GECCO'2013 Tutorial on Evolutionary Multiobjective Optimization

Dimo Brockhoff

VINRIA

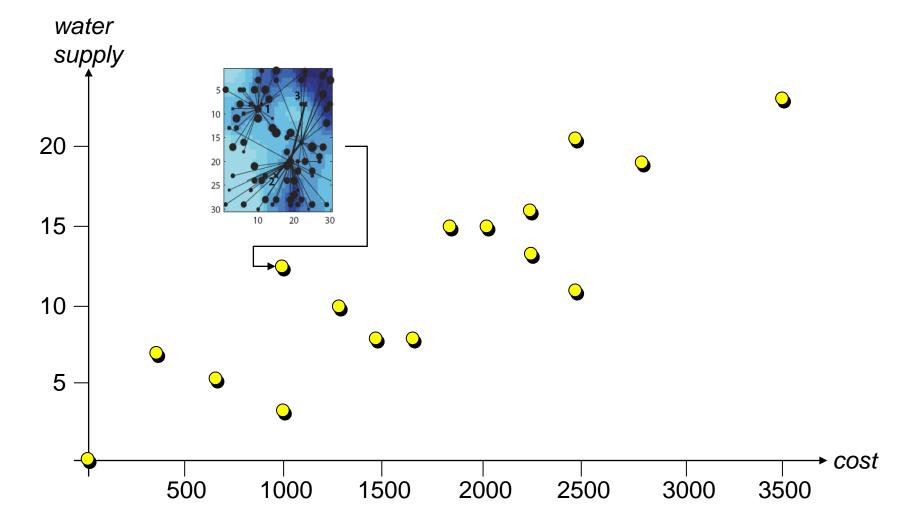
dimo.brockhoff@inria.fr http://researchers.lille.inria.fr/~brockhof/

version July 6, 2013

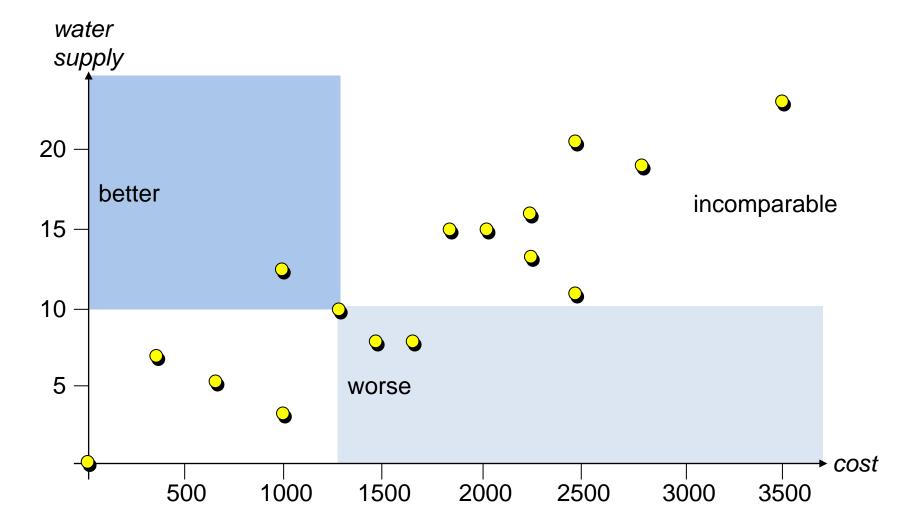
copyright in part by E. Zitzler

an earlier version appeared in GECCO'13 Companion, July 6–10, 2013, Amsterdam, The Netherlands. ACM 978-1-4503-1964-5/13/07.

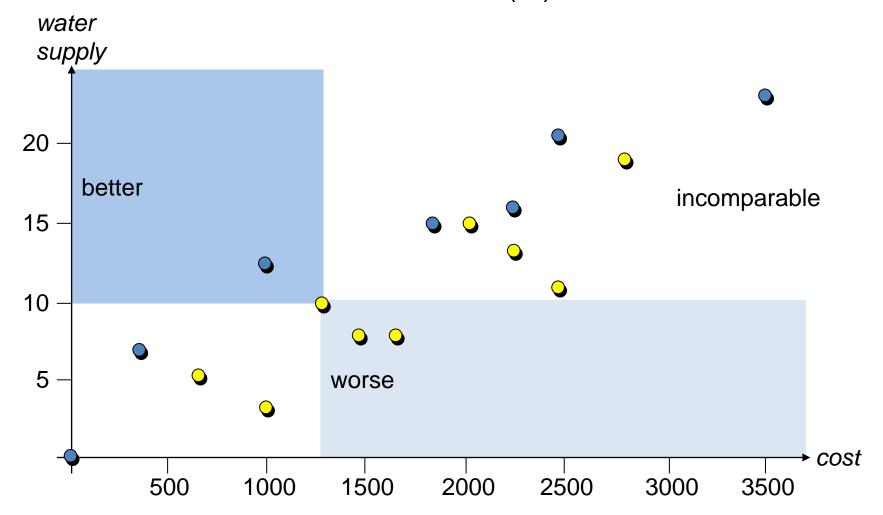
A hypothetical problem: all solutions plotted



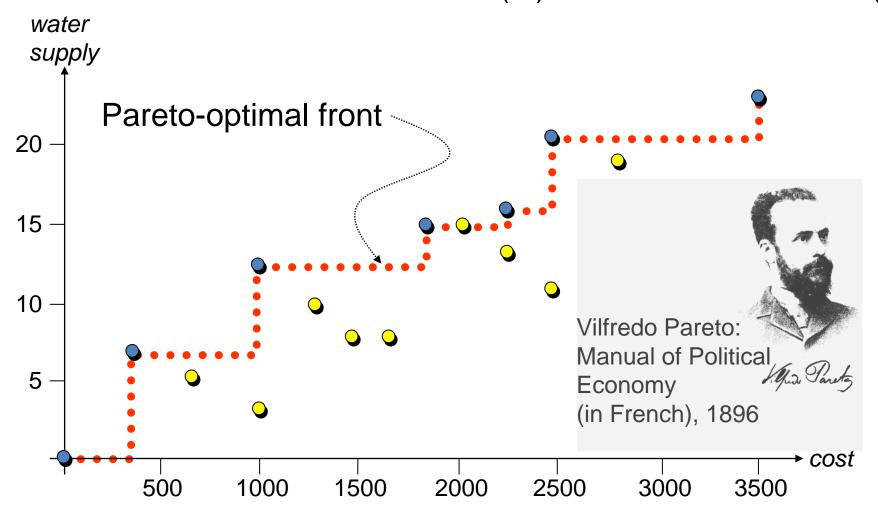
A hypothetical problem: all solutions plotted



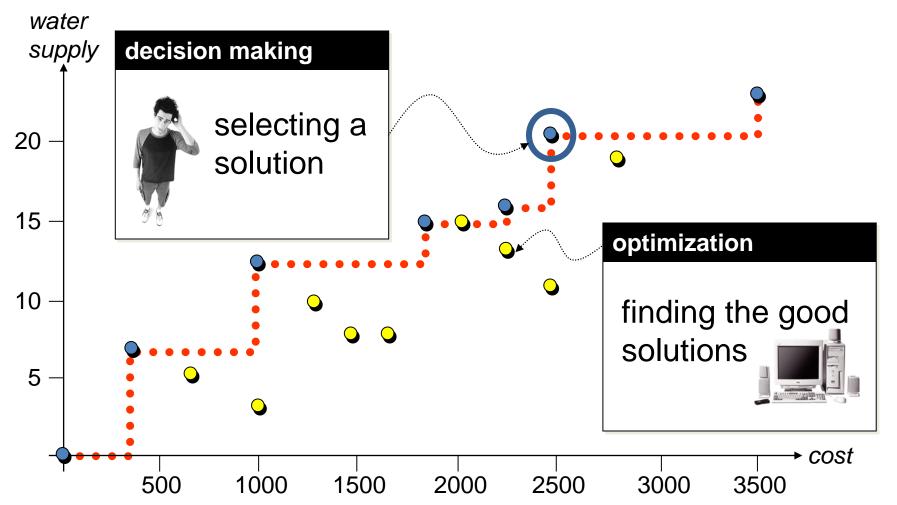
Observations: ① there is no single optimal solution, but
② some solutions () are better than others ()



Observations: ① there is no single optimal solution, but
② some solutions () are better than others ()



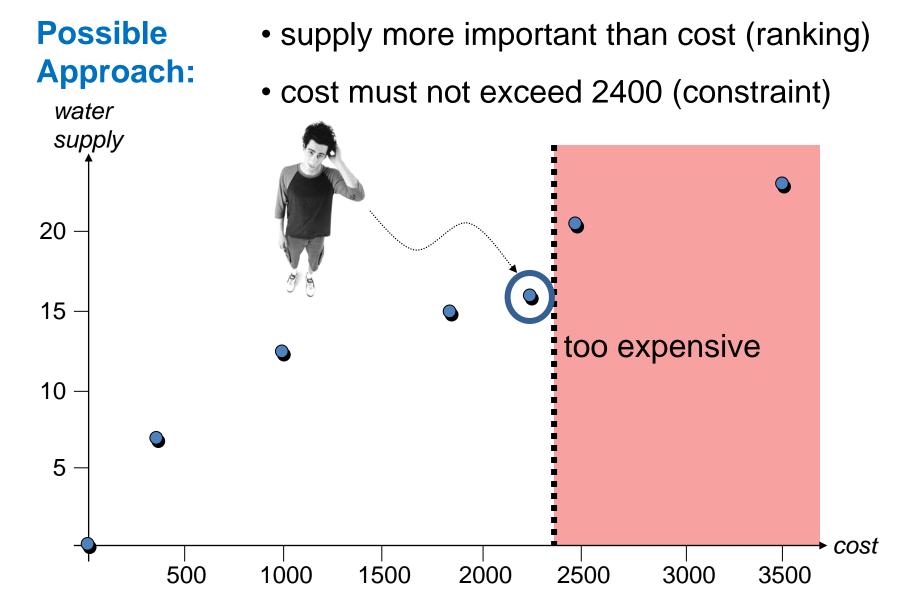
Observations: ① there is no single optimal solution, but
② some solutions () are better than others ()



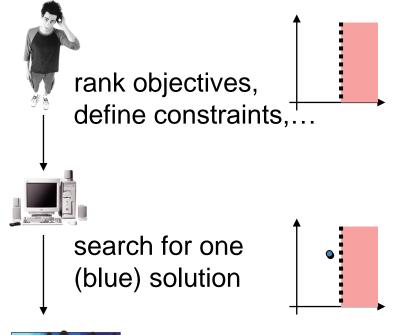
Decision Making: Selecting a Solution

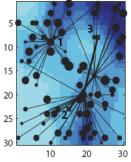


Decision Making: Selecting a Solution

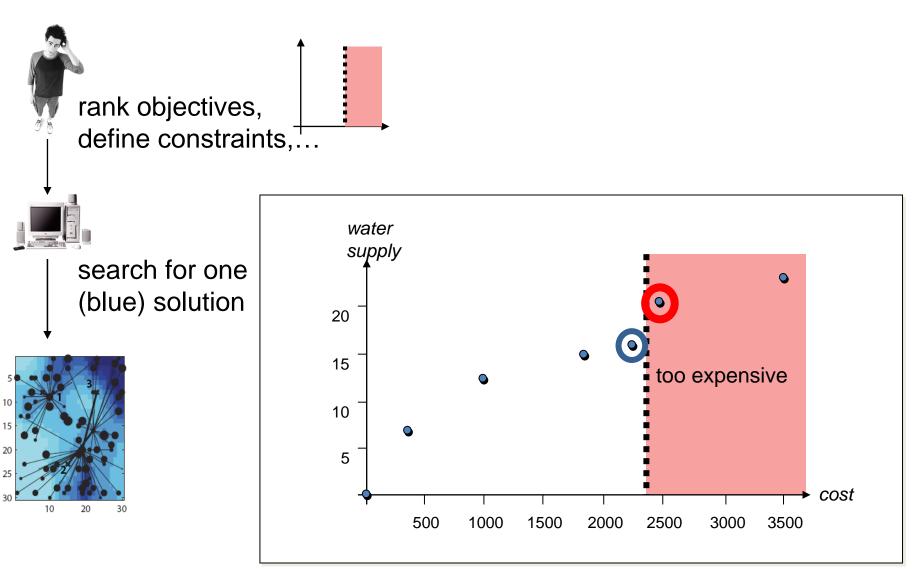


Before Optimization:



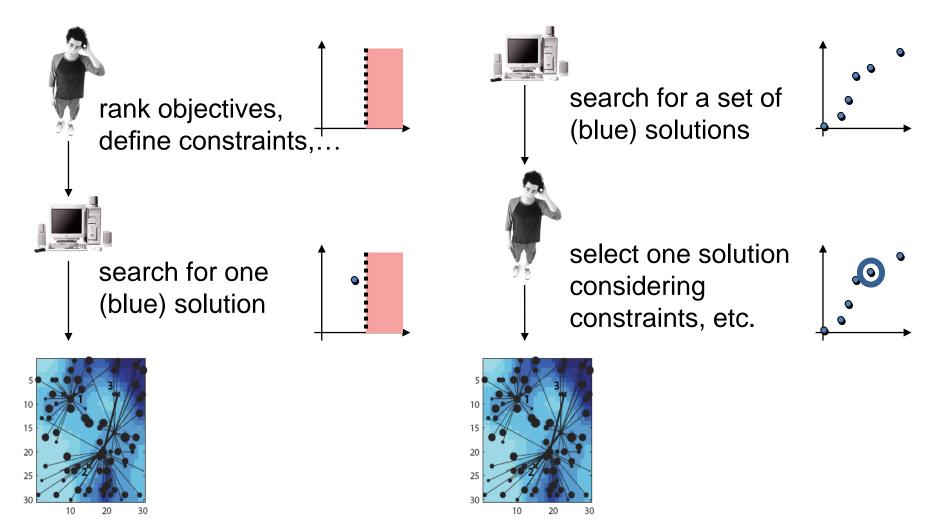


Before Optimization:



Before Optimization:

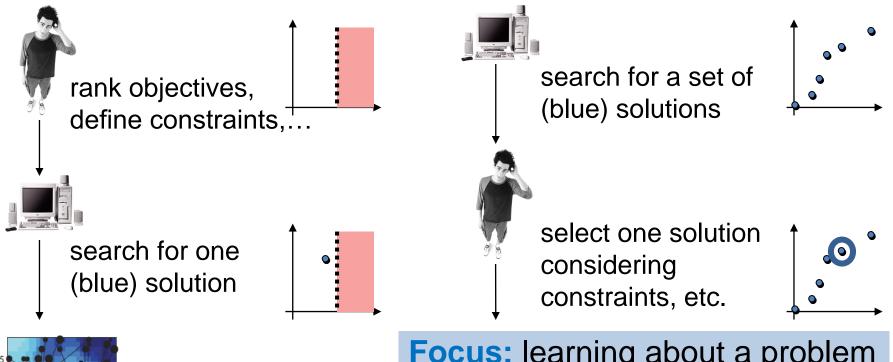
After Optimization:



11

Before Optimization:

After Optimization:



20

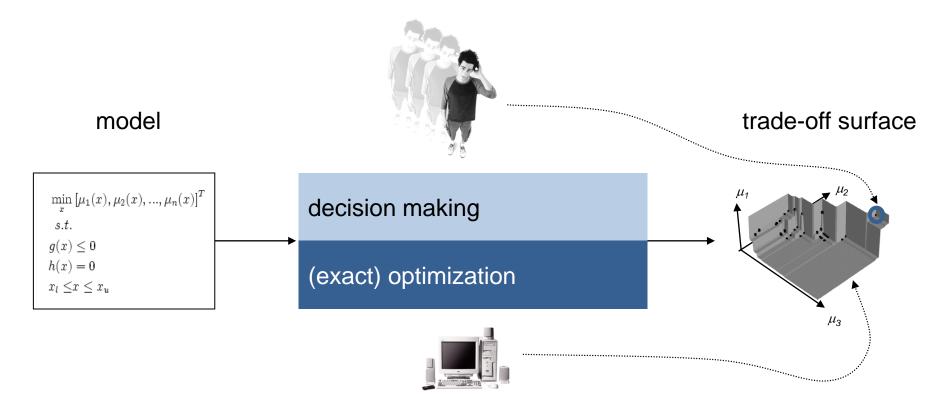
Focus: learning about a problem

- trade-off surface
- interactions among criteria
- structural information

Multiple Criteria Decision Making (MCDM)

Definition: MCDM

MCDM can be defined as the study of methods and procedures by which concerns about multiple conflicting criteria can be formally incorporated into the management planning process

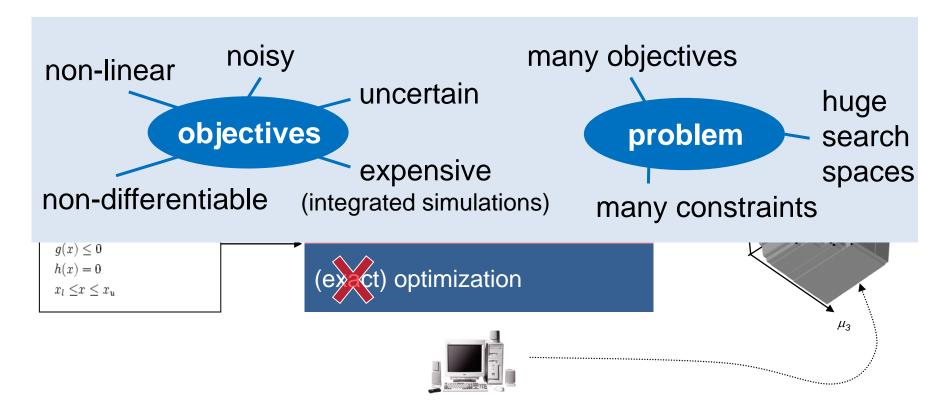


Multiple Criteria Decision Making

Multiple Criteria Decision Making (MCDM)

Definition: MCDM

MCDM can be defined as the study of methods and procedures by which concerns about multiple conflicting criteria can be formally incorporated into the management planning process

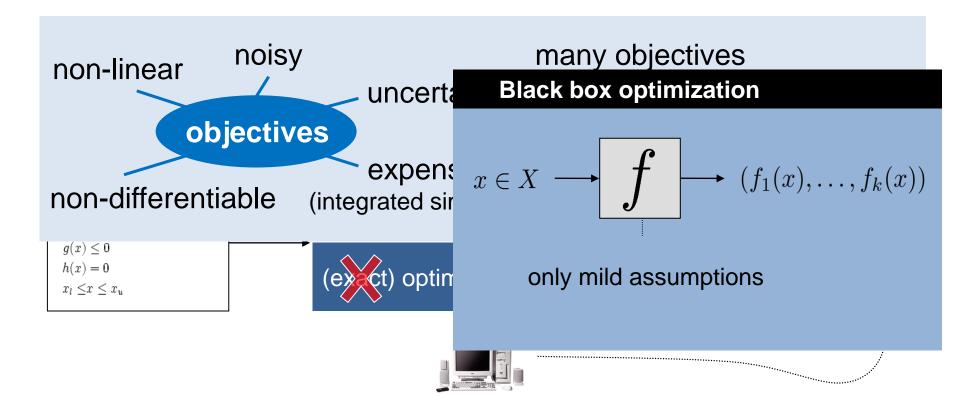


Multiple Criteria Decision Making

Multiple Criteria Decision Making (MCDM)

Definition: MCDM

MCDM can be defined as the study of methods and procedures by which concerns about multiple conflicting criteria can be formally incorporated into the management planning process



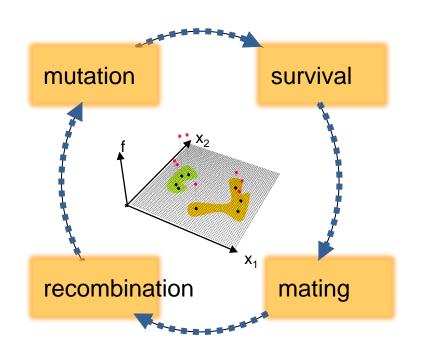
Multiple Criteria Decision Making

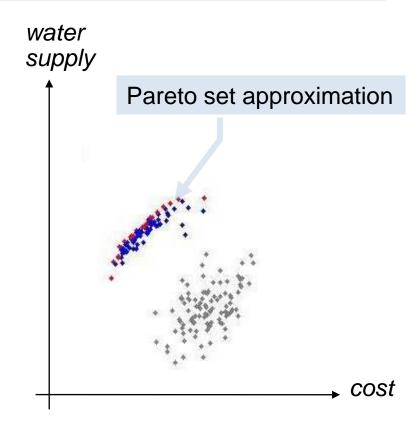
Evolutionary Multiobjective Optimization

Definition: EMO

EMO = evolutionary algorithms / randomized search algorithms

- applied to multiple criteria decision making (in general)
- used to approximate the Pareto-optimal set (mainly)

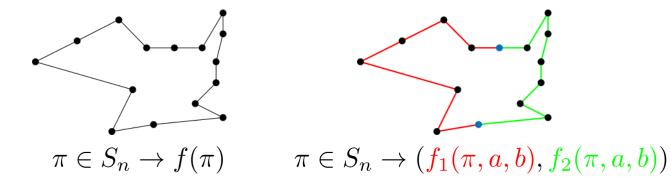




Multiobjectivization

Some problems are easier to solve in a multiobjective scenario

example: TSP [Knowles et al. 2001]



Multiobjectivization

by addition of new "helper objectives"

job-shop scheduling [Jensen 2004], frame structural design [Greiner et al. 2007], theoretical (runtime) analyses [Brockhoff et al. 2009]

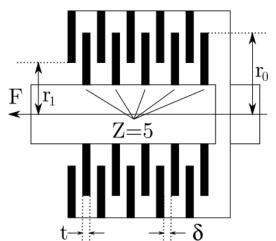
by decomposition of the single objective

TSP [Knowles et al. 2001], minimum spanning trees [Neumann and Wegener 2006], protein structure prediction [Handl et al. 2008a], theoretical (runtime) analyses [Handl et al. 2008b]

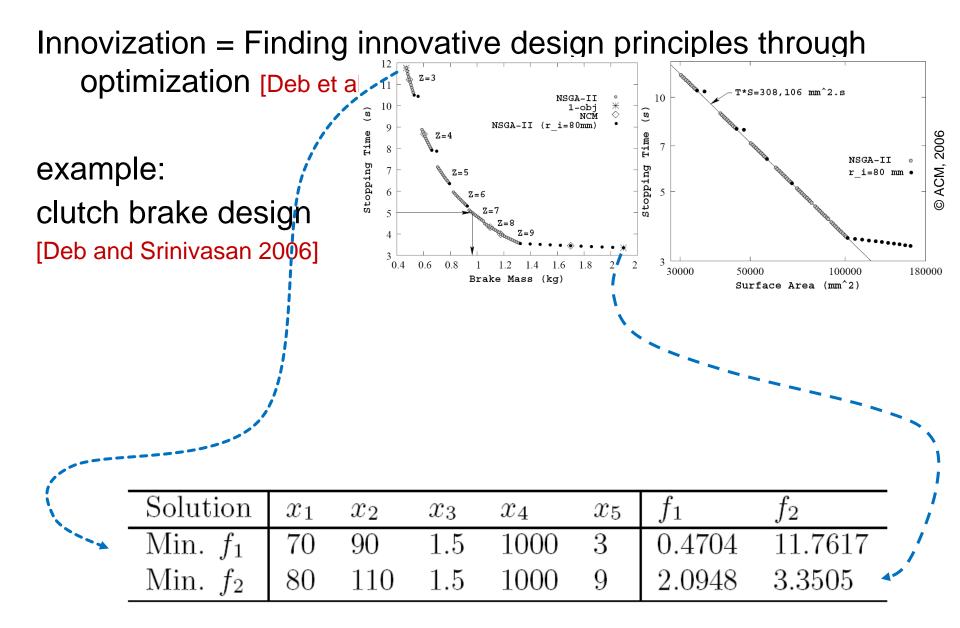
Innovization

Innovization = Finding innovative design principles through optimization [Deb et al. 2006-2013]

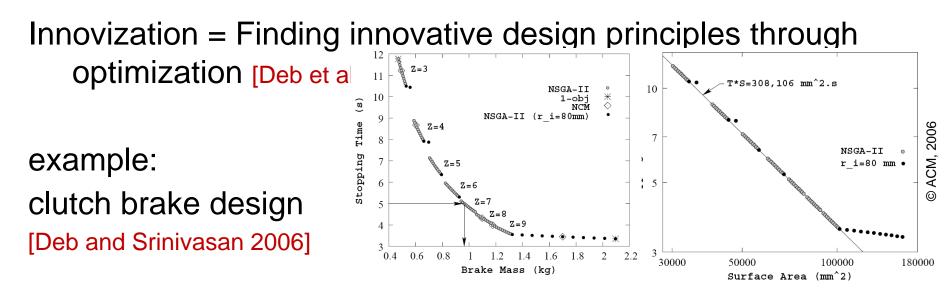
example: clutch brake design [Deb and Srinivasan 2006] min. mass + stopping time



Innovization



Innovization



Innovization [Deb and Srinivasan 2006]

- = using machine learning techniques to find new and innovative design principles among solution sets
- = learning about a multiobjective optimization problem

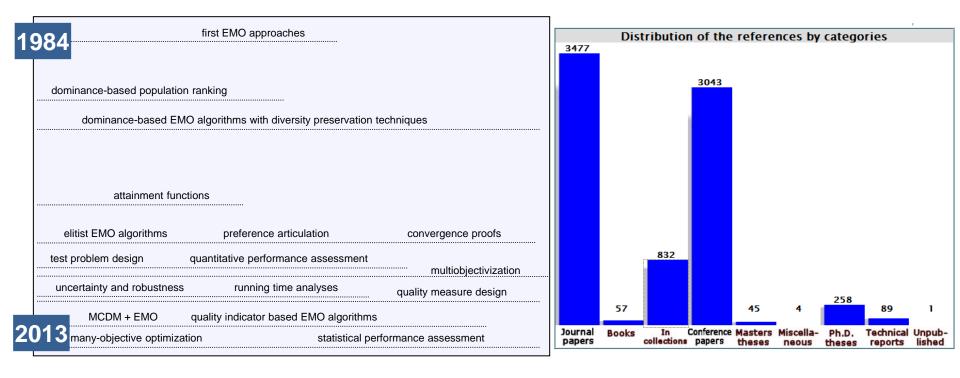
Other examples:

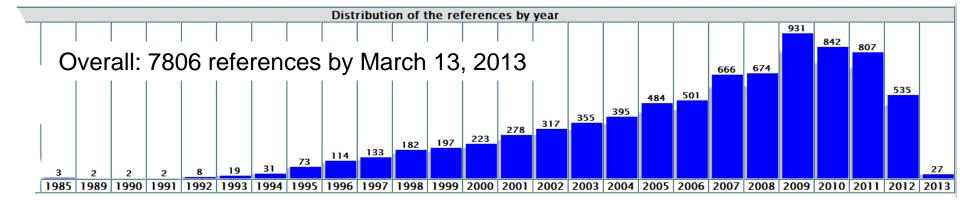
- SOM for supersonic wing design [Obayashi and Sasaki 2003]
- biclustering for processor design and KP [Ulrich et al. 2007]

The History of EMO At A Glance

1984	first EMO approaches
	dominance-based population ranking
1990	dominance-based EMO algorithms with diversity preservation techniques
1995	attainment functions
	elitist EMO algorithms preference articulation convergence proofs
2000	test problem design quantitative performance assessment multiobjectivization
:	uncertainty and robustness running time analyses quality measure design
	MCDM + EMO quality indicator based EMO algorithms
2010	many-objective optimization statistical performance assessment

The History of EMO At A Glance





The EMO Community

The EMO conference series:

Many further activities:

special sessions, special journal issues, workshops, tutorials, ...

The Big Picture

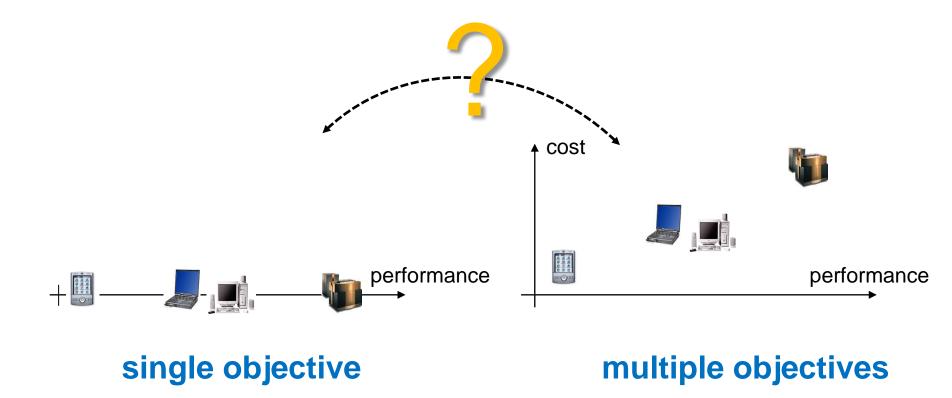
Basic Principles of Multiobjective Optimization

- algorithm design principles and concepts
- performance assessment
- Selected Advanced Concepts
 - indicator-based EMO
 - preference articulation

A Few Examples From Practice

24

What makes evolutionary multiobjective optimization different from single-objective optimization?



General (Multiobjective) Optimization Problem

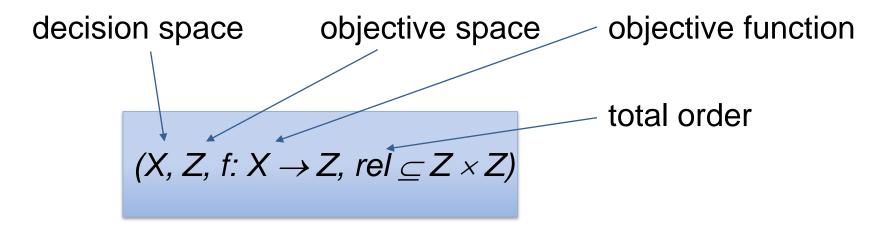
A multiobjective optimization problem: $(X, Z, \mathbf{f}, \mathbf{g}, \leq)$

 $\begin{array}{ll} X & {\rm search\,/\, parameter\,/\, decision\, space} \\ Z = {\mathbb R}^n & {\rm objective\, space} \\ {\bf f} = (f_1, \ldots, f_n) & {\rm vector-valued\, objective\, function\, with} \\ f_i : X \mapsto {\mathbb R} \\ {\bf g} = (g_1, \ldots, g_m) & {\rm vector-valued\, constraint\, function\, with} \\ g_i : X \mapsto {\mathbb R} \\ \leq \subseteq Z \times Z & {\rm binary\, relation\, on\, objective\, space} \end{array}$

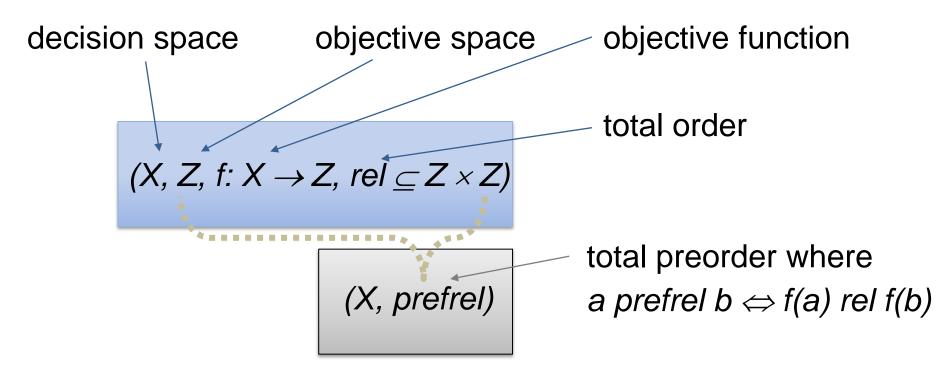
Goal: find decision vector(s) $\mathbf{a} \in X$ such that

- for all $1 \le i \le m : g_i(\mathbf{a}) \le 0$ and
- $\bullet \quad \text{for all } \mathbf{b} \in X : \mathbf{f}(\mathbf{b}) \leq \mathbf{f}(\mathbf{a}) \Rightarrow \mathbf{f}(\mathbf{a}) \leq \mathbf{f}(\mathbf{b})$

A Single-Objective Optimization Problem

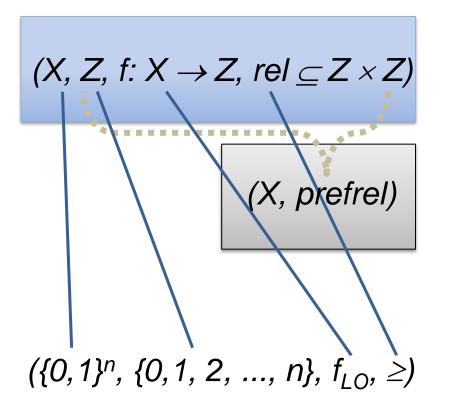


A Single-Objective Optimization Problem



A Single-Objective Optimization Problem

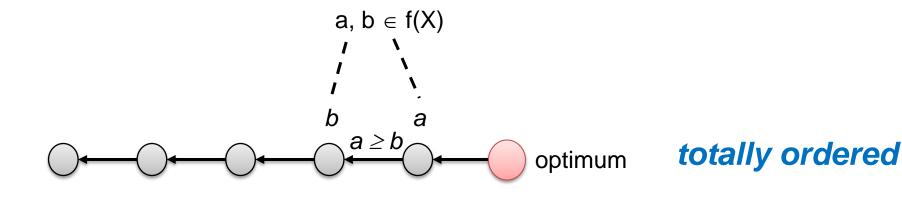
Example: Leading Ones Problem



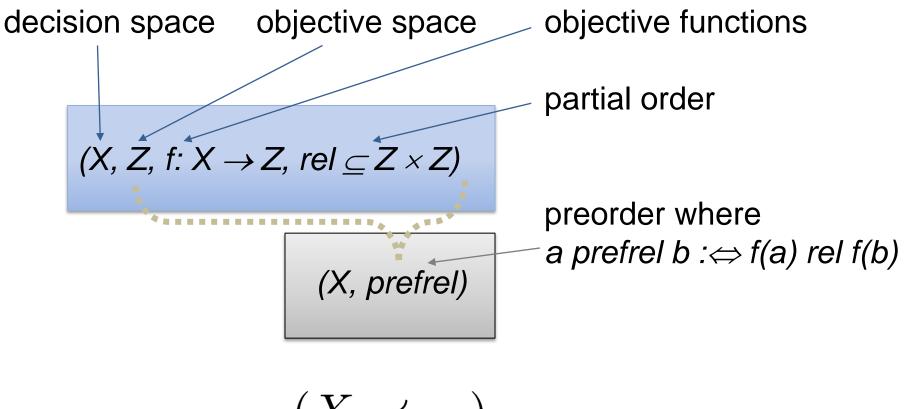
where $f_{LO}(a) = \sum_{i} (\prod_{j \le i} a_j)$

Simple Graphical Representation

Example: \geq (total order)



Preference Relations

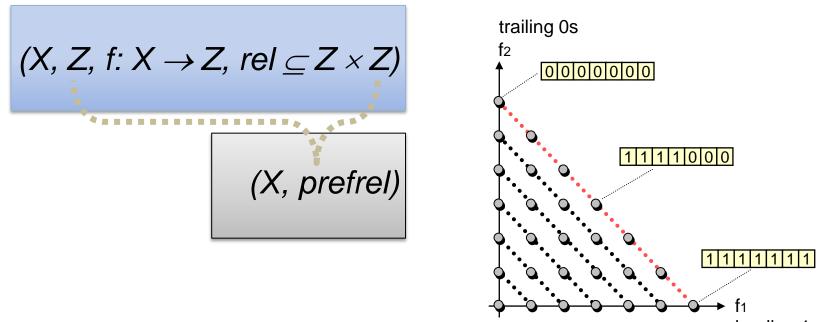


$$(X, \preccurlyeq par) \\\downarrow \\ a \preccurlyeq_{par} b : \Leftrightarrow f(a) \leqslant_{par} f(b)$$

weak Pareto dominance

A Multiobjective Optimization Problem

Example: Leading Ones Trailing Zeros Problem

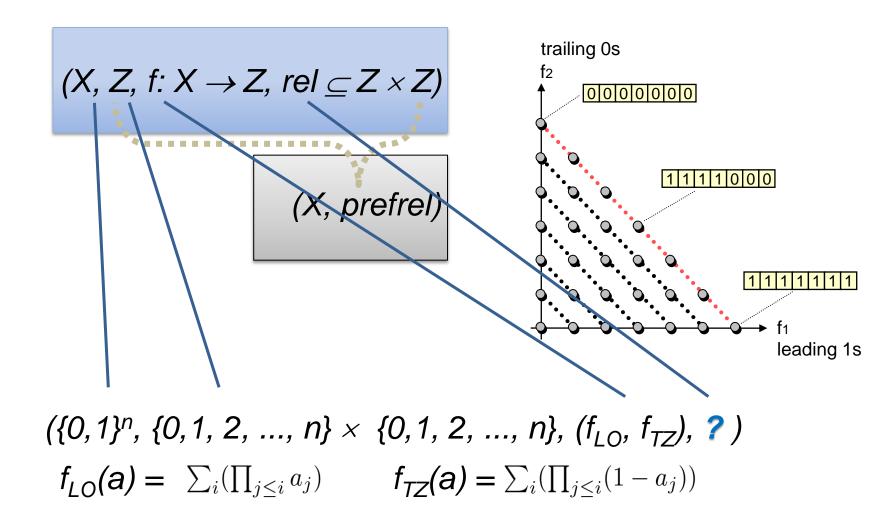


leading 1s

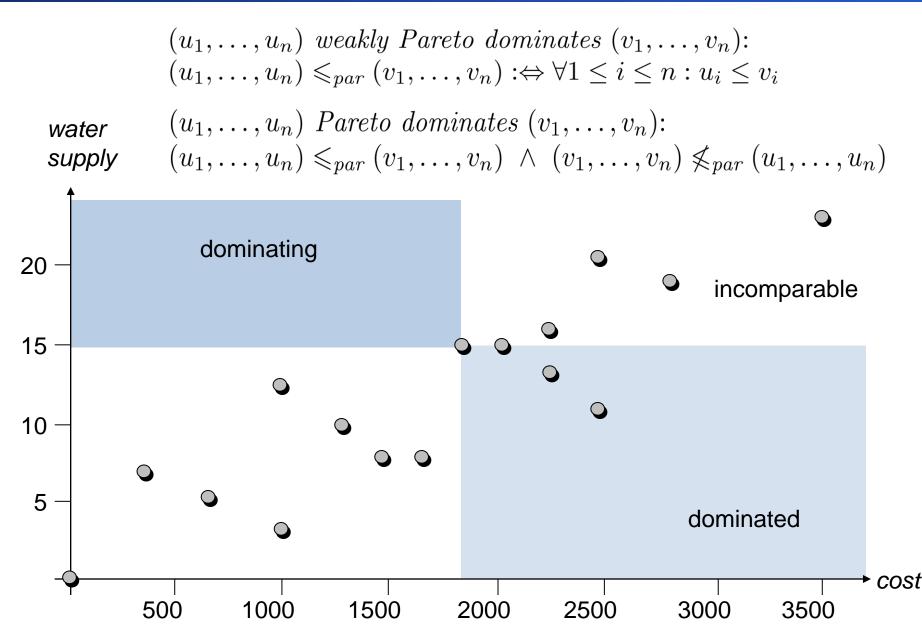
32

A Multiobjective Optimization Problem

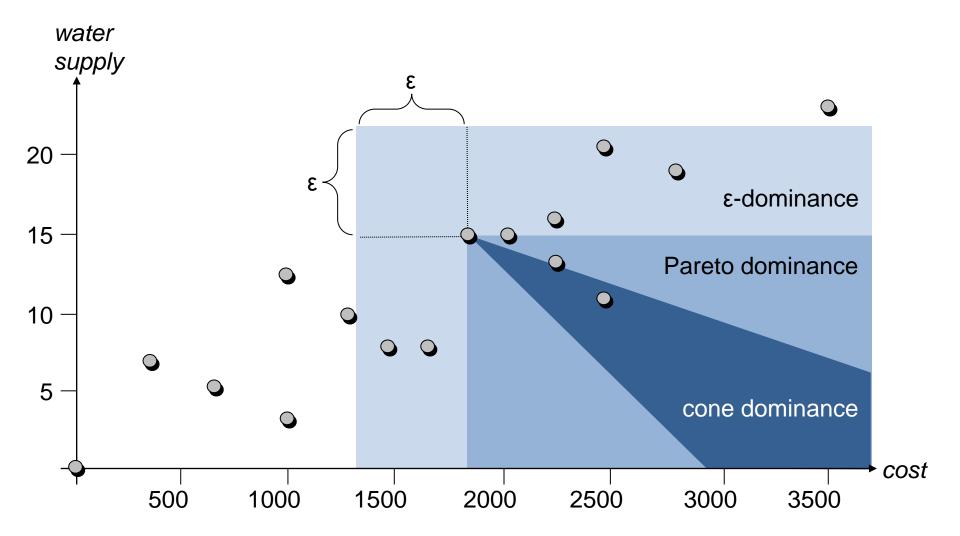
Example: Leading Ones Trailing Zeros Problem



Pareto Dominance

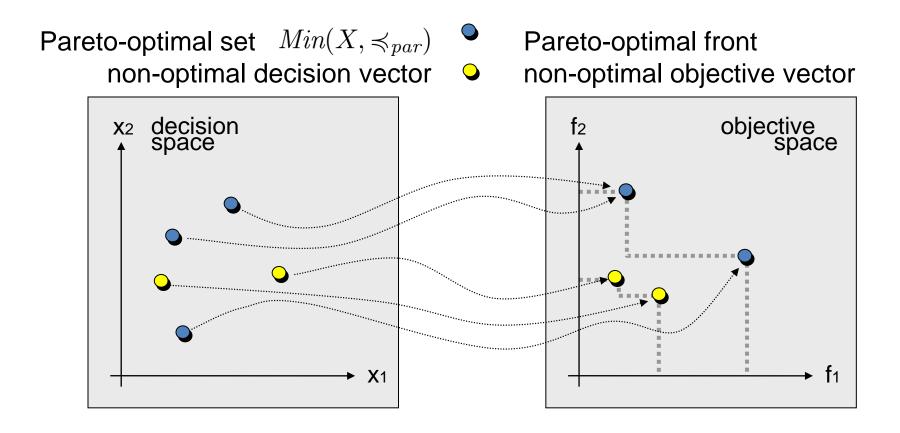


Different Notions of Dominance



The Pareto-optimal Set

The minimal set of a preordered set (Y, \leq) is defined as $Min(Y, \leq) := \{a \in Y \mid \forall b \in Y : b \leq a \Rightarrow a \leq b\}$



Visualizing Preference Relations

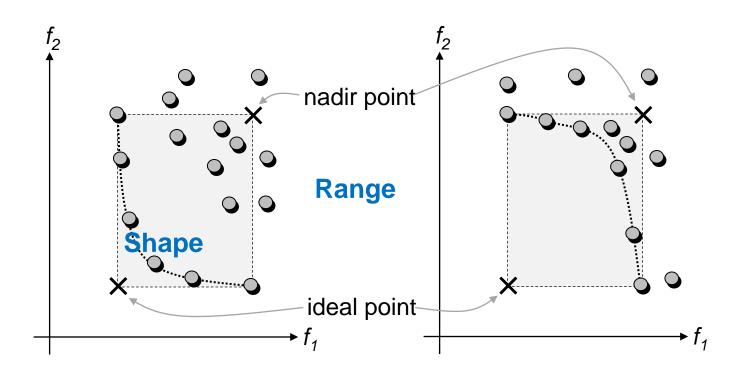


Remark: Properties of the Pareto Set

Computational complexity:

multiobjective variants can become NP- and #P-complete

Size: Pareto set can be exponential in the input length (e.g. shortest path [Serafini 1986], MSP [Camerini et al. 1984])



Approaches To Multiobjective Optimization

A multiobjective problem is as such underspecified ...because not any Pareto-optimum is equally suited!

Additional preferences are needed to tackle the problem:

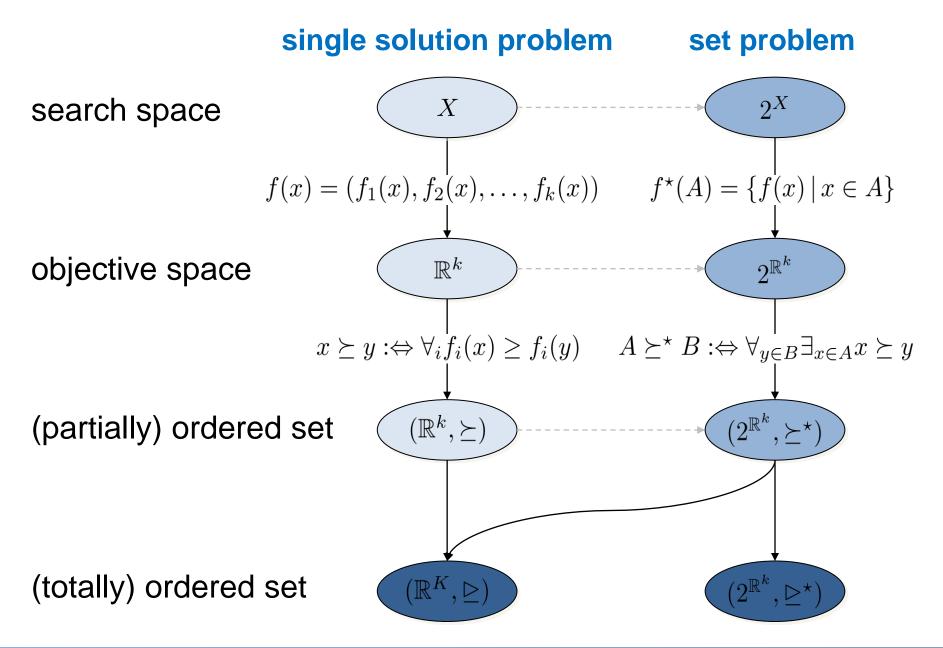
Solution-Oriented Problem Transformation: Induce a total order on the decision space, e.g., by aggregation.

Set-Oriented Problem Transformation:

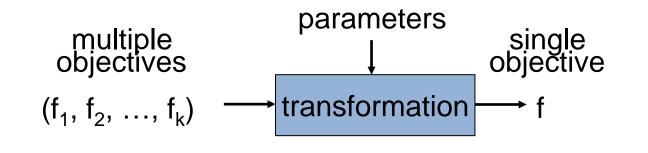
First transform problem into a set problem and then define an objective function on sets.

Preferences are needed in any case, but the latter are weaker!

Problem Transformations and Set Problems

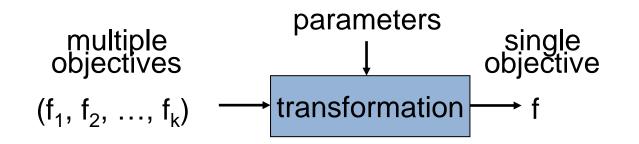


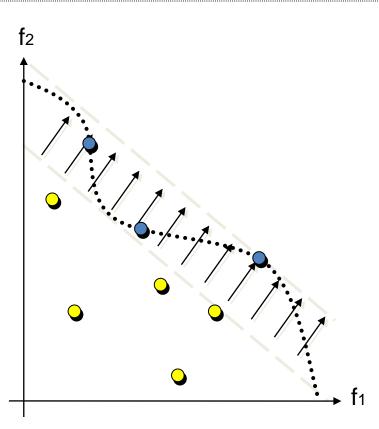
Solution-Oriented Problem Transformations



A *scalarizing function s* is a function $s : Z \mapsto \mathbb{R}$ that maps each objective vector $(u_1, \ldots, u_n) \in Z$ to a real value $s(u_1, \ldots, u_n) \in \mathbb{R}$.

Aggregation-Based Approaches





Example: weighting approach

$$(w_1, w_2, \dots, w_k)$$

$$\downarrow$$

$$y = w_1y_1 + \dots + w_ky_k$$

Other example: Tchebycheff y= max $|w_i(u_i - z_i)|$

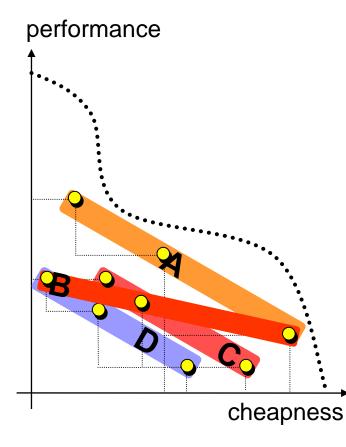
Set-Oriented Problem Transformations

For a multiobjective optimization problem $(X, Z, \mathbf{f}, \mathbf{g}, \leq)$, the associated *set problem* is given by $(\Psi, \Omega, F, \mathbf{G}, \leq)$ where

- $\Psi = 2^X$ is the space of decision vector sets, i.e., the powerset of X,
- $\Omega = 2^Z$ is the space of objective vector sets, i.e., the powerset of Z,
- F is the extension of \mathbf{f} to sets, i.e., $F(A) := {\mathbf{f}(\mathbf{a}) : \mathbf{a} \in A}$ for $A \in \Psi$,
- $\mathbf{G} = (G_1, \dots, G_m)$ is the extension of \mathbf{g} to sets, i.e., $G_i(A) := \max \{g_i(\mathbf{a}) : \mathbf{a} \in A\}$ for $1 \le i \le m$ and $A \in \Psi$,
- \leq extends \leq to sets where $A \leq B : \Leftrightarrow \forall \mathbf{b} \in B \exists \mathbf{a} \in A : \mathbf{a} \leq \mathbf{b}.$

Pareto Set Approximations

Pareto set approximation (algorithm outcome) = set of (usually incomparable) solutions



A weakly dominates B

= not worse in all objectives and sets not equal

C dominates D

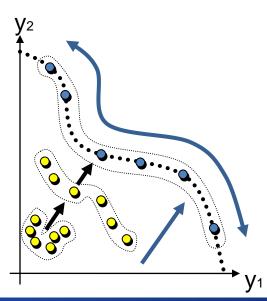
= better in at least one objective

A strictly dominates C = better in all objectives

B is incomparable to C = neither set weakly better

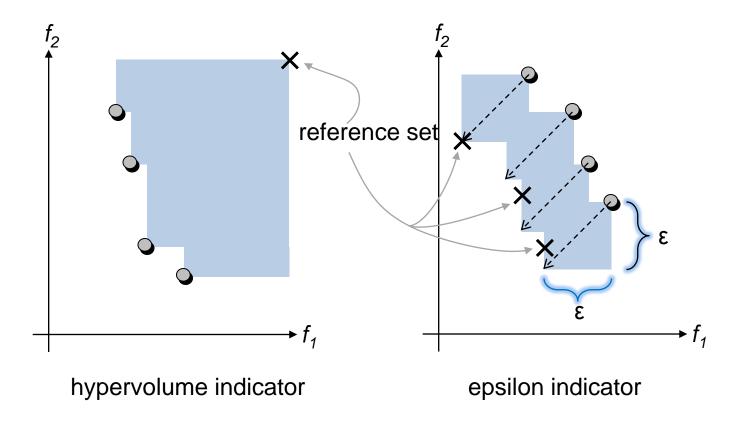
What Is the Optimization Goal (Total Order)?

- Find all Pareto-optimal solutions?
 - Impossible in continuous search spaces
 - How should the decision maker handle 10000 solutions?
- Find a representative subset of the Pareto set?
 - Many problems are NP-hard
 - What does representative actually mean?
- Find a good approximation of the Pareto set?
 - What is a good approximation?
 - How to formalize intuitive understanding:
 - Close to the Pareto front
 - e well distributed



Quality of Pareto Set Approximations

A (unary) *quality indicator I* is a function $I : \Psi \mapsto \mathbb{R}$ that assigns a Pareto set approximation a real value.



General Remarks on Problem

Idea:

Transform a preorder into a total preorder

Methods:

- Define single-objective function based on the multiple criteria (shown on the previous slides)
- Define any total preorder using a relation (not discussed before)

Question:

Is any total preorder ok resp. are there any requirements concerning the resulting preference relation?

 \Rightarrow Underlying dominance relation *rel* should be reflected

Refinements and Weak Refinements

ref

 $\bullet \preccurlyeq$ refines a preference relation \preccurlyeq iff

$$A \preccurlyeq B \land B \preccurlyeq A \Rightarrow A \preccurlyeq B \land B \preccurlyeq A \qquad (better \Rightarrow better)$$

\Rightarrow fulfills requirement

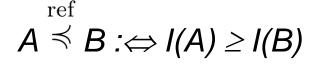
 $\mathbf{2} \stackrel{\mathrm{ref}}{\prec}$ weakly refines a preference relation \preccurlyeq iff

$$A \preccurlyeq B \land B \preccurlyeq A \Rightarrow A \stackrel{\text{ref}}{\preccurlyeq} B$$
 (better \Rightarrow weakly better)

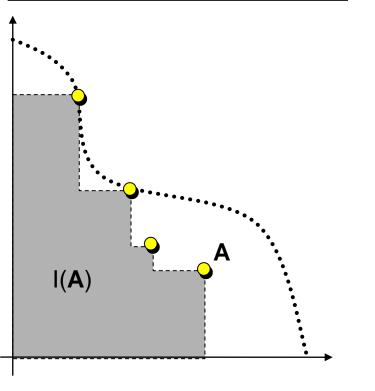
 \Rightarrow does not fulfill requirement, but $\stackrel{\mathrm{ref}}{\preccurlyeq}$ does not contradict \preccurlyeq

...sought are total refinements...

Example: Refinements Using Indicators

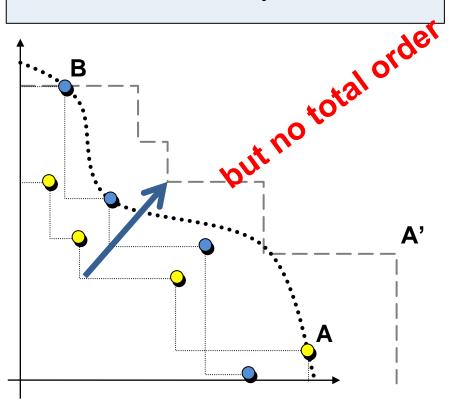


I(A) = volume of the weakly dominated area in objective space



 $A \stackrel{\mathrm{ref}}{\preccurlyeq} B : \Leftrightarrow I(A,B) \leq I(B,A)$

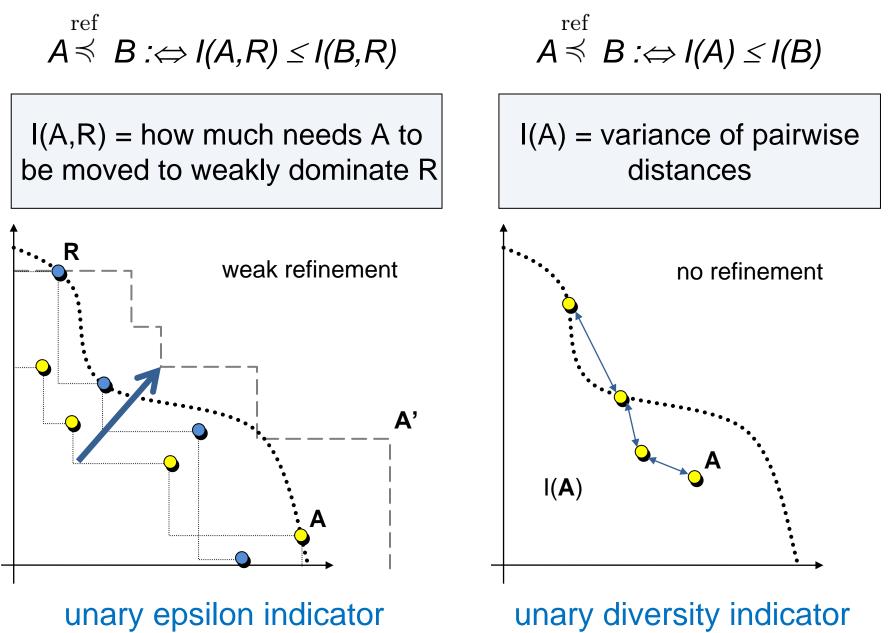
I(A,B) = how much needs A to be moved to weakly dominate B



binary epsilon indicator

unary hypervolume indicator

Example: Weak Refinement / No Refinement



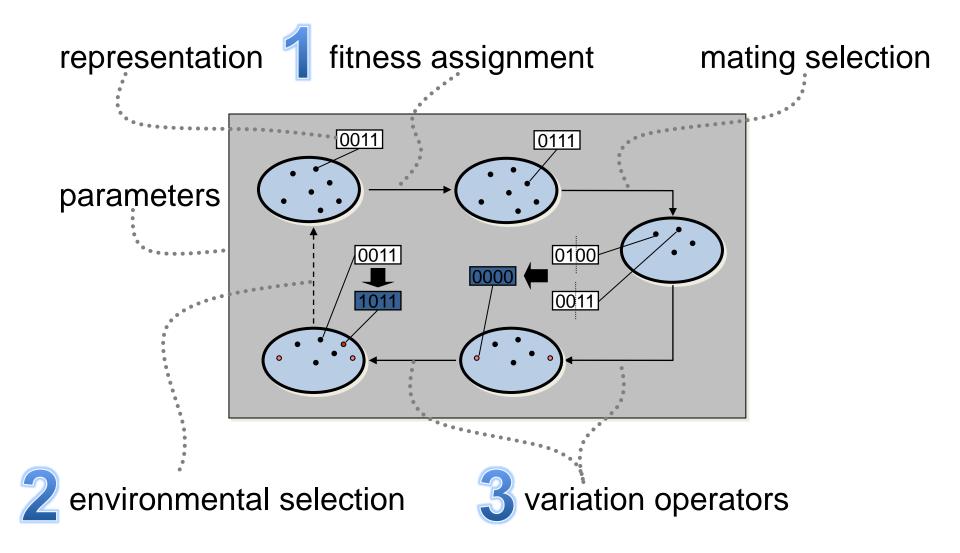
The Big Picture

Basic Principles of Multiobjective Optimization

- algorithm design principles and concepts
- performance assessment
- Selected Advanced Concepts
 - indicator-based EMO
 - preference articulation

A Few Examples From Practice

Algorithm Design: Particular Aspects



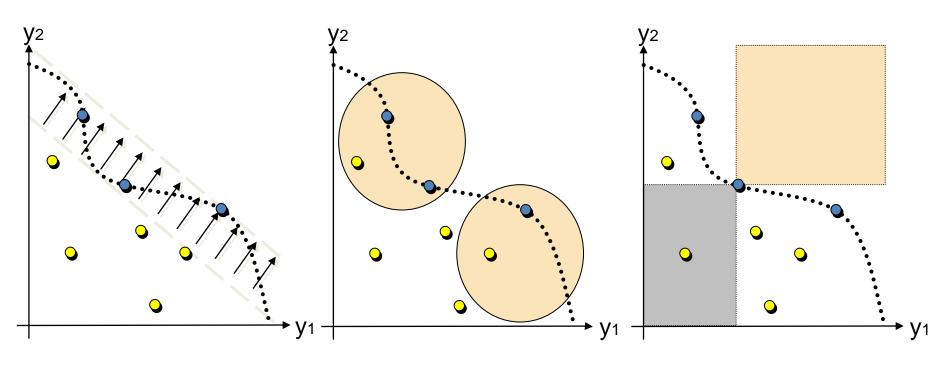
Fitness Assignment: Principal Approaches

aggregation-based

weighted sum

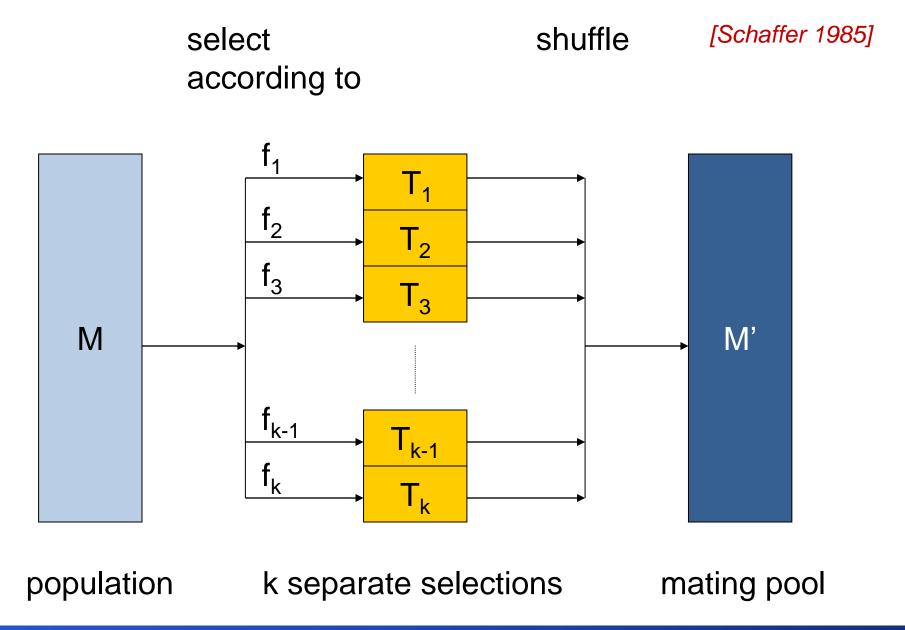
criterion-based VEGA

dominance-based SPEA2



scaling-dependent scaling-independent

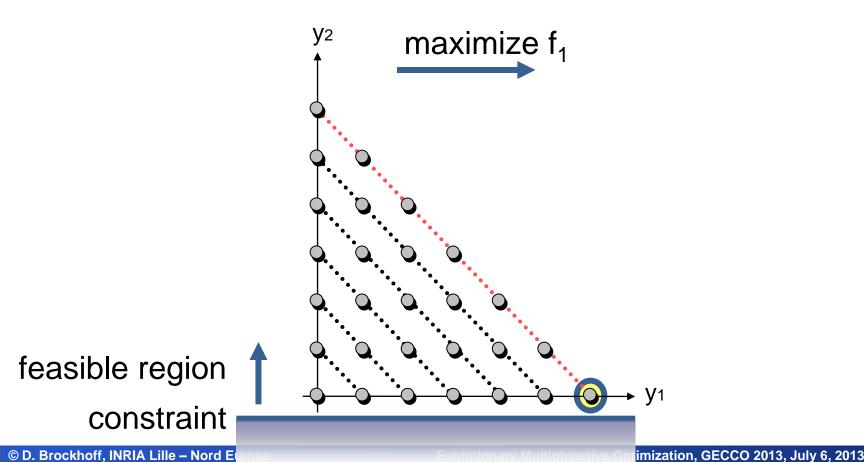
Criterion-Based Selection: VEGA



Aggregation-Based: Multistart Constraint Method

Underlying concept:

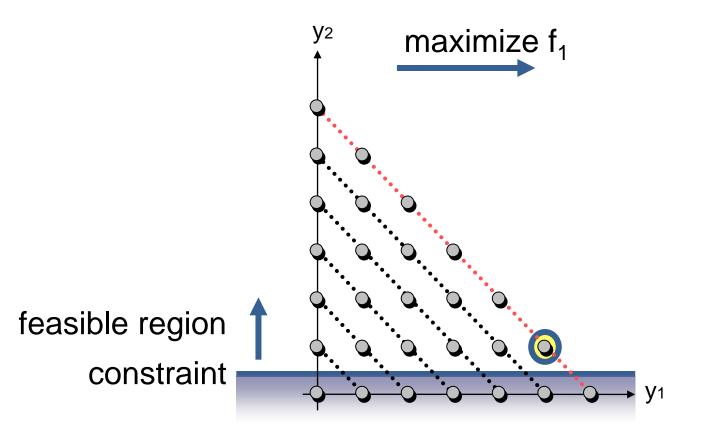
- Convert all objectives except of one into constraints
- Adaptively vary constraints



Aggregation-Based: Multistart Constraint Method

Underlying concept:

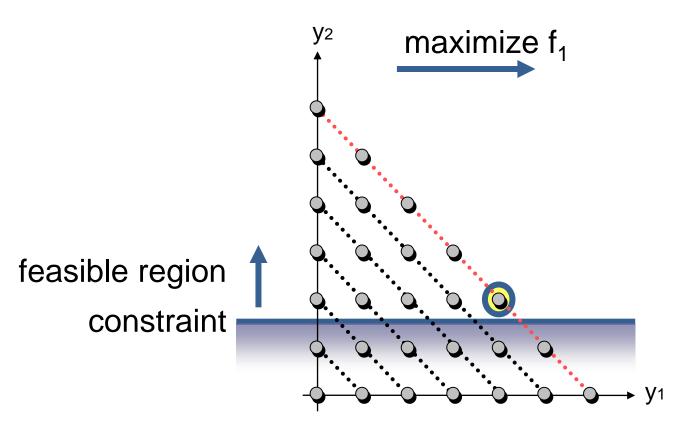
- Convert all objectives except of one into constraints
- Adaptively vary constraints



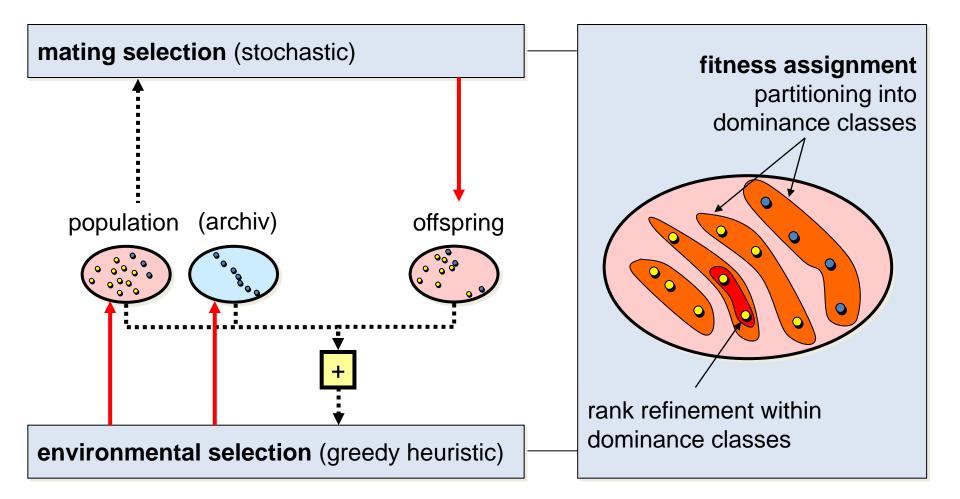
Aggregation-Based: Multistart Constraint Method

Underlying concept:

- Convert all objectives except of one into constraints
- Adaptively vary constraints



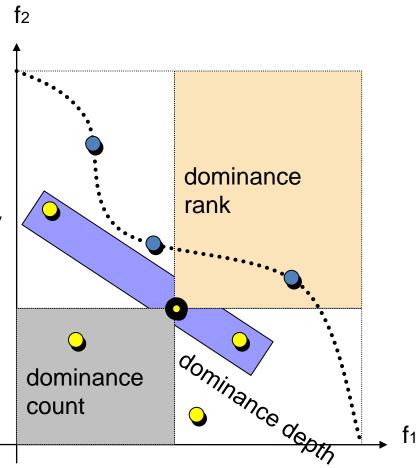
General Scheme of Dominance-Based EMO



Note: good in terms of set quality = good in terms of search?

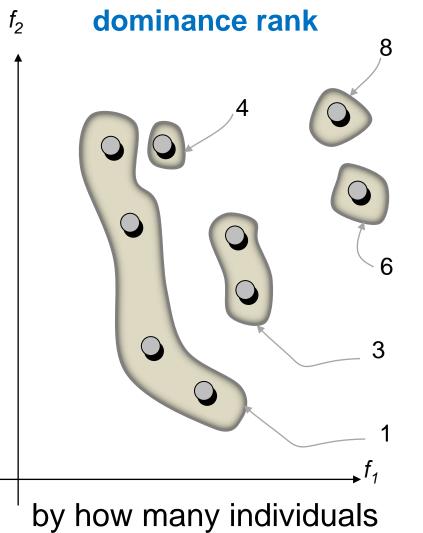
Ranking of the Population Using Dominance

- ... goes back to a proposal by David Goldberg in 1989.
- ... is based on pairwise comparisons of the individuals only.
- dominance rank: by how many individuals is an individual dominated? MOGA, NPGA
- dominance count: how many individuals does an individual dominate?
 SPEA, SPEA2
- dominance depth: at which front is an individual located?

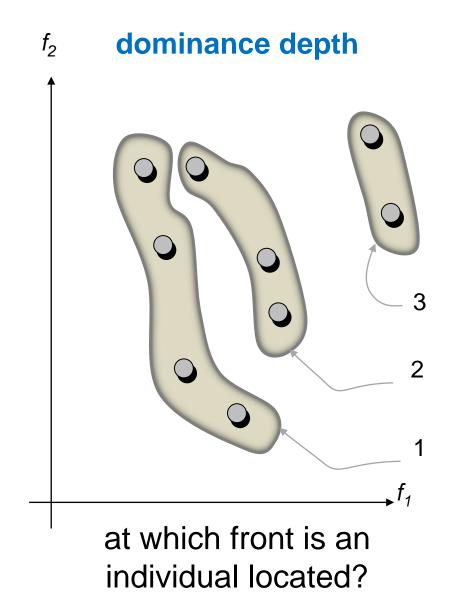


NSGA, NSGA-II

Illustration of Dominance-based Partitioning



is an individual dominated?



Refinement of Dominance Rankings

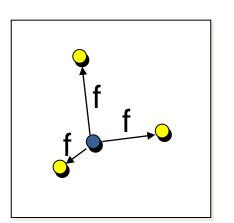
Goal: rank incomparable solutions within a dominance class

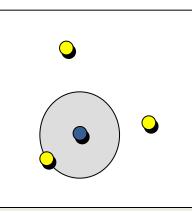
• Density information (good for search, but usually no refinements)

Kernel method

density = function of the distances

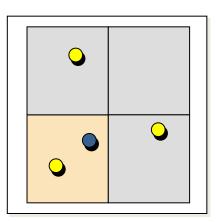
density = function of distance to k-th neighbor





Histogram method

density = number of elements within box

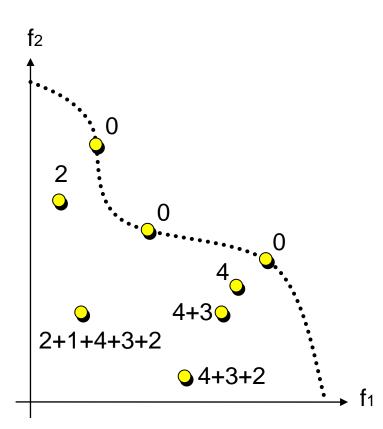


Quality indicator (good for set quality): soon...

Example: SPEA2 Dominance Ranking

Basic idea: the less dominated, the fitter...

Principle: first assign each solution a weight (strength), then add up weights of dominating solutions



- S (strength) =
 #dominated solutions •
- R (raw fitness) =

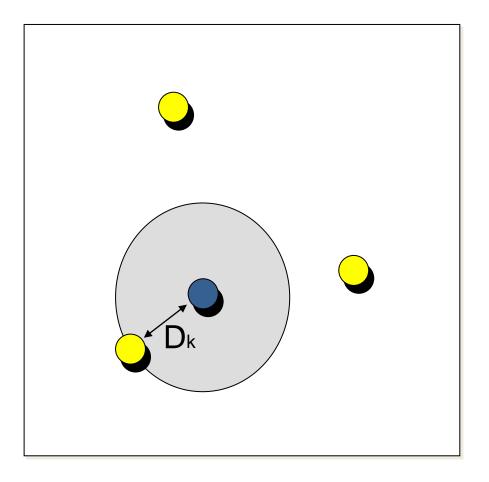
 \sum strengths of dominators \bigcirc

Example: SPEA2 Diversity Preservation

Density Estimation

k-th nearest neighbor method:

- Fitness = R + $\frac{1}{(2 + D_k)}$
- D_k = distance to the k-th nearest individual
- Usually used: k = 2



Example: NSGA-II Diversity Preservation

Density Estimation

crowding distance:

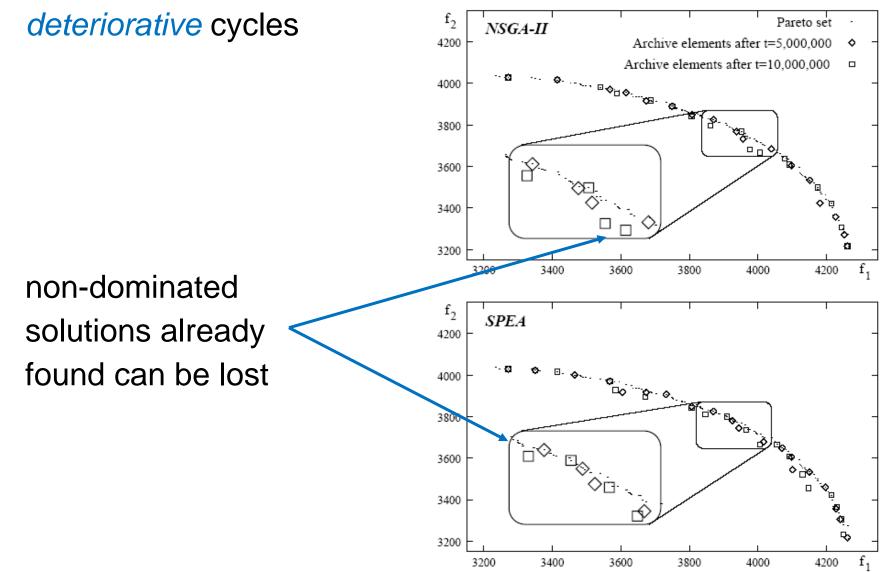
- sort solutions wrt. each objective
- crowding distance to neighbors:

$$d(i) - \sum_{\text{obj. }m} |f_m(i-1) - f_m(i+1)|$$



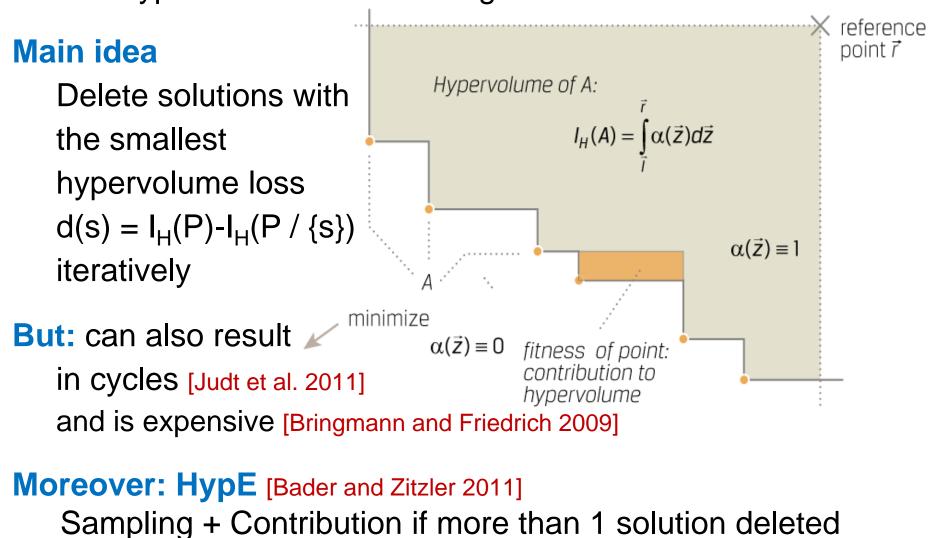
SPEA2 and NSGA-II: Cycles in Optimization

Selection in SPEA2 and NSGA-II can result in



Hypervolume-Based Selection

Latest Approach (SMS-EMOA, MO-CMA-ES, HypE, ...) use hypervolume indicator to guide the search: refinement!



© D. Brockhoff, INRIA Lille – Nord Europe

Evolutionary Multiobjective Optimization, GECCO 2013, July 6, 2013

Approximation-Guided EMO

AGE: Approximation-Guided Evolutionary Multi-Objective Optimization [Bringmann et al. 2011]

Main Idea:

 quality of population: how well does it approximate the Pareto front?

Definition 1. For finite sets $S, T \subset \mathbb{R}^d$, the additive approximation of T with respect to S is defined as

 $\alpha(S,T) := \max_{s \in S} \min_{t \in T} \max_{1 \le i \le d} (s_i - t_i).$

- aim since Pareto front not known: min. approximation α(A,P) of the population P wrt. an external archive A
- not locally sensitive; instead delete points with lexicographically worst approximations

$$S_{\alpha}(A, P \setminus \{p\}) = (\alpha_1(p), \dots, \alpha_{|A|}(p))$$

with
$$\alpha_i(p) = \{\alpha(\{a_i\}, P \setminus \{p\}) \mid a_i \in A\}$$

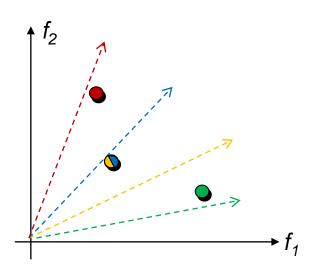
© D. Brockhoff, INRIA Lille – Nord Europe

Decomposition-Based Selection: MOEA/D

MOEA/D: Multiobjective Evolutionary Algorithm Based on Decomposition [Zhang and Li 2007]

Ideas:

- Optimize N scalarizing functions in parallel
- Use only best solutions of "neighbored scalarizing function" for mating
- keep the best solutions for each scalarizing function
- use external archive for nondominated solutions
- several improved versions recently



Scalarizing Approaches

Open Questions:

- how to choose "the right" scalarization even if the direction in objective space is given by the DM?
- combinations/adaptation of scalarization functions
- independent optimization vs. cooperation between single-objective optimization

Variation in EMO

- At first sight not different from single-objective optimization
- Most algorithm design effort on selection until now
- But: convergence to a set ≠ convergence to a point

Open Question:

how to achieve fast convergence to a set?

Related work:

- multiobjective CMA-ES [Igel et al. 2007] [Voß et al. 2010]
- set-based variation [Bader et al. 2009]
- set-based fitness landscapes [Verel et al. 2011]

The Big Picture

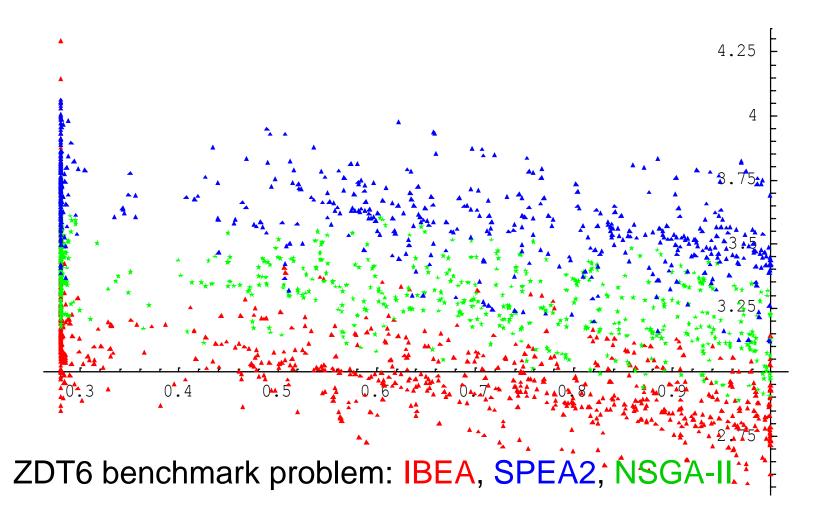
Basic Principles of Multiobjective Optimization

- algorithm design principles and concepts
- performance assessment
- Selected Advanced Concepts
 - indicator-based EMO
 - preference articulation

A Few Examples From Practice

Once Upon a Time...

... multiobjective EAs were mainly compared visually:



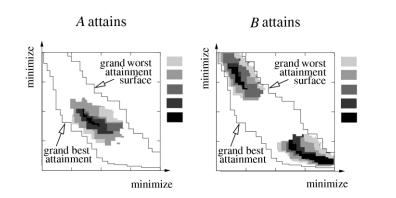
Two Approaches for Empirical Studies

Attainment function approach:

- Applies statistical tests directly to the samples of approximation sets
- Gives detailed information about how and where performance differences occur

Quality indicator approach:

- First, reduces each approximation set to a single value of quality
- Applies statistical tests to the samples of quality values

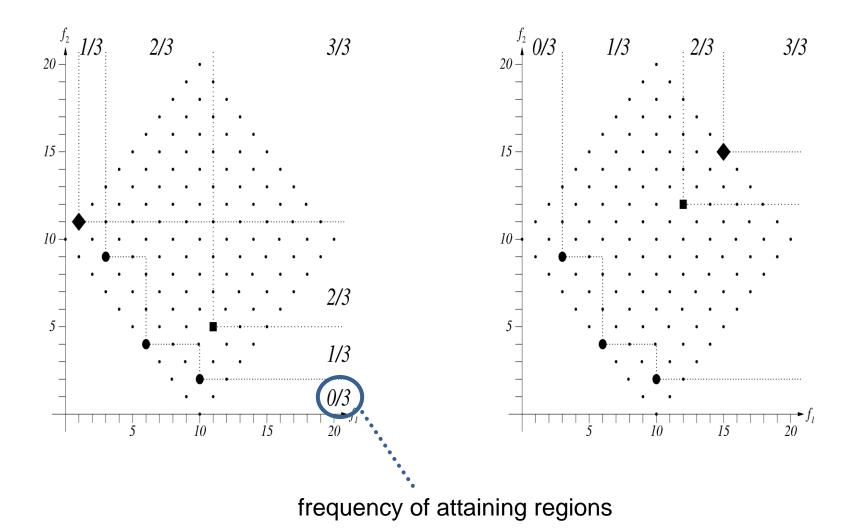


Indicator	A	В
Hypervolume indicator	6.3431	7.1924
ϵ -indicator	1.2090	0.12722
R_2 indicator	0.2434	0.1643
R_3 indicator	0.6454	0.3475

see e.g. [Zitzler et al. 2003]

Empirical Attainment Functions

three runs of two multiobjective optimizers

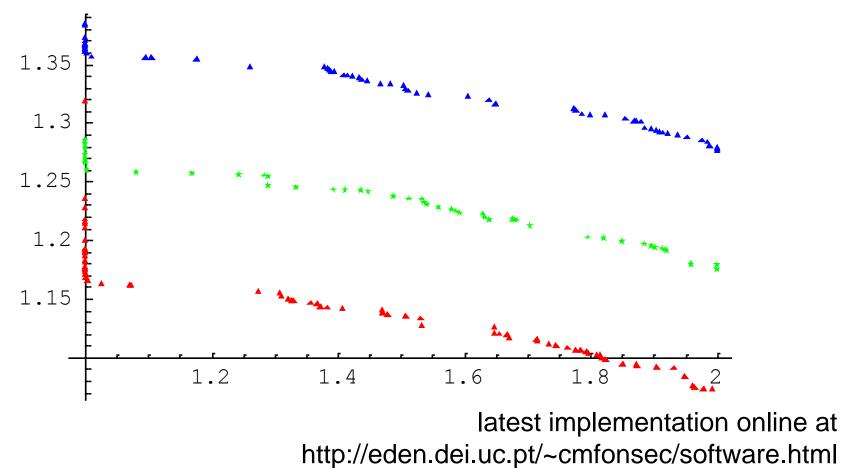


© D. Brockhoff, INRIA Lille – Nord Europe

Evolutionary Multiobjective Optimization, GECCO 2013, July 6, 2013

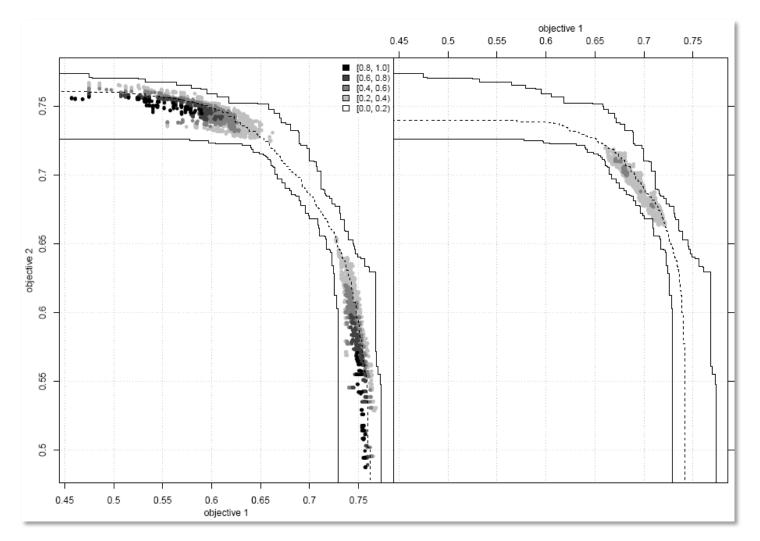
74

50% attainment surface for IBEA, SPEA2, NSGA2 (ZDT6)



see [Fonseca et al. 2011]

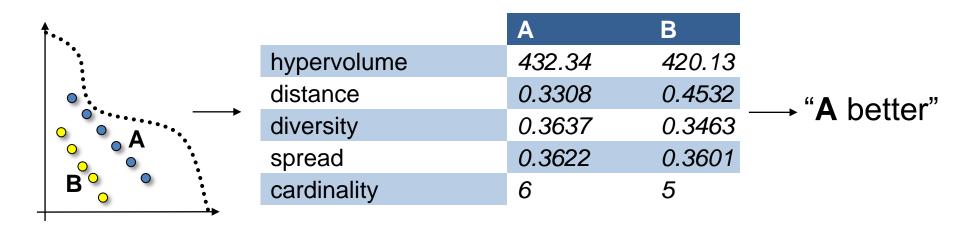
Attainment Plots



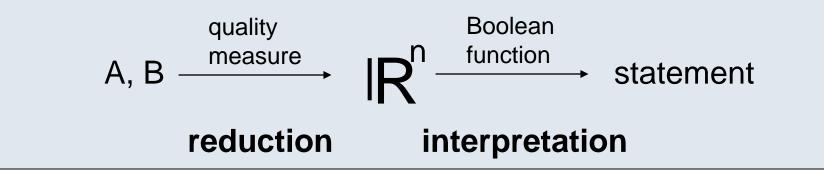
latest implementation online at http://eden.dei.uc.pt/~cmfonsec/software.html see [Fonseca et al. 2011]

Quality Indicator Approach

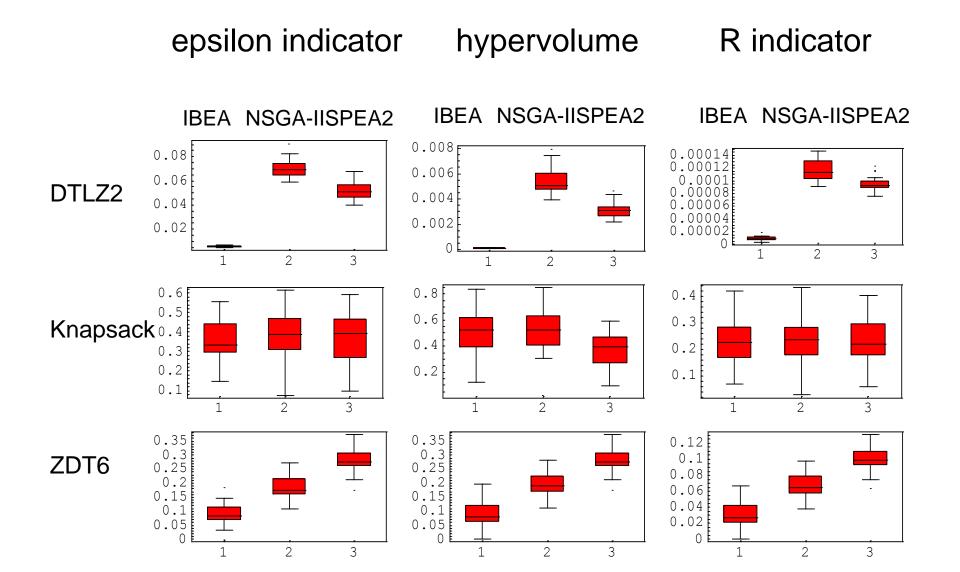
Goal: compare two Pareto set approximations A and B



Comparison method C = quality measure(s) + Boolean function



Example: Box Plots

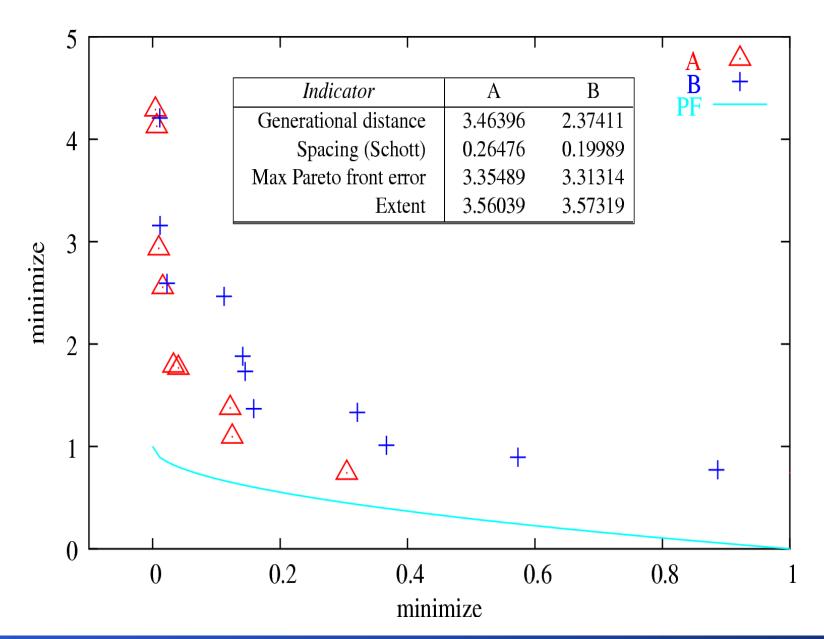


Statistical Assessment (Kruskal Test)

ZDT6 Epsilon			DTLZ2 R					
is better than	. .			is better than	. .			
	IBEA	NSGA2	SPEA2		IBEA	NSG	SA2	SPEA2
IBEA		~0 🙂	~0 🙂	IBEA		~0		~0 🕐
NSGA2	1		~0 💓	NSGA2	1			1
SPEA2	1	1		SPEA2	1	~0		
Overall p-value = 6.22079e-17. Null hypothesis rejected (alpha 0.05)			Overall p-value = 7.86834e-17. Null hypothesis rejected (alpha 0.05)					

Knapsack/Hypervolume: $H_0 = No$ significance of any differences

Problems With Non-Compliant Indicators



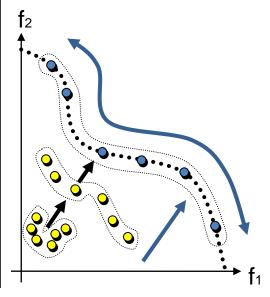
What Are Good Set Quality Measures?

There are three aspects [Zitzler et al. 2000]

of performance. In the case of multiobjective optimization, the definition of quality is substantially more complex than for single-objective optimization problems, because the optimization goal itself consists of multiple objectives:

- The distance of the resulting nondominated set to the Pareto-optimal front should be minimized.
- A good (in most cases uniform) distribution of the solutions found is desirable. The assessment of this criterion might be based on a certain distance metric.
- The extent of the obtained nondominated front should be maximized, i.e., for each objective, a wide range of values should be covered by the nondominated solutions.

In the literature, some attempts can be found to formalize the above definition (or parts



Wrong! [Zitzler et al. 2003]

An infinite number of unary set measures is needed to detect in general whether A is better than B

Set Quality Indicators

Open Questions:

- how to design a good benchmark suite?
- are there other unary indicators that are (weak) refinements?
- how to achieve good indicator values?

82

The Big Picture

Basic Principles of Multiobjective Optimization

- algorithm design principles and concepts
- performance assessment
- **Selected Advanced Concepts**
 - indicator-based EMO
 - preference articulation

A Few Examples From Practice

Indicator-Based EMO: Optimization Goal

When the goal is to maximize a unary indicator...

- we have a single-objective set problem to solve
- but what is the optimum?
- important: population size µ plays a role!

Optimal µ**-Distribution**:

A set of μ solutions that maximizes a certain unary indicator I among all sets of μ solutions is called optimal μ -distribution for I. [Auger et al. 2009a]

Optimal µ-Distributions for the Hypervolume

Hypervolume indicator refines dominance relation

 \Rightarrow most results on optimal μ -distributions for hypervolume

Optimal µ-Distributions (example results)

[Auger et al. 2009a]:

- contain equally spaced points iff front is linear
- density of points $\propto \sqrt{-f'(x)}$ with f' the slope of the front

[Friedrich et al. 2011]:

optimal μ -distributions for theoptimalhypervolume correspond toHT ϵ -approximations of the frontHT

OPT $1 + \frac{\log(\min\{A/a, B/b\})}{n}$ HYP $1 + \frac{\sqrt{A/a} + \sqrt{B/b}}{n-4}$ logHYP $1 + \frac{\sqrt{\log(A/a)\log(B/b)}}{n-2}$

(probably) does not hold for > 2 objectives

Indicator-Based EMO

Open Questions:

- How do the optimal µ-distributions look like for >2 objectives?
- how to compute certain indicators quickly in practice?
 - several recent improvements for the hypervolume indicator [Yildiz and Suri 2012], [Bringmann 2012], [Bringmann 2013]
 - including lower bounds
- how to do indicator-based subset selection quickly?
- what is the best strategy for the subset selection?

further open questions on indicator-based EMO available at
http://simco.gforge.inria.fr/doku.php?id=openproblems

The Big Picture

Basic Principles of Multiobjective Optimization

- algorithm design principles and concepts
- performance assessment
- Selected Advanced Concepts
 - indicator-based EMO
 - preference articulation

A Few Examples From Practice

Articulating User Preferences During Search

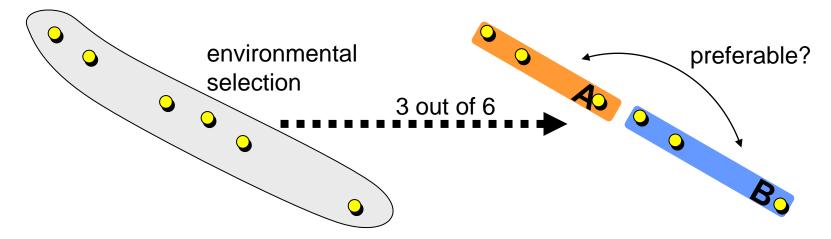
What we thought: EMO is preference-less

given by the Divi.

Search before decision making: Optimization is performed without any preference information given. The result of the search process is a set of (ideally Pareto-optimal) candidate solutions from which the final choice is made by the DM.

Decision making during search. The DM can articulate preferences during

What we learnt: EMO just uses weaker preference information



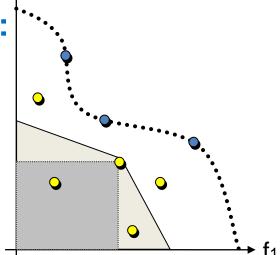
Incorporation of Preferences During Search

Nevertheless...

- the more (known) preferences incorporated the better
- in particular if search space is too large
 [Branke 2008], [Rachmawati and Srinivasan 2006], [Coello Coello 2000]

Refine/modify dominance relation, e.g.:

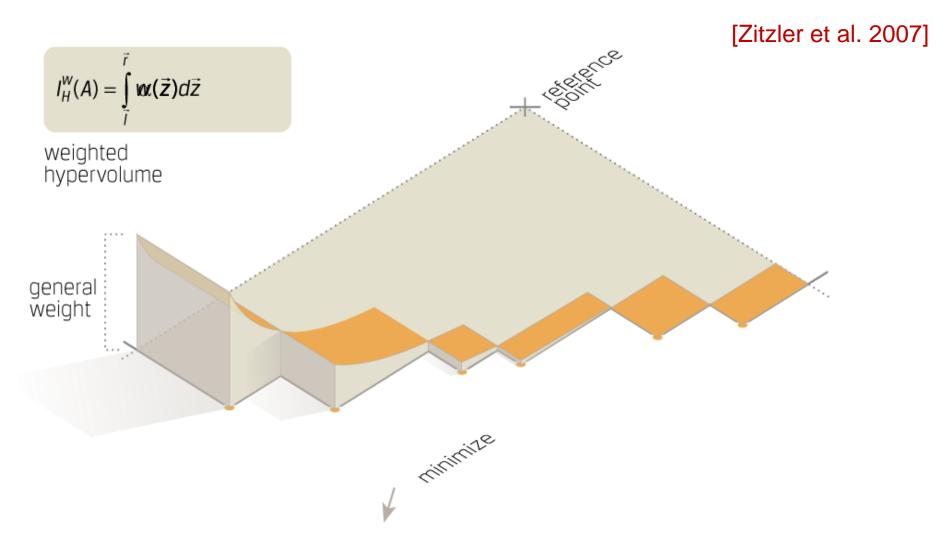
- using goals, priorities, constraints [Fonseca and Fleming 1998a,b]
- using different types of cones [Branke and Deb 2004]



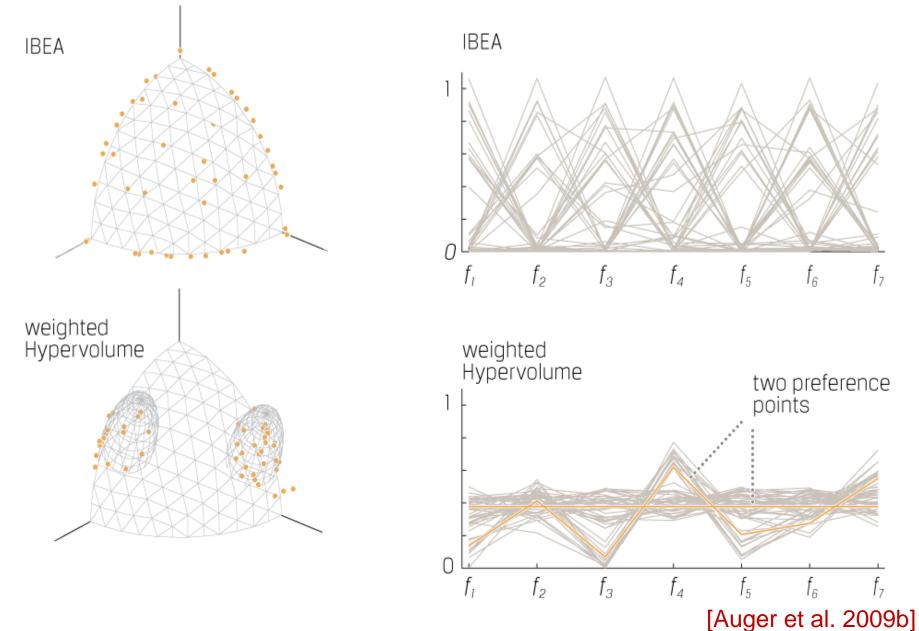
2 Use quality indicators, e.g.:

- based on reference points and directions [Deb and Sundar 2006, Deb and Kumar 2007]
- based on binary quality indicators [Zitzler and Künzli 2004]
- based on the hypervolume indicator (now) [Zitzler et al. 2007]

Example: Weighted Hypervolume Indicator



Weighted Hypervolume in Practice



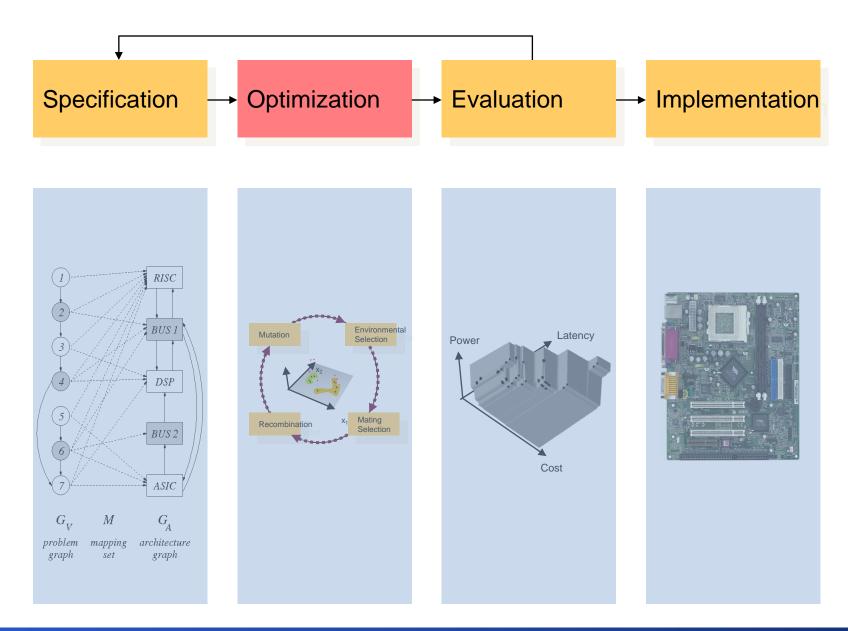
The Big Picture

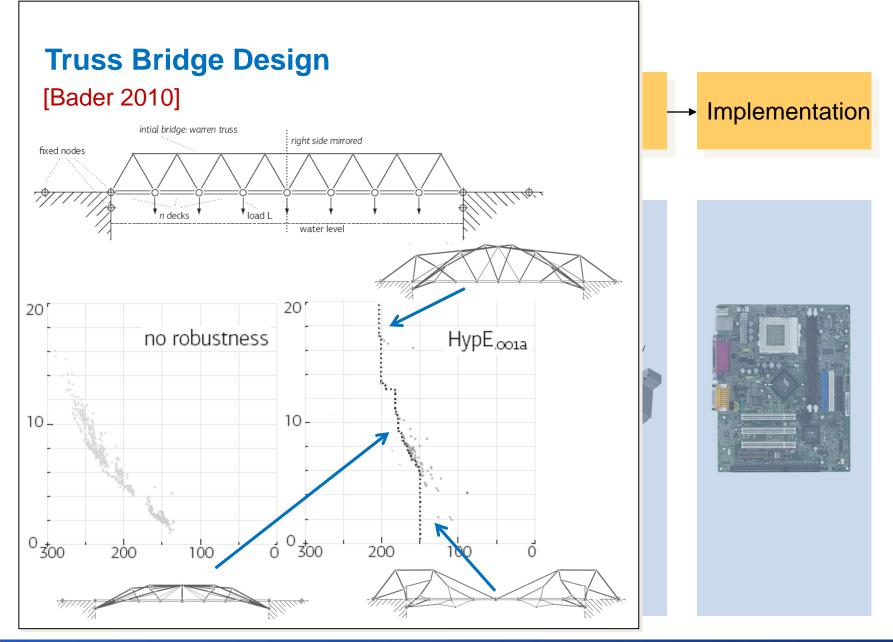
Basic Principles of Multiobjective Optimization

- algorithm design principles and concepts
- performance assessment
- Selected Advanced Concepts
 - indicator-based EMO
 - preference articulation

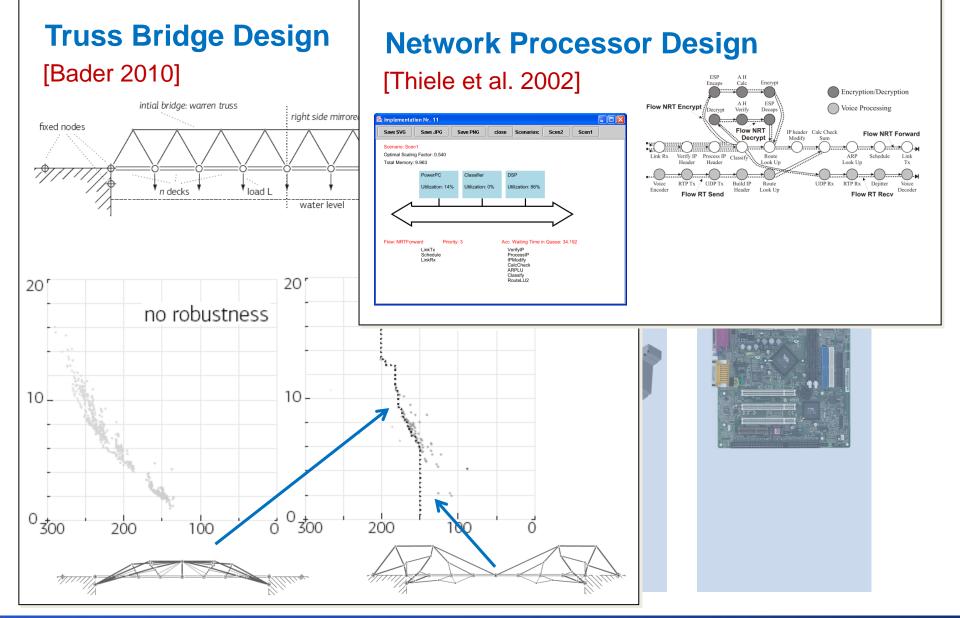
A Few Examples From Practice

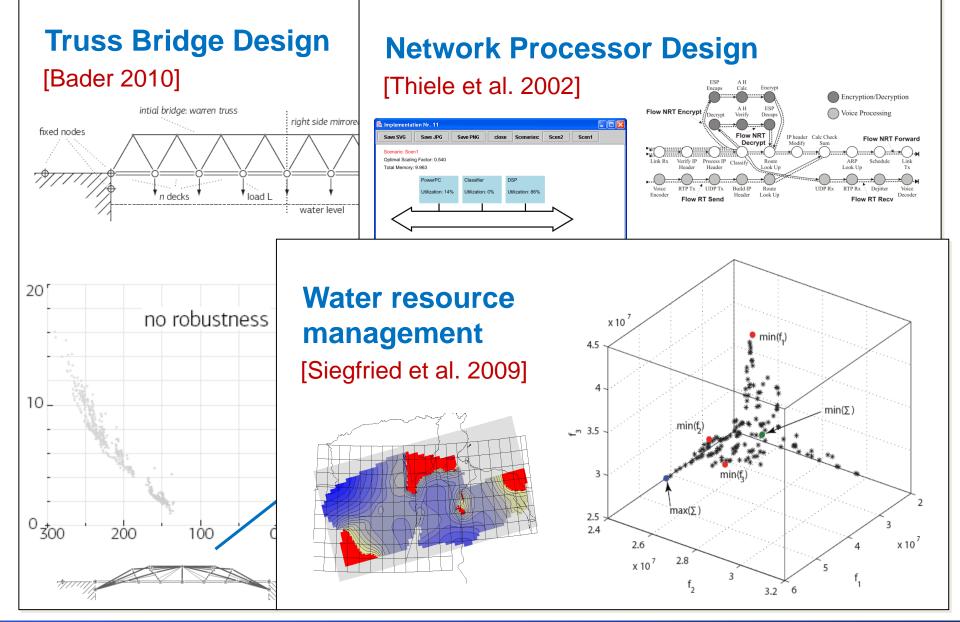
92





© D. Brockhoff, INRIA Lille – Nord Europe





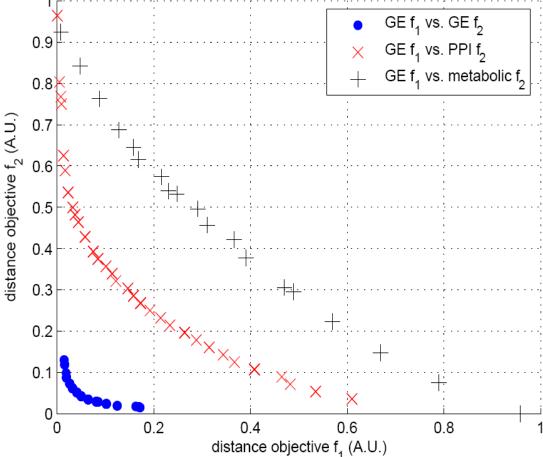
© D. Brockhoff, INRIA Lille – Nord Europe

Application: Trade-Off Analysis

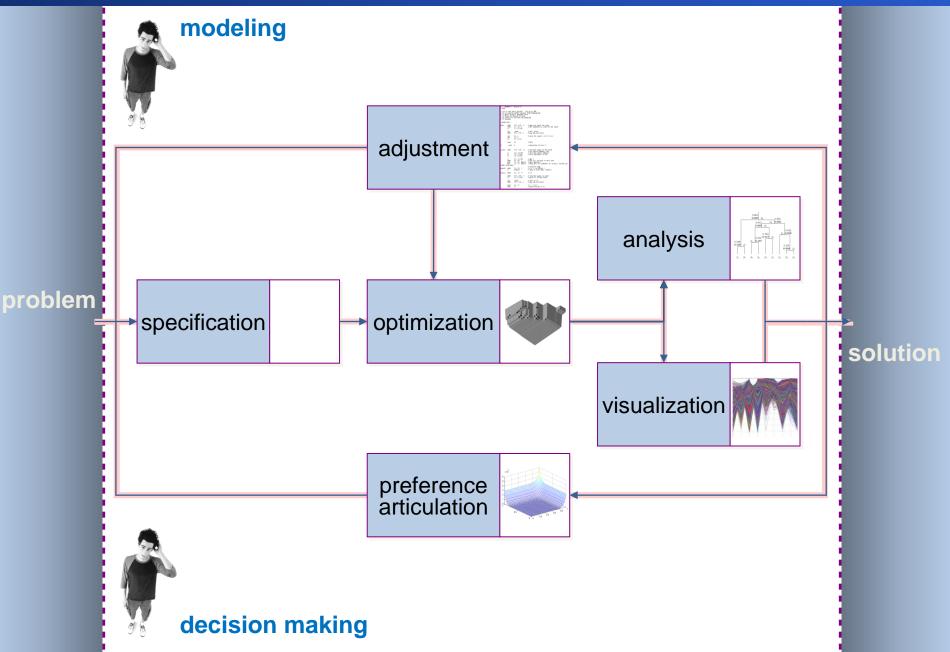
Module identification from biological data [Calonder et al. 2006]

Find group of genes wrt different data types:

- similarity of gene expression profiles
- overlap of protein interaction partners
- metabolic pathway map distances



Conclusions: EMO as Interactive Decision Support



© D. Brockhoff, INRIA Lille – Nord Europe

The EMO Community

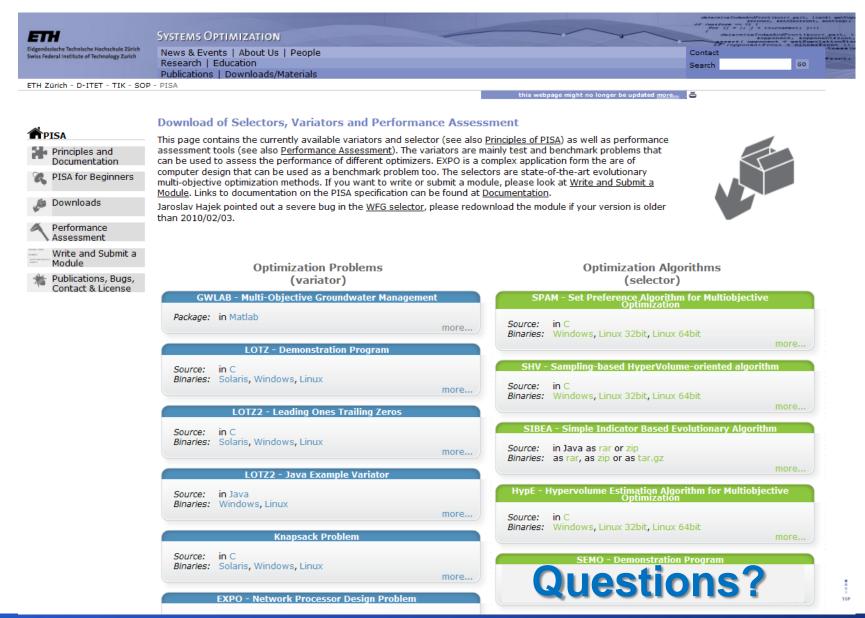
Links:

- EMO mailing list: http://w3.ualg.pt/lists/emo-list/
- EMO bibliography: http://www.lania.mx/~ccoello/EMOO/
- EMO conference series: http://www.shef.ac.uk/emo2013/

Books:

- Multi-Objective Optimization using Evolutionary Algorithms Kalyanmoy Deb, Wiley, 2001
- Evolutionary Algorithms for Solving Multi Evolutionary Algorithms for Solving Multi-Objective Problems Objective Problems, Carlos A. Coello Coello, David A. Van Veldhuizen & Gary B. Lamont, Kluwer, 2nd Ed. 2007
- Multiobjective Optimization—Interactive and Evolutionary Approaches, J. Branke, K. Deb, K. Miettinen, and R. Slowinski, editors, volume 5252 of LNCS. Springer, 2008 [many open questions!]
- and more...

PISA: http://www.tik.ee.ethz.ch/pisa/



Evolutionary Multiobjective Optimization, GECCO 2013, July 6, 2013

Additional Slides

Instructor Biography: Dimo Brockhoff

Dimo Brockhoff

INRIA Lille - Nord Europe DOLPHIN team Parc scientifique de la Haute Borne 40, avenue Halley - Bât B - Park Plaza 59650 Villeneuve d'Ascq France

After obtaining his diploma in computer science (Dipl.-Inform.) from University of Dortmund, Germany in 2005, Dimo Brockhoff received his PhD (Dr. sc. ETH) from ETH Zurich, Switzerland in 2009. Between June 2009 and October 2011 he held postdoctoral research positions---first at INRIA Saclay IIe-de-France in Orsay and then at Ecole Polytechnique in Palaiseau, both in France. Since November 2011 he has been a junior researcher (CR2) at INRIA Lille - Nord Europe in Villeneuve d'Ascq, France. His research interests are focused on evolutionary multiobjective optimization (EMO), in particular on many-objective optimization, benchmarking, and theoretical aspects of indicator-based search.

- [Auger et al. 2009a] A. Auger, J. Bader, D. Brockhoff, and E. Zitzler. Theory of the Hypervolume Indicator: Optimal μ-Distributions and the Choice of the Reference Point. In Foundations of Genetic Algorithms (FOGA 2009), pages 87–102, New York, NY, USA, 2009. ACM.
- [Auger et al. 2009b] A. Auger, J. Bader, D. Brockhoff, and E. Zitzler. Articulating User Preferences in Many-Objective Problems by Sampling the Weighted Hypervolume. In G. Raidl et al., editors, Genetic and Evolutionary Computation Conference (GECCO 2009), pages 555–562, New York, NY, USA, 2009. ACM
- [Bader 2010] J. Bader. Hypervolume-Based Search For Multiobjective Optimization: Theory and Methods. PhD thesis, ETH Zurich, 2010
- [Bader and Zitzler 2011] J. Bader and E. Zitzler. HypE: An Algorithm for Fast Hypervolume-Based Many-Objective Optimization. Evolutionary Computation 19(1):45-76, 2011.
- [Bader et al. 2009] J. Bader, D. Brockhoff, S. Welten, and E. Zitzler. On Using Populations of Sets in Multiobjective Optimization. In M. Ehrgott et al., editors, Conference on Evolutionary Multi-Criterion Optimization (EMO 2009), volume 5467 of LNCS, pages 140–154. Springer, 2009
- [Branke 2008] J. Branke. Consideration of Partial User Preferences in Evolutionary Multiobjective Optimization. In Multiobjective Optimization, volume 5252 of LNCS, pages 157-178. Springer, 2008
- [Branke and Deb 2004] J. Branke and K. Deb. Integrating User Preferences into Evolutionary Multi-Objective Optimization. Technical Report 2004004, Indian Institute of Technology, Kanpur, India, 2004. Also published as book chapter in Y. Jin, editor: Knowledge Incorporation in Evolutionary Computation, pages 461–477, Springer, 2004
- [Bringmann 2012] K. Bringmann. An improved algorithm for Klee's measure problem on fat boxes. Computational Geometry: Theory and Applications, 45:225–233, 2012.
- [Bringmann 2013] K. Bringmann. Bringing Order to Special Cases of Klee's Measure Problem. arXiv preprint arXiv:1301.7154 (2013).
- [Bringmann and Friedrich 2009] K. Bringmann and T. Friedrich. Approximating the Least Hypervolume Contributor: NP-hard in General, But Fast in Practice. In M. Ehrgott et al., editors, Conference on Evolutionary Multi-Criterion Optimization (EMO 2009),pages 6–20. Springer, 2009

- [Bringmann et al. 2011] K. Bringmann, T. Friedrich, F. Neumann, and M. Wagner. Approximation-guided evolutionary multi-objective optimization. In *Proceedings of the Twenty-Second international joint* conference on Artificial Intelligence-Volume Two (pp. 1198-1203). AAAI Press, 2011.
- [Brockhoff et al. 2009] D. Brockhoff, T. Friedrich, N. Hebbinghaus, C. Klein, F. Neumann, and E. Zitzler. On the Effects of Adding Objectives to Plateau Functions. IEEE Transactions on Evolutionary Computation, 13(3):591–603, 2009
- [Calonder et al. 2006] M. Calonder, S. Bleuler, and E. Zitzler. Module Identification from Heterogeneous Biological Data Using Multiobjective Evolutionary Algorithms. In T. P. Runarsson et al., editors, Conference on Parallel Problem Solving from Nature (PPSN IX), volume 4193 of LNCS, pages 573– 582. Springer, 2006
- [Camerini et al. 1984] P. M. Camerini, G. Galbiati, and F. Maffioli. The complexity of multi-constrained spanning tree problems. In Theory of algorithms, Colloquium PECS 1984, pages 53-101, 1984.
- [Coello Coello 2000] C. A. Coello Coello. Handling Preferences in Evolutionary Multiobjective Optimization: A Survey. In Congress on Evolutionary Computation (CEC 2000), pages 30–37. IEEE Press, 2000
- [Deb and Kumar 2007] K. Deb and A. Kumar. Light Beam Search Based Multi-objective Optimization Using Evolutionary Algorithms. In Congress on Evolutionary Computation (CEC 2007), pages 2125–2132. IEEE Press, 2007
- [Deb and Srinivasan 2006] K. Deb and A. Srinivasan. Innovization: Innovating Design Principles through Optimization. In Genetic and Evolutionary Computation Conference (GECCO 2006), pages 1629– 1636. ACM, 2006
- [Deb and Sundar 2006] K. Deb and J. Sundar. Reference Point Based Multi-Objective Optimization Using Evolutionary Algorithms. In Maarten Keijzer et al., editors, Conference on Genetic and Evolutionary Computation (GECCO 2006), pages 635–642. ACM Press, 2006
- [Fonseca and Fleming 1998a] C. M. Fonseca and Peter J. Fleming. Multiobjective Optimization and Multiple Constraint Handling with Evolutionary Algorithms—Part I: A Unified Formulation. IEEE Transactions on Systems, Man, and Cybernetics, 28(1):26–37, 1998

- [Fonseca and Fleming 1998b] C. M. Fonseca and Peter J. Fleming. Multiobjective Optimization and Multiple Constraint Handling with Evolutionary Algorithms—Part II: Application Example. IEEE Transactions on Systems, Man, and Cybernetics, 28(1):38–47, 1998
- [Fonseca et al. 2011] C. M. Fonseca, A. P. Guerreiro, M. López-Ibáñez, and L. Paquete. On the computation of the empirical attainment function. In Conference on Evolutionary Multi-Criterion Optimization (EMO 2011). Volume 6576 of LNCS, pp. 106-120, Springer, 2011
- [Friedrich et al. 2011] T. Friedrich, K. Bringmann, T. Voß, C. Igel. The Logarithmic Hypervolume Indicator. In Foundations of Genetic Algorithms (FOGA 2011). ACM, 2011. To appear.
- [Greiner et al. 2007] D. Greiner, J. M. Emperador, G. Winter, and B. Galván. Improving Computational Mechanics Optimium Design Using Helper Objectives: An Application in Frame Bar Structures. In Conference on Evolutionary Multi-Criterion Optimization (EMO 2007), volume 4403 of LNCS, pages 575–589. Springer, 2007
- [Handl et al. 2008a] J. Handl, S. C. Lovell, and J. Knowles. Investigations into the Effect of Multiobjectivization in Protein Structure Prediction. In G. Rudolph et al., editors, Conference on Parallel Problem Solving From Nature (PPSN X), volume 5199 of LNCS, pages 702–711. Springer, 2008
- [Handl et al. 2008b] J. Handl, S. C. Lovell, and J. Knowles. Multiobjectivization by Decomposition of Scalar Cost Functions. In G. Rudolph et al., editors, Conference on Parallel Problem Solving From Nature (PPSN X), volume 5199 of LNCS, pages 31–40. Springer, 2008
- [Igel et al. 2007] C. Igel, N. Hansen, and S. Roth. Covariance Matrix Adaptation for Multi-objective Optimization. Evolutionary Computation, 15(1):1–28, 2007
- [Judt et al. 2011] L. Judt, O. Mersmann, and B. Naujoks. Non-monotonicity of obtained hypervolume in 1greedy S-Metric Selection. In: Conference on Multiple Criteria Decision Making (MCDM 2011), abstract, 2011.

- [Knowles et al. 2001] J. D. Knowles, R. A. Watson, and D. W. Corne. Reducing Local Optima in Single-Objective Problems by Multi-objectivization. In E. Zitzler et al., editors, Conference on Evolutionary Multi-Criterion Optimization (EMO 2001), volume 1993 of LNCS, pages 269–283, Berlin, 2001. Springer
- [Jensen 2004] M. T. Jensen. Helper-Objectives: Using Multi-Objective Evolutionary Algorithms for Single-Objective Optimisation. Journal of Mathematical Modelling and Algorithms, 3(4):323–347, 2004. Online Date Wednesday, February 23, 2005
- [Neumann and Wegener 2006] F. Neumann and I. Wegener. Minimum Spanning Trees Made Easier Via Multi-Objective Optimization. Natural Computing, 5(3):305–319, 2006
- [Obayashi and Sasaki 2003] S. Obayashi and D. Sasaki. Visualization and Data Mining of Pareto Solutions Using Self-Organizing Map. In Conference on Evolutionary Multi-Criterion Optimization (EMO 2003), volume 2632 of LNCS, pages 796–809. Springer, 2003
- [Rachmawati and Srinivasan 2006] L. Rachmawati and D. Srinivasan. Preference Incorporation in Multiobjective Evolutionary Algorithms: A Survey. In Congress on Evolutionary Computation (CEC 2006), pages 962–968. IEEE Press, July 2006
- [Schaffer 1985] J. D. Schaffer. Multiple Objective Optimization with Vector Evaluated Genetic Algorithms. In John J. Grefenstette, editor, Conference on Genetic Algorithms and Their Applications, pages 93–100, 1985.
- [Serafini 1986] P. Serafini. Some considerations about computational complexity for multi objective combinatorial problems. In: Recent advances and historical development of vector optimization, number 294 in Lecture Notes in Economics and Mathematical Systems. Springer, 1986.

[Siegfried et al. 2009] T. Siegfried, S. Bleuler, M. Laumanns, E. Zitzler, and W. Kinzelbach. Multi-Objective Groundwater Management Using Evolutionary Algorithms. IEEE Transactions on Evolutionary Computation, 13(2):229–242, 2009

- [Thiele et al. 2002] L. Thiele, S. Chakraborty, M. Gries, and S. Künzli. Design Space Exploration of Network Processor Architectures. In Network Processor Design 2002: Design Principles and Practices. Morgan Kaufmann, 2002
- [Ulrich et al. 2007] T. Ulrich, D. Brockhoff, and E. Zitzler. Pattern Identification in Pareto-Set Approximations. In M. Keijzer et al., editors, Genetic and Evolutionary Computation Conference (GECCO 2008), pages 737–744. ACM, 2008.
- [Verel et al. 2011] S. Verel, C. Dhaenens, A. Liefooghe. Set-based Multiobjective Fitness Landscapes: A Preliminary Study. In Genetic and Evolutionary Computation Conference (GECCO 2011). ACM, 2010. To appear.
- [Voß et al. 2010] T. Voß, N. Hansen, and C. Igel. Improved Step Size Adaptation for the MO-CMA-ES. In J. Branke et al., editors, Genetic and Evolutionary Computation Conference (GECCO 2010), pages 487– 494. ACM, 2010
- [Yildiz and Suri 2012] H. Yildiz and S. Suri. On Klee's measure problem for grounded boxes. Proceedings of the 2012 symposuim on Computational Geometry. ACM, 2012.
- [Zhang and Li 2007] Q. Zhang and H. Li. MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition. IEEE Transactions on Evolutionary Computation, 11(6):712--731, 2007
- [Zitzler 1999] E. Zitzler. Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications. PhD thesis, ETH Zurich, Switzerland, 1999
- [Zitzler and Künzli 2004] E. Zitzler and S. Künzli. Indicator-Based Selection in Multiobjective Search. In X. Yao et al., editors, Conference on Parallel Problem Solving from Nature (PPSN VIII), volume 3242 of LNCS, pages 832–842. Springer, 2004
- [Zitzler et al. 2003] E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and V. Grunert da Fonseca. Performance Assessment of Multiobjective Optimizers: An Analysis and Review. IEEE Transactions on Evolutionary Computation, 7(2):117–132, 2003
- [Zitzler et al. 2000] E. Zitzler, K. Deb, and L. Thiele. Comparison of Multiobjective Evolutionary Algorithms: Empirical Results. Evolutionary Computation, 8(2):173–195, 2000