

Theorem Let  $\mu \in \mathbb{N}$ . If f is lower semi-continuous, there exists (at least) one set of  $\mu$  points maximizing the hypervolume.

#### **Sketch of Proof**

#### **Extreme Value Theorem / Weierstrass Theorem:**

If G:  $K \to \mathbb{R}$  is upper semi continuous and K compact then  $\exists x^* \in K \text{ s.t. } \forall x \in K : G(x) \leq G(x^*)$ 

**Here:** 
$$G = I_{H,w}(A,r)$$

- ✓  $K=[x_{min},x_{max}]^{\mu}$  compact
- ✓ f lower semi-continuous  $\Rightarrow$   $I_{H,w}$  upper semi-continuous (technical: tools from Lebesgue integration theory, in particular "Fatou Lemma")

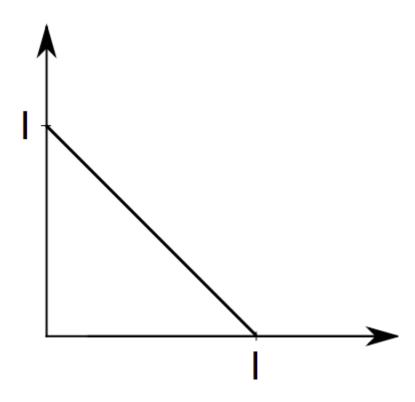
#### **Shown:**

f lower semi-continuous ⇒ existence (sufficient criterion)

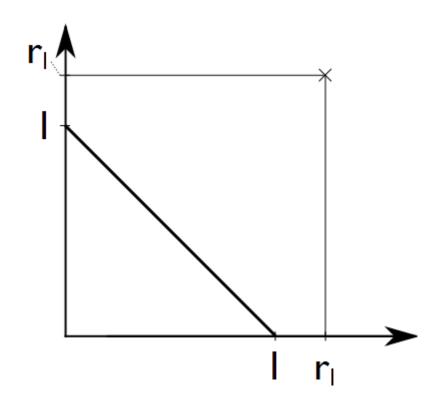
#### Still unclear:

does an example with no existence really exist?

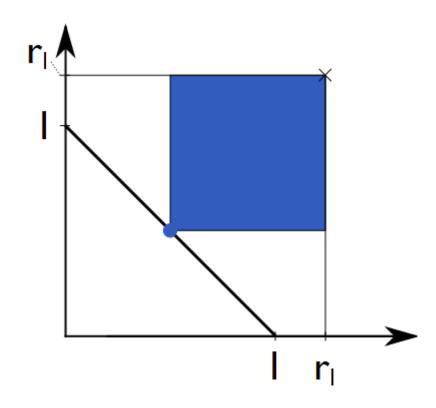
**Theorem** There are problems with no optimal  $\mu$ -distributions.



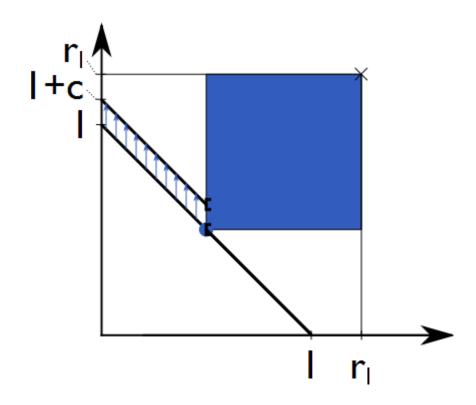
**Theorem** There are problems with no optimal  $\mu$ -distributions.



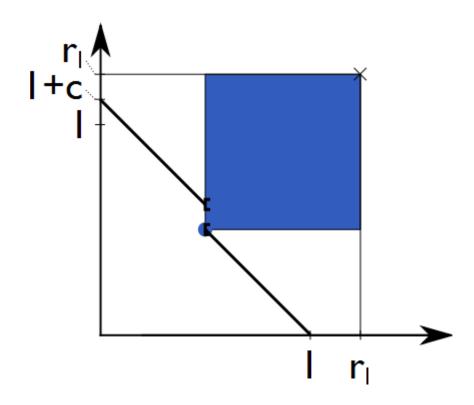
**Theorem** There are problems with no optimal  $\mu$ -distributions.



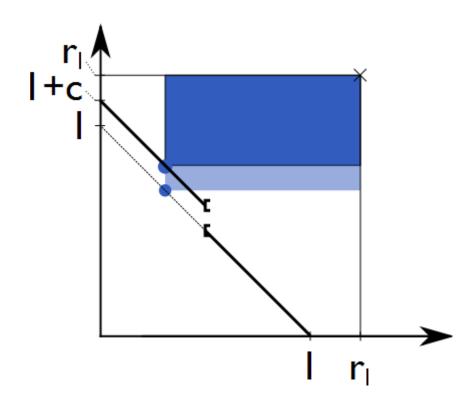
**Theorem** There are problems with no optimal  $\mu$ -distributions.



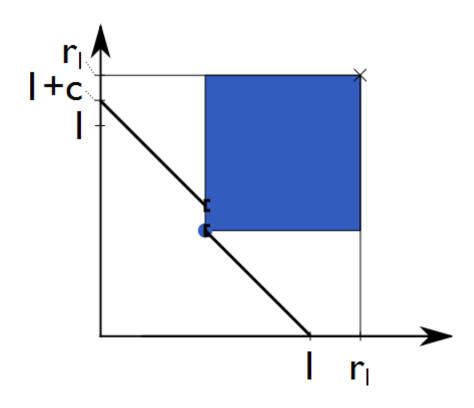
**Theorem** There are problems with no optimal  $\mu$ -distributions.



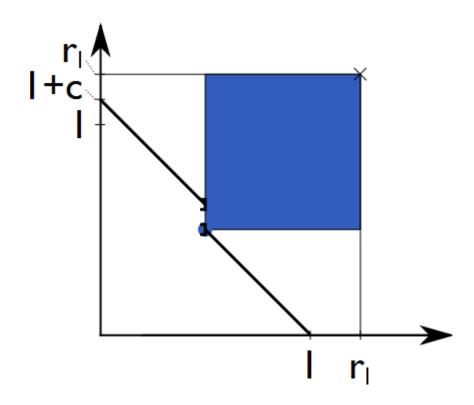
**Theorem** There are problems with no optimal  $\mu$ -distributions.



**Theorem** There are problems with no optimal  $\mu$ -distributions.

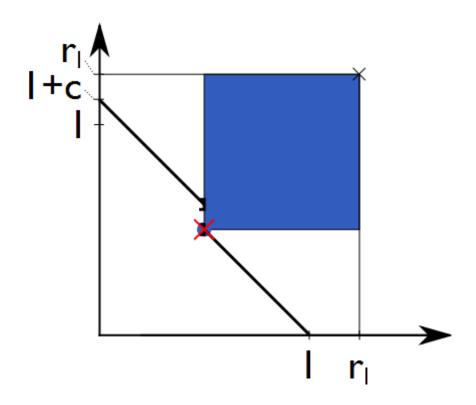


**Theorem** There are problems with no optimal  $\mu$ -distributions.



**Theorem** There are problems with no optimal  $\mu$ -distributions.

**Proof** 



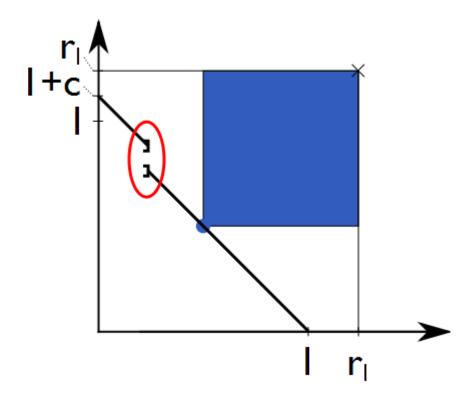
⇒ no optimal I-distribution exists!

## A Necessary Condition for Existence?

Theorem Lower semi-continuity is not a necessary criterion for existence.

#### **Proof**

To show: f not lower semi-continuous but optimal µ-distribution exists



## **Open Questions...**

- ...to be discussed here at Dagstuhl (or later)
  - Existence results for higher dimensional optimal μ-distributions?
    - if continuous, no problem but is simply lower/upper semicontinuity enough?
    - are there differences to the 2-objective case?
  - Are there criteria for the uniqueness?
    - cf. results of Beume et al. [Beume et al. @ EMO'09]
  - Constructive results: how do optimal µ-distributions look like?

## **Overview**

• New existence results

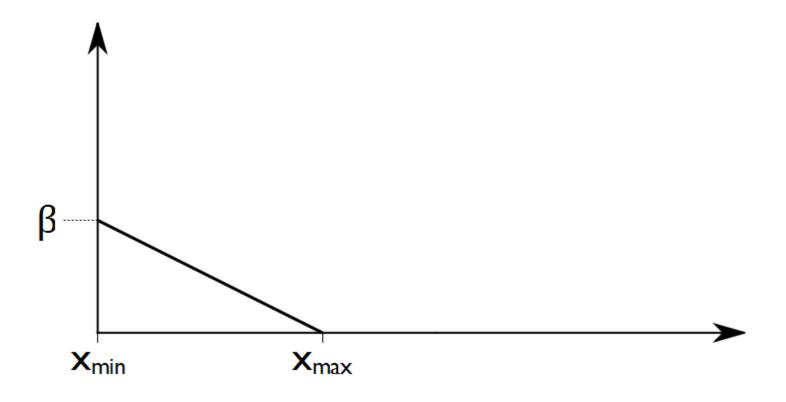
[submitted to TCS]

2 An exact and exhaustive result for linear bi-objective fronts

[Brockhoff @ SEAL'10]

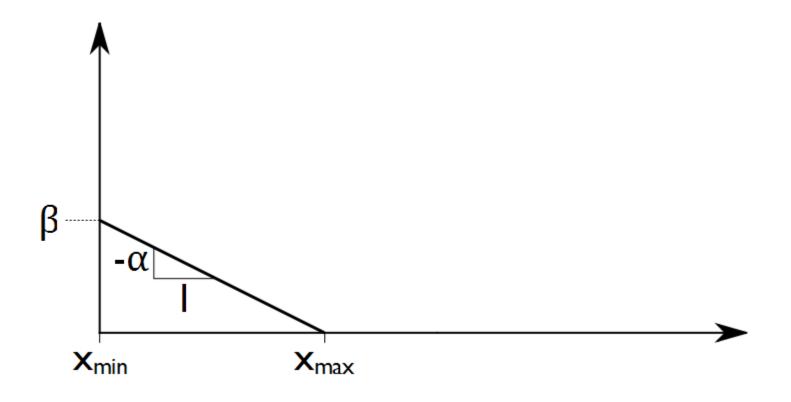
# **Starting Point**

Assume problem with linear bi-objective front:  $f(x) = \alpha x + \beta$  in  $[x_{min}, x_{max}]$ 



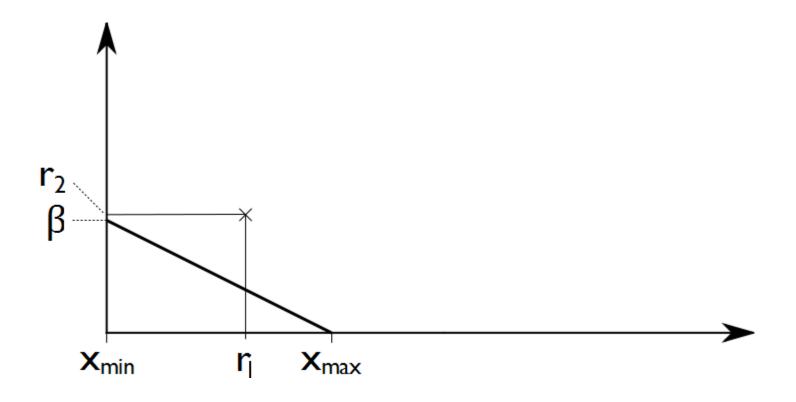
# **Starting Point**

Assume problem with linear bi-objective front:  $f(x) = \alpha x + \beta$  in  $[x_{min}, x_{max}]$ 



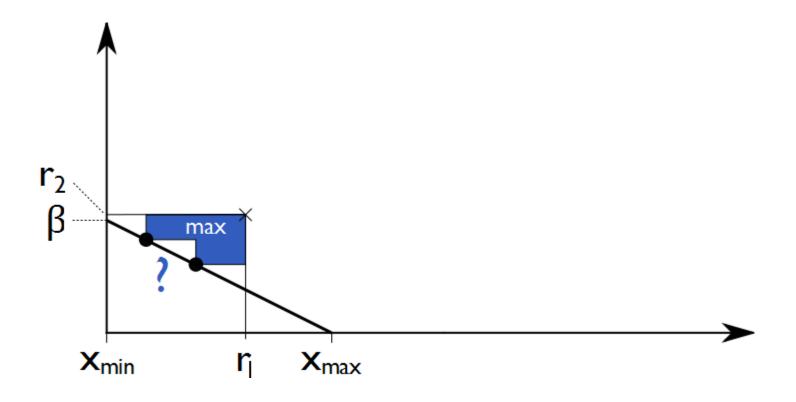
# **Starting Point**

Assume problem with linear bi-objective front:  $f(x) = \alpha x + \beta$  in  $[x_{min}, x_{max}]$ 



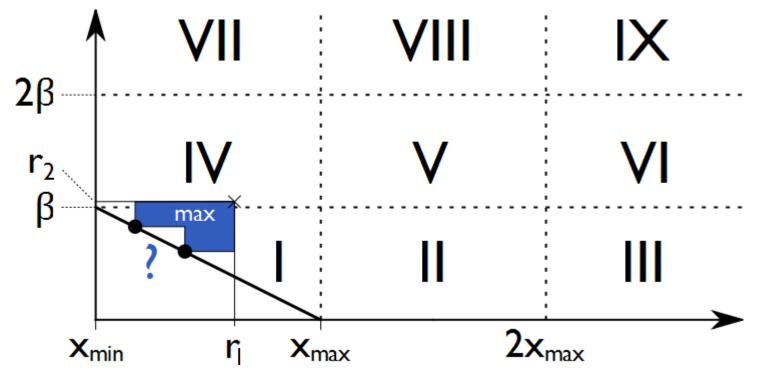
# **Starting Point**

Assume problem with linear bi-objective front:  $f(x) = \alpha x + \beta$  in  $[x_{min}, x_{max}]$ 



# **Starting Point**

Assume problem with linear bi-objective front:  $f(x) = \alpha x + \beta$  in  $[x_{min}, x_{max}]$ 

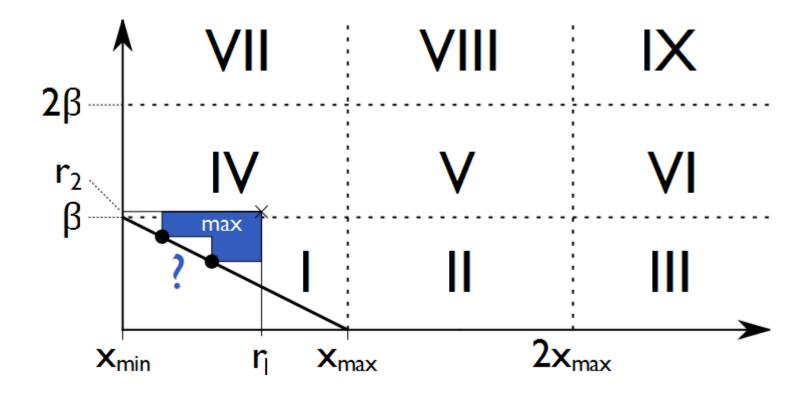


#### **Problems:**

- exact results only known when choosing r in I and IX [Auger et al.@FOGA'09]
- ② Case IX independent of μ

# Starting Point

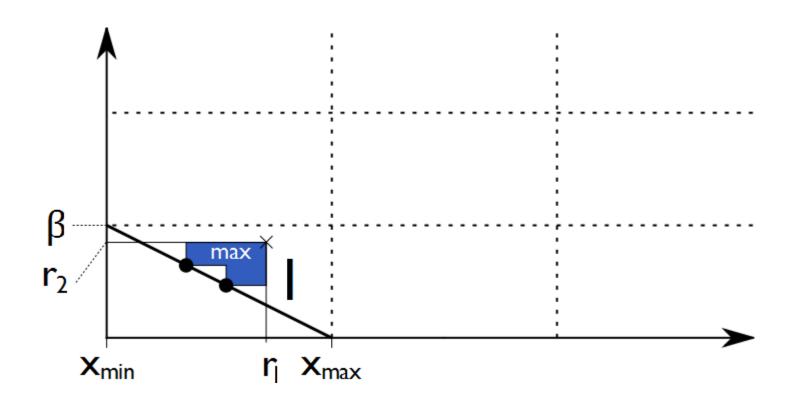
Assume problem with linear bi-objective front:  $f(x) = \alpha x + \beta$  in  $[x_{min}, x_{max}]$ 



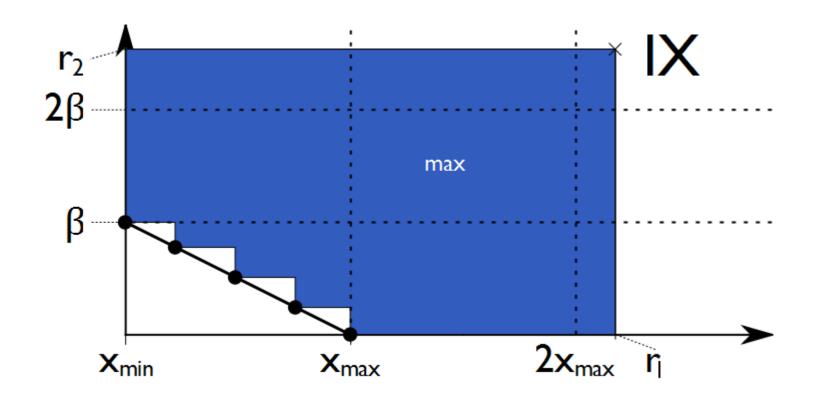
#### Goal:

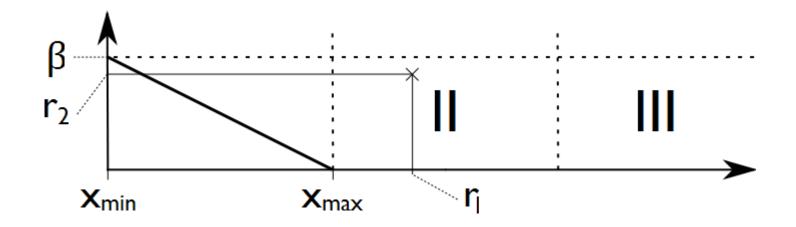
Have exact and exhaustive results for any reasonable r and  $\mu$ >1

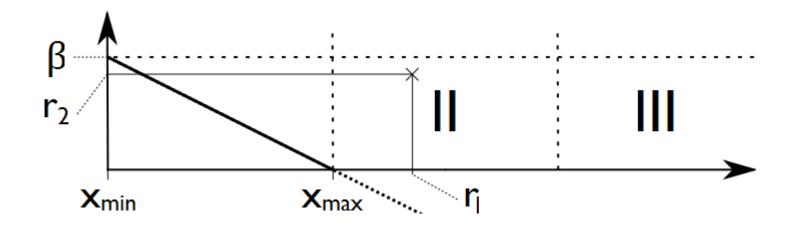
# Revisiting Results for Cases I and IX

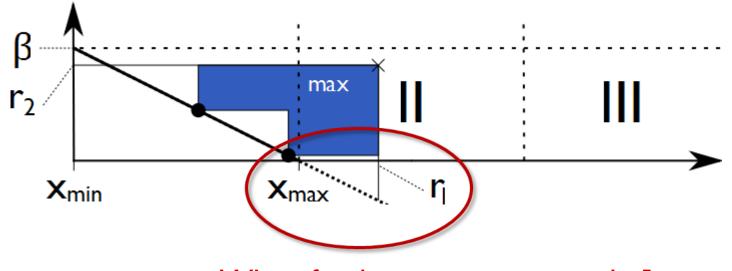


# Revisiting Results for Cases I and IX



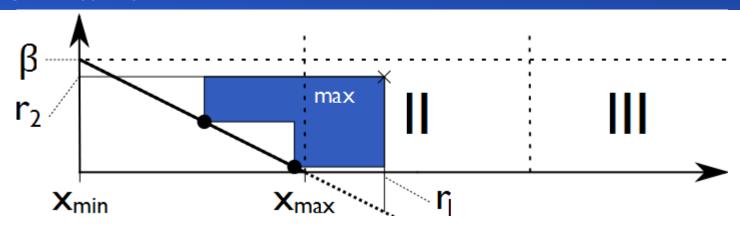






What if rightmost point outside  $[x_{min}, x_{max}]$ ?

 $\Rightarrow$  rightmost point simply at  $x_{max}!$ 



simply take result of case I 
$$x_i^{\mu} = f^{-1}(r_2) + \frac{i}{\mu + 1} \cdot (r_1 - f^{-1}(r_2))$$

and restrict  $x_u$  to  $x_{max}$ :

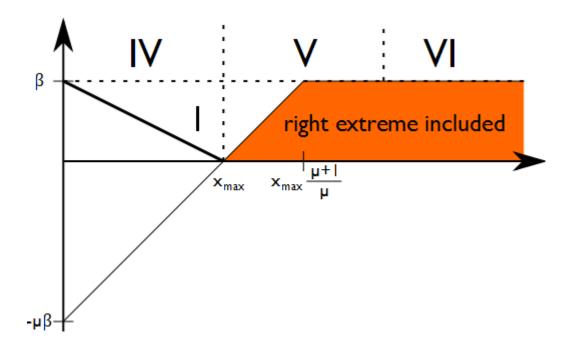
$$x_{\mu}^{\mu} = f^{-1}(r_2) + \frac{\mu}{\mu + 1} \cdot (r_1 - f^{-1}(r_2)) \le x_{\text{max}} \Leftrightarrow \frac{f^{-1}(r_2)}{\mu + 1} + \frac{\mu}{\mu + 1} r_1 \le x_{\text{max}}$$
$$\Leftrightarrow r_1 \le \frac{\mu + 1}{\mu} x_{\text{max}} - \frac{f^{-1}(r_2)}{\mu}$$

### Result for Cases II and III

#### Optimal µ-distribution

$$x_i^{\mu} = f^{-1}(r_2) + \frac{i}{\mu + 1} \left( \min \left\{ r_1, \frac{\mu + 1}{\mu} x_{\max} - \frac{f^{-1}(r_2)}{\mu} \right\} - f^{-1}(r_2) \right)$$

### Right extreme included



## **General Result for All Cases**

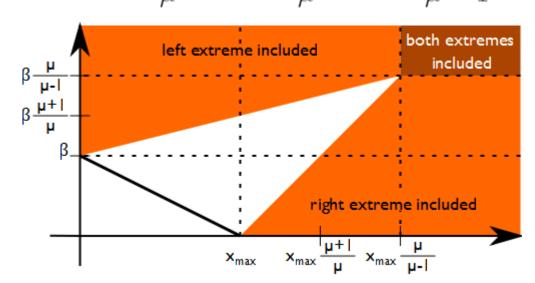
**Theorem 3.** Given  $\mu \in \mathbb{N}_{\geq 2}$ ,  $\alpha \in \mathbb{R}_{<0}$ ,  $\beta \in \mathbb{R}_{>0}$ , and a linear Pareto front  $f(x) = \alpha x + \beta$  within  $[0, x_{\max} = -\frac{\beta}{\alpha}]$ , the unique optimal  $\mu$ -distribution  $(x_0^{\mu}, \dots, x_{\mu}^{\mu})$  for the hypervolume indicator  $I_H$  with reference point  $(r_1, r_2) \in \mathbb{R}_{>0}^2$  can be described by

$$x_i^{\mu} = f^{-1}(F_l) + \frac{i}{\mu + 1} \left( F_r - f^{-1}(F_l) \right)$$

for all  $1 \le i \le \mu$  where

$$F_{l} = \min\{r_{2}, \frac{\mu + 1}{\mu}\beta - \frac{1}{\mu}f(r_{1}), \frac{\mu}{\mu - 1}\beta\} \text{ and}$$

$$F_{r} = \min\{r_{1}, \frac{\mu + 1}{\mu}x_{\max} - \frac{1}{\mu}f^{-1}(r_{2}), \frac{\mu}{\mu - 1}x_{\max}\}.$$



## **General Result for All Cases**

**Theorem 3.** Given  $\mu \in \mathbb{N}_{\geq 2}$ ,  $\alpha \in \mathbb{R}_{<0}$ ,  $\beta \in \mathbb{R}_{>0}$ , and a linear Pareto front  $f(x) = \alpha x + \beta$  within  $[0, x_{\max} = -\frac{\beta}{\alpha}]$ , the unique optimal  $\mu$ -distribution  $(x_0^{\mu}, \dots, x_{\mu}^{\mu})$  for the hypervolume indicator  $I_H$  with reference point  $(r_1, r_2) \in \mathbb{R}_{>0}^2$  can be described by

$$x_i^{\mu} = f^{-1}(F_l) + \frac{i}{\mu + 1} \left( F_r - f^{-1}(F_l) \right)$$

*for all*  $1 \le i \le \mu$  *where* 

$$F_{l} = \min\{r_{2}, \frac{\mu + 1}{\mu}\beta - \frac{1}{\mu}f(r_{1}), \frac{\mu}{\mu - 1}\beta\} \text{ and}$$

$$F_{r} = \min\{r_{1}, \frac{\mu + 1}{\mu}x_{\max} - \frac{1}{\mu}f^{-1}(r_{2}), \frac{\mu}{\mu - 1}x_{\max}\}.$$

β μ left extreme included both extremes included

Further (more general) result [submitted to TCS]:

If extremes can be included in optimal  $\mu$ -distributions the reference point to ensure this goes to the nadir point when  $\mu$  goes to infinity

# **Open Questions...**

- ...to be discussed here at Dagstuhl (or later)
  - optimal µ-distributions for other front shapes
    - fronts forZDF, DTLZ, WFG test problems quite simple, but...
  - more results for >2 objectives
    - difficult since no recurrence relations known
  - optimal µ-distributions for other indicators
    - in particular some that are refinements ("binary indicators")

## **Conclusions**

## Optimal µ-distributions for the hypervolume indicator

- New existence results
  - difference maximization/minimization
  - sufficient but not necessary criterion: lower semi-continuity
  - example of no existence
- 2 An exact and exhaustive result for linear bi-objective fronts
  - exact description of unique optimal μ-distributions for linear case
  - for all reasonable reference points and all  $\mu > 1$

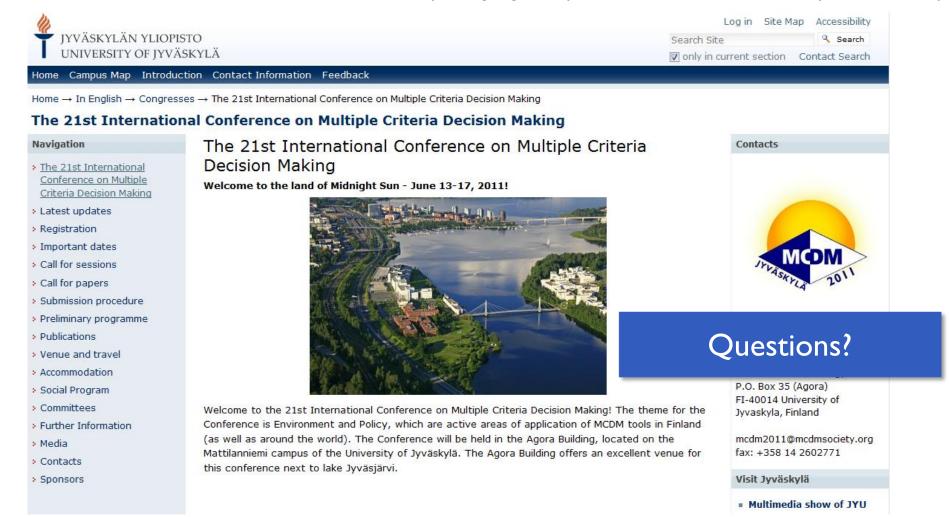
Several open questions that can be discussed this week: uniqueness, other front types, other indicators, ... and their implications for performance assessment

### **Announcement**

### EMO session @ MCDM'2011 in Jyväskylä, Finland

organizers: Dimo Brockhoff and Kalyanmoy Deb

tentative deadlines: Nov. 15, 2010 (full papers) & Jan. 31, 2011 (abstracts)



## References

- [Auger et al. @ FOGA'09] A. Auger, J. Bader, D. Brockhoff, and E. Zitzler. Theory of the Hypervolume Indicator: Optimal µ-Distributions and the Choice of the Reference Point. In Foundations of Genetic Algorithms (FOGA 2009), pages 87–102, New York, NY, USA, 2009. ACM
- [Beume et al. @ EMO'09] N. Beume, B. Naujoks, M. Preuss, G. Rudolph, and T. Wagner. Effects of I-Greedy S-Metric-Selection on Innumerably Large Pareto Fronts. In M. Ehrgott et al., editors, Conference on Evolutionary Multi-Criterion Optimization (EMO 2009), volume 5467 of LNCS, pages 21–35. Springer, 2009
- [Bringmann and Friedrich @ GECCO'10] K. Bringmann and T. Friedrich. The Maximum Hypervolume Set Yields Near-optimal Approximation. In J. Branke et al., editors, Genetic and Evolutionary Computation Conference (GECCO 2010), pages 511–518. ACM, 2010
- [Brockhoff @ SEAL'10] D. Brockhoff. Optimal µ-Distributions for the Hypervolume Indicator for Problems With Linear Bi-Objective Fronts: Exact and Exhaustive Results. In Simulated Evolution and Learning (SEAL 2010). Springer, 2010. to appear
- [Fleischer @ EMO'03] M. Fleischer. The Measure of Pareto Optima. Applications to Multi-Objective Metaheuristics. In C. M. Fonseca et al., editors, Conference on Evolutionary Multi-Criterion Optimization (EMO 2003), volume 2632 of LNCS, pages 519–533, Faro, Portugal, 2003. Springer
- [Zitzler et al. @ EMO'07] E. Zitzler, D. Brockhoff, and L. Thiele. The Hypervolume Indicator Revisited: On the Design of Pareto-compliant Indicators Via Weighted Integration. In S. Obayashi et al., editors, Conference on Evolutionary Multi-Criterion Optimization (EMO 2007), volume 4403 of LNCS, pages 862–876, Berlin, 2007. Springer