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Pareto-optimal front 
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finding the good 
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Possible 
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• supply more important than cost (ranking) 

• cost must not exceed 2400 (constraint) 
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Before Optimization: 

  

 

  rank objectives, 

 define constraints,… 

 

 

  search for one  

 (blue) solution 

 

 

 

 

When to Make the Decision 
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After Optimization: 

 

 
  search for a set of       

 (blue) solutions 

 

 

  select one solution

 considering 

  constraints, etc. 
 

 

 

 

When to Make the Decision 

Before Optimization: 

  

 

  rank objectives, 

 define constraints,… 

 

 

  search for one  

 (blue) solution 
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When to Make the Decision 

Focus: learning about a problem 

 trade-off surface 

 interactions among criteria 

 structural information 

After Optimization: 

 

 
  search for a set of       

 (blue) solutions 

 

 

  select one solution

 considering 

  constraints, etc. 
 

 

 

 

Before Optimization: 

  

 

  rank objectives, 

 define constraints,… 

 

 

  search for one  

 (blue) solution 
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Multiple Criteria Decision Making (MCDM) 

 

 

 MCDM can be defined as the study of methods and procedures by which 

concerns about multiple conflicting criteria can be formally incorporated into 

the management planning process  

 

 Definition: MCDM 
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 MCDM can be defined as the study of methods and procedures by which 

concerns about multiple conflicting criteria can be formally incorporated into 

the management planning process  

 

 Definition: MCDM 

objectives 
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search 
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many objectives 
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Multiple Criteria Decision Making (MCDM) 

3                  
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(exact) optimization 

huge search spaces multiple objectives 

model objectives 

non-differentiable 
expensive 

(integrated simulations) 

non-linear 
noisy 

problem 

uncertain 

many constraints 

many objectives 

 

 

 Black box optimization trad 

only mild assumptions 

 

 

 MCDM can be defined as the study of methods and procedures by which 

concerns about multiple conflicting criteria can be formally incorporated into 

the management planning process  

 

 Definition: MCDM 
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Evolutionary Multiobjective Optimization 

(EMO) 

water 
supply 

cost 

 

 

 EMO = evolutionary algorithms / randomized search algorithms 

  applied to multiple criteria decision making (in general) 

  used to approximate the Pareto-optimal set (mainly) 

 Definition: EMO 

Pareto set approximation 
survival mutation 

x2 

x1 

f 

mating recombination 
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Some problems are easier to solve in a multiobjective scenario 

 

example: TSP  
[Knowles et al. 2001] 

 

 

 

Multiobjectivization 

by addition of new “helper objectives” 

 job-shop scheduling [Jensen 2004], frame structural design 

[Greiner et al. 2007], theoretical (runtime) analyses [Brockhoff  et al. 

2009] 

by decomposition of the single objective 

 TSP [Knowles et al. 2001], minimum spanning trees [Neumann and 

Wegener 2006], protein structure prediction [Handl et al. 2008a], 

theoretical (runtime) analyses [Handl et al. 2008b] 

 

Multiobjectivization 
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Innovization = Finding innovative design principles through 

optimization [Deb et al. 2006-2013] 

 

example: 

clutch brake design 
[Deb and Srinivasan 2006] 

 

Innovization 

min. mass + 

stopping time 
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Innovization = Finding innovative design principles through 

optimization [Deb et al. 2006-2013] 

 

example: 
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[Deb and Srinivasan 2006] 
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Innovization = Finding innovative design principles through 

optimization [Deb et al. 2006-2013] 

 

example: 

clutch brake design 
[Deb and Srinivasan 2006] 

 

Innovization [Deb and Srinivasan 2006] 

= using machine learning techniques to find new and 

innovative design principles among solution sets 

= learning about a multiobjective optimization problem 
 

Other examples: 

 SOM for supersonic wing design [Obayashi and Sasaki 2003] 

 biclustering for processor design and KP [Ulrich et al. 2007] 

Innovization 
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The History of EMO At A Glance 

1984 

 

 

 

1990 

 

 

 

1995 

 

 

 

2000 

 

 

 

2010 

dominance-based EMO algorithms with diversity preservation techniques 

elitist EMO algorithms 

quantitative performance assessment 

attainment functions 

preference articulation convergence proofs 

test problem design 

dominance-based population ranking 

first EMO approaches 

               MCDM + EMO           quality indicator based EMO algorithms 

running time analyses quality measure design uncertainty and robustness 

statistical performance assessment many-objective optimization 

multiobjectivization 
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The History of EMO At A Glance 

Overall: 7806 references by March 13, 2013 

dominance-based EMO algorithms with diversity preservation techniques 

elitist EMO algorithms 

quantitative performance assessment 

attainment functions 

preference articulation convergence proofs 

test problem design 

dominance-based population ranking 

first EMO approaches 

               MCDM + EMO           quality indicator based EMO algorithms 

running time analyses quality measure design uncertainty and robustness 

statistical performance assessment many-objective optimization 

multiobjectivization 

2013 

1984 



23 Evolutionary Multiobjective Optimization, GECCO 2013, July 6, 2013 © D. Brockhoff, INRIA Lille – Nord Europe 23 

The EMO Community 

The EMO conference series: 

 

 EMO2001 EMO2003 EMO2005 EMO2007 EMO2009 EMO2011 EMO2013 

 Zurich Faro Guanajuato Matsushima Nantes Ouro Peto Sheffield 

 Switzerland Portugal Mexico Japan France Brazil UK 

 

  

 

 

  

  

 45 / 87 56 / 100 59 / 115 65 / 124 39 / 72 42 / 83 57/98 

 

Many further activities: 

 special sessions, special journal issues, workshops, tutorials, ... 
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Overview 

The Big Picture 
 

Basic Principles of Multiobjective Optimization 

 algorithm design principles and concepts 

 performance assessment 
 

Selected Advanced Concepts 

 indicator-based EMO 

 preference articulation 
 

A Few Examples From Practice 
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Starting Point 

What makes evolutionary multiobjective optimization 

different from single-objective optimization?   

performance performance 

cost 

single objective   multiple objectives 

? 
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General (Multiobjective) Optimization Problem 

A multiobjective optimization problem: 

search / parameter / decision space 

objective space 

vector-valued objective function with 

vector-valued constraint function with 

binary relation on objective space 

Goal: find decision vector(s)             such that 

  for all                                      and 

   for all 
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(X, Z, f: X  Z, rel  Z  Z) 

A Single-Objective Optimization Problem 

decision space objective space objective function 

 

       total order 
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decision space objective space objective function 

 

       total order 

 

        

               total preorder where 

               a prefrel b  f(a) rel f(b) 

 

 

 

 

 

 

 

 

(X, Z, f: X  Z, rel  Z  Z) 

A Single-Objective Optimization Problem 

 

 

 (X, prefrel)   
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Example: Leading Ones Problem 

 

 

 

 

 

 

 

 

 

  ({0,1}n, {0,1, 2, ..., n}, fLO, )      where fLO(a) = 

 

(X, Z, f: X  Z, rel  Z  Z) 

A Single-Objective Optimization Problem 

 

 

 (X, prefrel)   
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Simple Graphical Representation 

Example:  (total order) 

totally ordered optimum 
a  b  

a b 

a, b  f(X)  
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Preference Relations 

    decision space objective space objective functions 

 

      partial order 

 

        

      preorder where 

      a prefrel b : f(a) rel f(b) 

 

 

 

 

 

       weak 

       Pareto dominance 

 

 

 

(X, Z, f: X  Z, rel  Z  Z) 

 

 

 (X, prefrel)   
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(X, Z, f: X  Z, rel  Z  Z) 

A Multiobjective Optimization Problem 

Example: Leading Ones Trailing Zeros Problem 

 

 

 

 

 

 

 

 

 

 

 

 (X, prefrel)   

f2 

f1 

0 0 0 0 0 0 0 

trailing 0s 

leading 1s 

1 1 1 1 1 1 1 

1 1 1 1 0 0 0 
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  fLO(a) =                          fTZ(a) = 

A Multiobjective Optimization Problem 

(X, Z, f: X  Z, rel  Z  Z) 

 

 

 (X, prefrel)   

 ({0,1}n, {0,1, 2, ..., n}   {0,1, 2, ..., n}, (fLO, fTZ), ? )  

f2 

f1 

0 0 0 0 0 0 0 

trailing 0s 

leading 1s 

1 1 1 1 1 1 1 

1 1 1 1 0 0 0 

Example: Leading Ones Trailing Zeros Problem 
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Pareto dominance 

ε-dominance 

cone dominance 

Different Notions of Dominance 
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The Pareto-optimal Set 

f2 

f1 

x2 

x1 

decision 
space  

objective 
        space  

Pareto-optimal set                         

 non-optimal decision vector 

 

Pareto-optimal front 

non-optimal objective vector 

Min(Y;5) := fa 2 Y j 8b 2 Y : b 5 a) a5 bg
The minimal set of a preordered set (Y;5) is de¯ned as
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Visualizing Preference Relations 

optima 

note: 

 reflexive and  

transitive edges  

not shown 
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Remark: Properties of the Pareto Set 

f2 

f1 

f2 

f1 

nadir point 

ideal point 

Computational complexity:  

 multiobjective variants can become NP- and #P-complete 

 

Size: Pareto set can be exponential in the input length 

 (e.g. shortest path [Serafini 1986], MSP [Camerini et al. 1984]) 

Shape 

Range 
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Approaches To Multiobjective Optimization 

A multiobjective problem is as such underspecified 

 …because not any Pareto-optimum is equally suited! 

 

Additional preferences are needed to tackle the problem:  

 

 Solution-Oriented Problem Transformation: 

Induce a total order on the decision space, e.g., by 

aggregation. 

 

 Set-Oriented Problem Transformation: 

 First transform problem into a set problem and then define 

an objective function on sets. 

 

Preferences are needed in any case, but the latter are weaker! 
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Problem Transformations and Set Problems 

search space 

 
 

 

objective space 

 
 

 

(partially) ordered set 

 
 

 

(totally) ordered set 

single solution problem set problem 
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Solution-Oriented Problem Transformations 

transformation 

parameters 

f (f1, f2, …, fk) 

multiple 
objectives 

single 
objective 
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Aggregation-Based Approaches 

f2 

f1 

transformation 

parameters 

f (f1, f2, …, fk) 

multiple 
objectives 

single 
objective 

Example: weighting approach 

 

 

 

 

 

 

y = w1y1 + … + wkyk 

(w1, w2, …, wk) 

Other example: Tchebycheff 
             

y= max |wi(ui – zi)| 
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Set-Oriented Problem Transformations 
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    weakly dominates  

 = not worse in all objectives 

    and sets not equal 

 dominates 

 = better in at least one objective 

 strictly dominates 

 = better in all objectives 

 is incomparable to 

 = neither set weakly better  

Pareto Set Approximations  

performance 

cheapness 

A B 

C D 

A C 

B C 

Pareto set approximation (algorithm outcome) = 

 set of (usually incomparable) solutions 
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What Is the Optimization Goal (Total Order)? 

 Find all Pareto-optimal solutions? 

Impossible in continuous search spaces 

How should the decision maker handle 10000 solutions? 

 Find a representative subset of the Pareto set? 

Many problems are NP-hard 

What does representative actually mean? 

 Find a good approximation of the Pareto set? 

What is a good approximation? 

How to formalize intuitive 

understanding: 

  close to the Pareto front 

 well distributed 

y2 

y1 
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Quality of Pareto Set Approximations 

f2 

f1 

f2 

f1 

reference set 

ε 

ε 

hypervolume indicator epsilon indicator 
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General Remarks on Problem 

Transformations 
Idea: 

 Transform a preorder into a total preorder 

 

Methods: 

 Define single-objective function based on the multiple criteria 

(shown on the previous slides) 

 Define any total preorder using a relation 

(not discussed before) 

 

Question: 

 Is any total preorder ok resp. are there any requirements 

concerning the resulting preference relation? 

 Underlying dominance relation rel should be reflected 



48 Evolutionary Multiobjective Optimization, GECCO 2013, July 6, 2013 © D. Brockhoff, INRIA Lille – Nord Europe 48 

Refinements and Weak Refinements 

      refines a preference relation     iff 

 

  A    B   B     A  A     B   B      A            (better   better) 

 

 fulfills requirement 

 

     weakly refines a preference relation      iff 

 

  A    B   B     A  A     B                 (better  weakly better)  

 

 does not fulfill requirement, but     does not contradict 

 

…sought are total refinements… 
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Example: Refinements Using Indicators 

I(A) 
A 

B 

A 

I(A) = volume of the 

weakly dominated area 

in objective space 

I(A,B) = how much needs A to 

be moved to weakly dominate B 

A     B : I(A)  I(B) A     B : I(A,B)  I(B,A) 

unary hypervolume indicator binary epsilon indicator 

A’ 
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Example: Weak Refinement / No Refinement 

R 

A 

I(A,R) = how much needs A to 

be moved to weakly dominate R 

A     B : I(A,R)  I(B,R) 

unary epsilon indicator 

A’ 

I(A) 
A 

I(A) = variance of pairwise 

distances 

A     B : I(A)  I(B) 

unary diversity indicator 

weak refinement no refinement 
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Overview 

The Big Picture 
 

Basic Principles of Multiobjective Optimization 

 algorithm design principles and concepts 

 performance assessment 
 

Selected Advanced Concepts 

 indicator-based EMO 

 preference articulation 
 

A Few Examples From Practice 
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Algorithm Design: Particular Aspects 

0100 

0011 0111 

0011 

0000 
0011 

1011 

representation 

environmental selection 

parameters 

fitness assignment mating selection 

variation operators 
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Fitness Assignment: Principal Approaches 

y1 

y2 

y1 

y2 y2 

y1 

aggregation-based criterion-based dominance-based 

parameter-oriented 

scaling-dependent 

set-oriented 

scaling-independent 

     weighted sum                     VEGA                           SPEA2 
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Criterion-Based Selection: VEGA 

M 

T2 

T3 

Tk-1 

Tk 

M’ 

T1 

select 

according to 

f1 

f2 

f3 

fk-1 

fk 

shuffle 

population          k separate selections           mating pool 

[Schaffer 1985] 



55 Evolutionary Multiobjective Optimization, GECCO 2013, July 6, 2013 © D. Brockhoff, INRIA Lille – Nord Europe 55 

feasible region 

constraint 

Aggregation-Based: Multistart Constraint Method 

Underlying concept: 

 Convert all objectives except of one into constraints 

 Adaptively vary constraints 

y2 

y1 

maximize f1 
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feasible region 

constraint 

Underlying concept: 

 Convert all objectives except of one into constraints 

 Adaptively vary constraints 

y2 

y1 

maximize f1 

Aggregation-Based: Multistart Constraint Method 
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feasible region 

constraint 

Aggregation-Based: Multistart Constraint 

Method 
Underlying concept: 

 Convert all objectives except of one into constraints 

 Adaptively vary constraints 

y2 

y1 

maximize f1 

Aggregation-Based: Multistart Constraint Method 
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General Scheme of Dominance-Based EMO 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: good in terms of set quality = good in terms of search? 

(archiv) population offspring 

environmental selection (greedy heuristic) 

mating selection (stochastic) 
fitness assignment 

partitioning into 

dominance classes 

 

 

 

 

 

 

 

 

 

rank refinement within 

dominance classes 

+ 
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Ranking of the Population Using Dominance 

... goes back to a proposal by David Goldberg in 1989. 

... is based on pairwise comparisons of the individuals only. 

 

 dominance rank: by how 

many individuals is an 

individual dominated? 

MOGA, NPGA 

 dominance count: how many 

individuals does an individual 

dominate? 

SPEA, SPEA2 

 dominance depth: at which 

front is an individual located? 

NSGA, NSGA-II 

 

f2 

f1 

 

dominance 

count 

dominance 

rank 
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Illustration of Dominance-based Partitioning 

f2 

f1 

dominance depth 

 

 

 

 

 

 

 

 

 

 

 

 

 

at which front is an 

individual located? 

1 

2 

3 

f2 

f1 

dominance rank 

 

 

 

 

 

 

 

 

 

 

 

 

 

by how many individuals 

is an individual dominated? 

4 

1 

8 

6 

3 
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Refinement of Dominance Rankings 

Goal: rank incomparable solutions within a dominance class 

 

 Density information (good for search, but usually no refinements) 

 

 

 

 

 

 

 

 

 

 

 Quality indicator (good for set quality): soon... 

 

f 
f 

f 

Kernel method 

density = 

function of the 

distances 

k-th nearest neighbor 

density = 

function of distance 

to k-th neighbor 

Histogram method 

density = 

number of elements 

within box 
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Example: SPEA2 Dominance Ranking 

Basic idea:  the less dominated, the fitter... 

Principle: first assign each solution a weight (strength),  

  then add up weights of dominating solutions 

f2 

f1 

0 

0 

0 

4+3+2 

2+1+4+3+2 

2 

4 

4+3 

S (strength) = 

#dominated solutions   
R (raw fitness) =   

 strengths of 

dominators 
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Density Estimation 

 

k-th nearest neighbor method:  

 

 Fitness = R + 1 / (2 + Dk) 

 

 

 Dk = distance to the k-th 

 nearest individual 

 

 Usually used: k = 2 

 

Example: SPEA2 Diversity Preservation 

< 1 

Dk 
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d(i)¡
X

obj. m

jfm(i¡ 1)¡ fm(i+ 1)j

Example: NSGA-II Diversity Preservation 

f2 

f1 

i-1 

i+1 

i 

Density Estimation 

 

crowding distance:  

 

 sort solutions wrt. each 

 objective 

 

 crowding distance to neighbors: 
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Selection in SPEA2 and NSGA-II can result in 

 deteriorative cycles 

 

 

 

 

 

 non-dominated 

 solutions already 

 found can be lost 

SPEA2 and NSGA-II: Cycles in Optimization 
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Hypervolume-Based Selection 

Latest Approach (SMS-EMOA, MO-CMA-ES, HypE, …) 

use hypervolume indicator to guide the search: refinement! 
 

Main idea 

 Delete solutions with 

 the smallest 

 hypervolume loss 

 d(s) = IH(P)-IH(P / {s}) 

 iteratively 
 

But: can also result 

 in cycles [Judt et al. 2011] 

 and is expensive [Bringmann and Friedrich 2009] 
 

Moreover: HypE [Bader and Zitzler 2011] 

Sampling + Contribution if more than 1 solution deleted 
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AGE: Approximation-Guided Evolutionary Multi-Objective 

Optimization [Bringmann et al. 2011] 

 

Main Idea: 

 quality of population: how well does it approximate the 

Pareto front? 

 

 

 

 aim since Pareto front not known: min. approximation 

α(A,P) of the population P wrt. an external archive A 

 not locally sensitive; instead delete points with 

lexicographically worst approximations 

 

 with 

Approximation-Guided EMO 
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MOEA/D: Multiobjective Evolutionary Algorithm Based on 

Decomposition [Zhang and Li 2007] 

 

Ideas: 

 Optimize N scalarizing functions in parallel 

 Use only best solutions of “neighbored scalarizing function” 

for mating 

 keep the best solutions for each 

 scalarizing function 

 use external archive for non- 

 dominated solutions 

 several improved versions 

 recently 

Decomposition-Based Selection: MOEA/D 

f2 

f1 
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Open Questions: 

 how to choose “the right” scalarization even if the 

direction in objective space is given by the DM? 

 combinations/adaptation of scalarization functions 

 independent optimization vs. cooperation between 

single-objective optimization 

Scalarizing Approaches 
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 At first sight not different from single-objective optimization 

 Most algorithm design effort on selection until now 

 But: convergence to a set ≠ convergence to a point 

 

 

Open Question:  

 how to achieve fast convergence to a set? 

 

Related work: 

 multiobjective CMA-ES [Igel et al. 2007] [Voß et al. 2010] 

 set-based variation [Bader et al. 2009] 

 set-based fitness landscapes [Verel et al. 2011] 

 

Variation in EMO 
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Overview 

The Big Picture 
 

Basic Principles of Multiobjective Optimization 

 algorithm design principles and concepts 

 performance assessment 
 

Selected Advanced Concepts 

 indicator-based EMO 

 preference articulation 
 

A Few Examples From Practice 
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0.3 0.4 0.5 0.6 0.7 0.8 0.9

2.75

3.25

3.5

3.75

4

4.25

Once Upon a Time... 

... multiobjective EAs were mainly compared visually: 

 

 

 

 

 

 

 

 

 

 

 

ZDT6 benchmark problem: IBEA, SPEA2, NSGA-II 
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Attainment function approach: 

 

 Applies statistical tests directly 

 to the samples of approximation 

sets 

 Gives detailed information about 

how and where performance 

differences occur 

Two Approaches for Empirical Studies 

Quality indicator approach: 

 

 First, reduces each 

approximation set to a single 

value of quality 

 Applies statistical tests to the 

samples of quality values 

 

see e.g. [Zitzler et al. 2003] 
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Empirical Attainment Functions 

three runs of two multiobjective optimizers 

frequency of attaining regions 
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Attainment Plots 

50% attainment surface for IBEA, SPEA2, NSGA2 (ZDT6) 

1.2 1.4 1.6 1.8 2

1.15

1.2

1.25

1.3

1.35

latest implementation online at 

http://eden.dei.uc.pt/~cmfonsec/software.html 

see [Fonseca et al. 2011] 
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Attainment Plots 

latest implementation online at 

http://eden.dei.uc.pt/~cmfonsec/software.html 

see [Fonseca et al. 2011] 
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Quality Indicator Approach 

Goal: compare two Pareto set approximations A and B 

 

 

 

 

 

 

 

Comparison method C = quality measure(s) + Boolean function 

 

 

 

         reduction          interpretation                                                    

A 

B 

R 
n 

quality 

measure 

Boolean 

function 
statement A, B 

hypervolume 432.34 420.13 

distance 0.3308 0.4532 

diversity 0.3637 0.3463 

spread 0.3622 0.3601 

cardinality 6 5           

A                   B 

“A better” 
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Example: Box Plots 

IBEA NSGA-II SPEA2 IBEA NSGA-II SPEA2 IBEA NSGA-II SPEA2 

DTLZ2 

ZDT6 
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epsilon indicator      hypervolume         R indicator 
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Statistical Assessment (Kruskal Test) 

ZDT6 

Epsilon 

DTLZ2 

R 

IBEA NSGA2 SPEA2 

IBEA ~0 ~0 

NSGA2 1 ~0 

SPEA2 1 1 

Overall p-value = 6.22079e-17. 

Null hypothesis rejected (alpha 0.05) 

is better 

than 
IBEA NSGA2 SPEA2 

IBEA ~0 ~0 

NSGA2 1 1 

SPEA2 1 ~0 

Overall p-value = 7.86834e-17. 

Null hypothesis rejected (alpha 0.05) 

is better 

than 

Knapsack/Hypervolume:    H0 = No significance of any differences 
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Problems With Non-Compliant Indicators 
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What Are Good Set Quality Measures? 

There are three aspects [Zitzler et al. 2000] 

 

 

 

 

 

 

 

 

 

Wrong! [Zitzler et al. 2003] 

 

f2 

f1 

An infinite number of unary set measures is needed to detect 

in general whether A is better than B 
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Open Questions: 

 how to design a good benchmark suite? 

 are there other unary indicators that are (weak) 

refinements? 

 how to achieve good indicator values? 

Set Quality Indicators 
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Overview 

The Big Picture 
 

Basic Principles of Multiobjective Optimization 

 algorithm design principles and concepts 

 performance assessment 
 

Selected Advanced Concepts 

 indicator-based EMO 

 preference articulation 
 

A Few Examples From Practice 
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When the goal is to maximize a unary indicator… 

 we have a single-objective set problem to solve 

 but what is the optimum? 

 important: population size µ plays a role! 
 

 

 

 

 

 

Optimal µ-Distribution: 

 A set of µ solutions that maximizes a certain unary 

indicator I among all sets of µ solutions is called 

 optimal µ-distribution for I.                              [Auger et al. 2009a] 

Indicator-Based EMO: Optimization Goal 

Multiobjective 

Problem 
 

Single-objective 

Problem 
 

Indicator 
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Hypervolume indicator refines dominance relation 

            most results on optimal µ-distributions for hypervolume 

 

Optimal µ-Distributions (example results) 
 

 [Auger et al. 2009a]: 

 contain equally spaced points iff front is linear 

 density of points                    with     the slope of the front 
 

[Friedrich et al. 2011]: 

 optimal µ-distributions for the 

 hypervolume correspond to 

 -approximations of the front 
 

! (probably) does not hold for > 2 objectives 

Optimal µ-Distributions for the Hypervolume 

/
p
¡f 0(x) f 0
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Open Questions: 

 How do the optimal µ-distributions look like for >2 objectives? 

 how to compute certain indicators quickly in practice? 

 several recent improvements for the hypervolume 

indicator [Yildiz and Suri 2012], [Bringmann 2012], [Bringmann 2013] 

 including lower bounds 

 how to do indicator-based subset selection quickly? 

 what is the best strategy for the subset selection? 

 

 

further open questions on indicator-based EMO available at 
http://simco.gforge.inria.fr/doku.php?id=openproblems 

Indicator-Based EMO 
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Overview 

The Big Picture 
 

Basic Principles of Multiobjective Optimization 

 algorithm design principles and concepts 

 performance assessment 
 

Selected Advanced Concepts 

 indicator-based EMO 

 preference articulation 
 

A Few Examples From Practice 
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Articulating User Preferences During Search 

What we thought: EMO is preference-less 

 

 

 

 

 

What we learnt: EMO just uses weaker preference 

information 

 

 

 

 

 

 

 

[Zitzler 1999] 

preferable? environmental 

selection 
3 out of 6 
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Incorporation of Preferences During Search 

Nevertheless... 

 the more (known) preferences incorporated the better 

 in particular if search space is too large 
 [Branke 2008], [Rachmawati and Srinivasan 2006], [Coello Coello 2000] 

 

 Refine/modify dominance relation, e.g.: 

 using goals, priorities, constraints 
[Fonseca and Fleming 1998a,b] 

 using different types of cones 
[Branke and Deb 2004] 

 

 Use quality indicators, e.g.: 

 based on reference points and directions [Deb and Sundar 

2006, Deb and Kumar 2007] 

 based on binary quality indicators [Zitzler and Künzli 2004] 

 based on the hypervolume indicator (now) [Zitzler et al. 2007] 

 

f2 

f1 
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Example: Weighted Hypervolume Indicator 

 [Zitzler et al. 2007] 
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Weighted Hypervolume in Practice 

 [Auger et al. 2009b] 
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Overview 
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93 Evolutionary Multiobjective Optimization, GECCO 2013, July 6, 2013 © D. Brockhoff, INRIA Lille – Nord Europe 93 

Application: Design Space Exploration 

Cost           

 

Latency  

 
Power 

 

 

Specification Optimization Implementation 

Environmental 

Selection 
Mutation 

x2 

x1 

f 

Mating 

Selection 
Recombination 

Evaluation 
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Application: Design Space Exploration 

Cost           

 

Latency  

 
Power 

 

 

Specification Optimization Implementation 

Environmental 

Selection 
Mutation 

x2 

x1 

f 

Mating 

Selection 
Recombination 

Evaluation 

   

  Truss Bridge Design 

  [Bader 2010] 
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Application: Design Space Exploration 

Cost           

 

Latency  

 
Power 

 

 

Specification Optimization Implementation 

Environmental 

Selection 
Mutation 

x2 

x1 

f 

Mating 

Selection 
Recombination 

Evaluation 

   

  Truss Bridge Design 

  [Bader 2010] 

 

 

 

 

 

 

 

 

 

 

 

 

   

  Network Processor Design 

  [Thiele et al. 2002] 
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Application: Design Space Exploration 

Cost           

 

Latency  

 
Power 

 

 

Specification Optimization Implementation 

Environmental 

Selection 
Mutation 

x2 

x1 

f 

Mating 

Selection 
Recombination 

Evaluation 

   

  Truss Bridge Design 

  [Bader 2010] 

 

 

 

 

 

 

 

 

 

 

 

 

   

  Network Processor Design 

  [Thiele et al. 2002] 

 

 

 

 

 

 

 

 

 

 

 

 

   

  Water resource 

  management 

  [Siegfried et al. 2009] 
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Application: Trade-Off Analysis 

Module identification from biological data  [Calonder et al. 2006] 

 

 

Find group of genes wrt 

different data types: 

 

 similarity of gene 

expression profiles 

 

 overlap of protein 

interaction partners 

 

 metabolic pathway 

map distances 
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Conclusions: EMO as Interactive Decision Support 

problem 

solution 

decision making 

modeling 

optimization 

analysis 

specification 

visualization 

preference 
articulation 

adjustment 
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The EMO Community 

Links: 

 EMO mailing list: http://w3.ualg.pt/lists/emo-list/ 

 EMO bibliography: http://www.lania.mx/~ccoello/EMOO/ 

 EMO conference series: http://www.shef.ac.uk/emo2013/ 

 

Books: 
 Multi-Objective Optimization using Evolutionary Algorithms 

Kalyanmoy Deb, Wiley, 2001 

 Evolutionary Algorithms for Solving Multi Evolutionary Algorithms 
for Solving Multi-Objective Problems Objective Problems, Carlos A. 
Coello Coello, David A. Van Veldhuizen & Gary B. Lamont, Kluwer, 2nd 
Ed. 2007 

 Multiobjective Optimization—Interactive and Evolutionary 
Approaches, J. Branke, K. Deb, K. Miettinen, and R. Slowinski, editors, 
volume 5252 of LNCS. Springer, 2008 [many open questions!] 

 and more… 
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PISA: http://www.tik.ee.ethz.ch/pisa/ 

Questions? 
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Additional Slides 
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