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A Brief Introduction to Multiobjective Optimization
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A Brief Introduction to Multiobjective Optimization

Observations: © there is no single optimal solution, but
® some solutions (e) are better than others (o)
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A Brief Introduction to Multiobjective Optimiz

Observations: © there is no single optimal solution, but
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Selecting a Solution: Examples

Possible O ranking: performance more important than cost
Approaches:
performance
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Selecting a Solution: Examples

Possible © ranking: performance more important than cost
Approaches: @ constraints: cost must not exceed 2400

performance .
. Q
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When to Make the Decision

Before Optimization:

u rank objectives,

Y

v

define constraints,...

p 1
search for one .
(good) solution '

v

]
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When to Make the Decision

Before Optimization:
)
“ rank objectives,

' define constraints, ..
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When to Make the Decision

Before Optimization: After Optimization:
a A . I"'_;‘
‘ i 150,
rank objectives search for a set of
78 ’ s (good) solutions

define constraints, ...

:?ii _
+ u select one solution

sear(C:Ih fo: Ci_”e o " considering
(good) solution constraints, etc.

i

:
|

N

A

-

© Dimo Brockhoff, INRIA Lille — Nord Europe i ’ July 12, 2014



When to Make the Decision

Before Optimization: After Optimization:
Ly, ) R
rank objectives, search for a set of
" define constraints, .. ” (good) solutions
l ss
search f to u v select one solution
>ea (c:I 01 cine °: | considering
(good) solution = l constraints, etc.

Focus: learning about a problem

» trade-off surface

* [nteractions among criteria

» structural information

= also: interactive optimization Y,
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Two Communities...

'\\ International Society on
M Multiple Criteria Decision Making

= peginning in 1950s/1960s = quite young field (first
= bi-annual conferences since papers in mid 1980s)
1975 = bi-annual conference since
= background in economics, 2001
math, management science = background evolutionary
= both optimization and decision computation (applied math,
making computer science,

engineering, ...)
= focus on optimization
algorithms
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...Slowly Merge Into One

International Society on
M Multiple Criteria Decision Making

= MCDM track at EMO conference since 2009
= special sessions on EMO at the MCDM conference since 2008
= joint Dagstuhl seminars since 2004
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One of the Main Differences

Blackbox optimization

xeX (fr(@), ..., fr())

only mild assumptions

—> EMO therefore well-suited for real-world engineering problems

non-linear ~ NOISY many objectives
uncertain huge
problem search

spaces

objectives

_ _ expensive
non-differentiable (integrated simulations) many constraints
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The Other Main Difference

Evolutionary Multiobjective Optimization
= set-based algorithms
= therefore possible to approximate the Pareto front in one run

performance Pareto front
' At A ) )
envwonmental mating approximation
selection ) :
selection )
"
‘f ,’ " 0.0
. o Pase t,
5‘:,::‘0.‘0‘20
evaluation o Cyeyd
N variation S
""*l—.—-—-l"' y, ’
» COSt
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Multiobjectivization

Some problems are easier to solve in a multiobjective scenario

example: TSP
[Knowles et al. 2001]

WESn%f(Tf) WESn_>(fl(ﬂaa'ab)7f2(7raavb))

Multiobjectivization
by addition of new “helper objectives” [Jensen 2004]

job-shop scheduling [Jensen 2004], frame structural design
[Greiner et al. 2007], VRP [Watanabe and Sakakibara 2007], ...

by decomposition of the single objective

TSP [Knowles et al. 2001], minimum spanning trees [Neumann and
Wegener 2006], protein structure prediction [Hand! et al. 2008a], ...

also backed up by theory e.g. [Brockhoff et al. 2009, Handl et al. 2008b]
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Innovization

Often innovative design principles among solutions are found

example:
clutch brake design min. mass +
[Deb and Srinivasan 2006] stopping time
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Innovization

Often innovative design prlnC|pIes among solutlons are found

’ 7=
/ y% ’ NSGALII o 10k T*S=308,106 mm"2.s
. /5 e
example_ ,/ . 9F %2_4 NSGA-II (r_i=80mm) * _: ©
=] - =] o
. ¥V O 8 . i 7 13
clutch brake design ! 7o e g s | 2
B a4 | - 1o
[Deb and Srinivasan 20d6] £ ° N i o
3 L 1 L 1 L | | |
: 04 06 08 1 12 14 16 18 ZI 2 3300()0 50000 100000 180000
Brake Mass (kg) Surface Area (mm™2)
I |
0
M \
] ~
(] ~ ~ -
N -
'I =~ - -~
4 =~ ~
Pl \
—‘—’
e====" !
P 4
‘ : I
\\ Solution | 1 x2  x3 24 x5 | fi fa /

> Min. f; [ 70 90 1.5 1000 3 |[0.4704 11.7617 //
Min. fo | 80 110 1.5 1000 9 [ 2.0948 3.3505 4
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Innovization

Often innovative design principles among solutions are found

7=3 R
H _)%. NseA.II o | 1o, 8 -T*sS=308,106 mn2.s
s T 5 o
example: 5l . )
b= 72=4 g 8
- E 81 %- g‘l T7r - g
clutch brake design IR . g
o, = O
. - o 6 - - oy 5 - | <
[Deb and Srinivasan 2006] g N g ®
2 - 9]
ol "‘% Z=8 .
3 I I I T. .: @ X . |
0406 08 ! 12 14 16 18 2 2 3300()0 50000 100000 180000

Brake Mass (kg)

Innovization [Deb and Srinivasan 2006]

= using machine learning technigues to find new and innovative
design principles among solution sets

= learning about a multiobjective optimization problem

Surface Area (mm”*2)

Other examples:
= SOM for supersonic wing design [Obayashi and Sasaki 2003]
» Diclustering for processor design and KP [Ulrich et al. 2007]
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The History of EMO At A Glance

first EMO approaches

dominance-based population ranking

dominance-based EMO algorithms with diversity preservation techniques

1995

attainment functions

elitist EMO algorithms  preference articulation convergence proofs

2000 test problem design quantitative performance assessment

multiobjectivization

uncertainty and robustness running time analyses

guality measure design

MCDM + EMO

quality indicator based EMO algorithms

2010 many-objective optimization

statistical performance assessment

© Dimo Brockhoff, INRIA Lille — Nord Europe
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The History of EMO At A Glance

first EMO approaches
Distribution of the references by categories
3935
ance-based population ranking
3249
dominance-based EMO algorithms with diversity preservation techniques
attainment functions
elitist EMO algorithms preference articulation convergence proofs
test problem design quantitative performance assessment 999
multiobjectivization
uncertainty and robustness running time analyses quality measure design
L . 264
MCDM + EMO quality indicator based EMO algorithms 63 46 4 - 89 1

many-objective optimization statistical performance assessment Journal Books In  Conference Masters Miscella- Ph.D, Technical Unpub-

papers collections papers theses neous theses reports lished

Distribution of the references by year

1 1@ T T 1
Overall: 8650 references by April 3, 2014

400

360

323

278

- i.
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The EMO Community

The EMO conference series:

EMO 2013
Sheffield, GB

EMO 2015
Guimaraes, PT

(s}
Republi
d g Y 4
> :

EMO 2009

/' 0 EMO2003. . EMO200L i

S T | il

EMO 2005

Guanajuato, MX = . 2011._ 

K Ouro Preto, BR
Many further activities:

Nantes, FR .

from Google maps

N

EMO 2007

fi - Matsushima, JP
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Overview

The Big Picture

Basic Principles of Multiobjective Optimization
= algorithm design principles and concepts
= performance assessment

Selected Advanced Concepts
* ndicator-based EMO
= preference articulation

A Few Examples From Practice

© Dimo Brockhoff, INRIA Lille = Nord Europe i ’ July 12, 2014



Starting Point

What makes evolutionary multiobjective optimization
different from single-objective optimization?

g 4 performance —= performance
;‘> —— -ﬂ%wl;]_@_’ >

single objective multiple objectives
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Starting Point

A Ccost q
5

performance performance

>

single objective multiple objectives

search space X

objective space Z
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The Main Difference

4 COst

performance
>
single objective multiple objectives
total order on f(X) C R partial order on f(X) C RF
total (pre-)order on X preorder on X
where a better than b where a better than b
if f(a) < f(b) if f(a) prefrel f(b)

- Pareto dominance

» weak Pareto dominance
» ¢-dominance

- cone dominance
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The Main Difference

A COSt
B ’

g o __ performance =5 performance

single objective multiple objectives
total order on f(X) C R partial order on f(X) C R*
total (pre-)order on X preorder on X
where a better than b where a better than b
if f(a) < f(b) if f(a) prefrel f(b)

even more complicated:
sought are sets!

T
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Most Common Example: Pareto Dominance

u weakly Pareto dominates v (u <par v): V1 <1< k: fi(u) < fi(v)

u Pareto dominates v (u <par v): U <par U N U Lpar U

performance
Q
Q
iIncomparable
o ©
o Q
10 Q 2
o incomparable @ 9 dominated
5 — Q
Q
B g | | | — > cost

| | |
500 1000 1500 2000 2500 3000 3500
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Different Notions of Dominance

performance
4 €
/_/% Q
20 -
e Q
° g-dominance
15 -
®
10 — Q
° Q Q
5 | Q cone dominance
Q
9 | cost

! !
500 1000 1500 2000 2500 3000 3500
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Visualizing Preference Relations

4 COst

;;;;;

performance
. >
single objective multiple objectives
O< O—0O—)
minima
Eg z optimum @) Q
arrow from @ to b if f(a) < f(b) arrow from a to b if a weakly

dominates b
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Visualizing Preference Relations

(f performance’ >)

optima

\Q\‘O note:

> ((feost, | performance)  <par) reflexive and
transitive edges
not shown
J
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Pareto-optimal Set and Pareto(-optimal) Frc

The minimal set of a preordered set (Y, <) is defined as
Min(Y,S) ={acY|WeY:bZa=a=Zb}

Pareto-optimal set  Min(X, <par) ® Pareto-optimal front
non-optimal decision vector Q  non-optimal objective vector

S decision space ff objective space
O, e, ’,9
. .................................... E ’
Y Qe e »Q X
oot s o.o.o.o...,....'.'.‘. ............................ ::3 ? o E
/ T AN P i S
- > X1 : : » f1
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Other Related Definitions

Computational complexity for discrete problems:
multiobjective variants can become NP- and #P-complete

Size: Pareto set can be exponential in the input length
(e.g. shortest path [Serafini 1986], MSP [Camerini et al. 1984])

Q
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Approaches To Multiobjective Optimization

A multiobjective problem is as such underspecified
...because not any Pareto-optimum is equally suited!

Additional preferences are needed to tackle the problem:

Solution-Oriented Problem Transformation:
Classical approach: Induce a total order on the decision space,
e.g., by aggregation

Set-Oriented Problem Transformation:

Recent view on EMO: First transform problem into a set problem
and then define an objective function on sets [Zitzler et al. 2010]

Preferences are needed in both cases, but the latter are weaker!
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Solution-Oriented Problem Transformations

. parameters .
multiple single
objectives ! objecCtive
(f,(), £,(%), ..., fu(X)) —>transformation —> s(x)

A scalarizing function sis a functions : Z — R that maps each

objective vector u = (uq,.

.. uy,) € Z toareal value s(u) € R

J
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Solution-Oriented Problem Transformations

. parameters .
multiple single
objectives ! objecCtive

(f1(%), (%), ..., fi(X)) = transformation — s(x)

fo

M Example 1. weighted sum approach

(W, Wy, ..., Wy )
|

MY =Wy, T WY '

4 AN
N
NI >\
N <Q /\/ /> Disadvantage: not all Pareto-
\3/ Vs N A optimal solutions can be found if
NN i
— f1  the front is not convex

N
N
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Solution-Oriented Problem Transformations

. parameters .
multiple single
objectives ! objecCtive

(f1(%), (%), ..., fi(X)) = transformation — s(x)

. Example 2: weighted Tchebycheff
wo = — (Y %
9 > > l
o e — y=max | \u-2) —
Q... . |

, Several other scalarizing functions
i f1 - are known, see e.g. [Miettienen 1999]
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Set-Oriented Problem Transformations

For a multiobjective optimization problem (X, Z, f, g, <),
the associated set problem is given by (¥, Q, F, G, €) where

e U = 2% is the space of decision vector sets,

i.e., the powerset of X,

o () = 27 is the space of objective vector sets,

i.e., the powerset of Z,

e [ is the extension of f to sets, i.e.,

F(A):={f(a) : ac A} for A € V¥,

e G=(G4,...,G,,) is the extension of g to sets,

i.e.,, Gi(A) :=max{g;(a) rac A} for 1 <i<mand A eV,

o < extends < to sets where
AZ B:<Vbe Bdae A:a<b.

© Dimo Brockhoff, INRIA Lille — Nord Europe

July 12, 2014



Pareto Set Approximations

Pareto set approximation (algorithm outcome) =
set of (usually incomparable) solutions

performance :
N @ cakly dominates 'B

---- = not worse in all objectives
and sets not equal

@) dominates B
= better in at least one objective

@ strictly dominates @8
= better in all objectives

R B isincomparable to f€C?
cost = neither set weakly better
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What Is the Optimization Goal of a Set Prob

» Find all Pareto-optimal solutions?
 Impossible in continuous search spaces
« How should the decision maker handle 10000 solutions?
*» Find a representative subset of the Pareto set?
« Many problems are NP-hard
- What does representative actually mean?
* Find a good approximation of the Pareto set?
* What is a good approximation?
* How to formalize intuitive understanding:

O close to the Pareto front
® well distributed

Most common: use of quality indicators

© Dimo Brockhoff, INRIA Lille = Nord Europe EMO tutorial, GECCO0’2014, Vancouver, July 12, 2014



Quality of Pareto Set Approximations

A (unary) quality indicator [ is a function I : ¥ = 2% — R
that assigns a Pareto set approximation a real value.

well-known examples:

f, f2
A A
K L
Q Q
reference set X
Q A
| X7 @
| o
Q >1S }E
Q
v
£
> f, > f,
hypervolume indicator epsilon indicator
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Problem Transformations and Set Problems

single solution problem set problem

search space

@

,fk fr(A) = {f(z) |z € A}

objective space

#

w}y @V@f@ >f@ AE*B:@vyeBameAmty

(partially) ordered set

\e&

e.g. via aggregation

via set quality indicators

(totally) ordered set
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General Remarks on Problem Transformatio

Main Goal:
Transform a preorder into a total preorder on X

Methods:

= Define single-objective function based on the multiple criteria
(e.g. via aggregation)

= Define total preorder on sets by using a quality indicator
(e.g. via hypervolume indicator)

Question:

Is any total preorder okay or are there any requirements
concerning the resulting preference relation?

= Underlying dominance relation should be reflected!
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Refinements and Weak Refinements

ref

O < refines a preference relation = iff

ref ref

ASBABAA=ASBAB#AA (better = better)

= fulfills requirement

ref

® < weakly refines a preference relation < Iiff

ref
A<XBAr BLA=A % B (better = weakly better)

ref

= does not fulfill requirement, but < does not contradict <

| sought are total refinements... [Zitzler et al. 2010]
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Example: Refinements Using Indicators

ref ref
A< B:=1(A) >1(B) A < B :=1(AB) <I(B,A)
1) = volu_me o e I(A,B) = how much needs A to
weakly dominated area .
: . be moved to weakly dominate B
In objective space
A
-------- * VO
~--—'—'—'0:~ ...........
" A
I(A) ®
>
unary hypervolume indicator binary epsilon indicator
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Example: Weak Refinement / No Refineme

ref ref
A= B:<1I(AR) <I(B,R) A< B:=I1(A) <I(B)
I(A,R) = how much needs A to I(A) = variance of pairwise
be moved to weakly dominate R distances
A
weak refinement no refinement
v
.............. A’
i
| %
| “
| .
N
-0 . >
unary epsilon indicator unary diversity indicator
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Overview

The Big Picture

Basic Principles of Multiobjective Optimization
= algorithm design principles and concepts
= performance assessment

Selected Advanced Concepts
* ndicator-based EMO
= preference articulation

A Few Examples From Practice
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Algorithm Design: Particular Aspects

representation 1 fitness assignment mating selection

0..

2 environmental selection 3 variation operators
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Fithness Assignment: Principal Approaches

aggregation-based criterion-based dominance-based
weighted sum VEGA SPEA2, NSGA-II

but also decomposition ‘modern” EMOA

y: -based EMO y2

Y
Q //.
o o/
o % Q ]
= y1 > y1
parameter-oriented _ set-oriented
scaling-dependent scaling-independent
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Criterion-Based Selection: VEGA

select

according to shuffle [Schaffer 1985]
f
1 I, :
f
2 > T2 >
f
3 > T3 >
f
fk-l T >
k > Tk >
population k separate selections mating pool

Drawback: only allows to find extremes of the Pareto front
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Aggregation-Based: Multistart Constraint Met

Underlying concept:
= Convert all objectives except of one into constraints
= Adaptively vary constraints

y2 maximize f,
—

feasible region T

constraint
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Aggregation-Based: Multistart Constraint Met

Underlying concept:
= Convert all objectives except of one into constraints
= Adaptively vary constraints

y2 maximize f,
—

©c O O O O
c 0 ¢ O
@

feasible region T

constraint
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Aggregation-Based: Multistart Constraint Met

Underlying concept:
= Convert all objectives except of one into constraints
= Adaptively vary constraints

y2 maximize f,
—

feasible region T
constraint

y1
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General Scheme of Most Dominance-Based

mating selection (stochastic)
A

fitness assignment
partitioning into
dominance classes

. v
population (archiv) offspring

v rank refinement within
dominance classes

environmental selection (greedy heuristic)

Note: good in terms of set quality = good in terms of search?
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Ranking of the Population Using Dominance

... goes back to a proposal by David Goldberg in 1989.
... IS based on pairwise comparisons of the individuals only.

= dominance rank: by how f2
many individualsisan [ ,
individual dominated? ;
MOGA, NPGA

= dominance count: how many
Individuals does an individual

dominate?
SPEA, SPEA2
= dominance depth: at which O %
: T dominance &%
front is an individual located? count 5 g
NSGA, NSGA-II, most of the %%%_'-_,fl

recently proposed algorithms
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lllustration of Dominance-based Partitioning

dominance depth

© Dimo Brockhoff, INRIA Lille — Nord Europe
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Refinement of Dominance Rankings

Goal: rank incomparable solutions within a dominance class

O Density information (good for search, but usually no refinements)

Kernel method k-th nearest neighbor Histogram method
density = density = density =

function of the function of distance number of elements
distances to k-th neighbor within box

Q Q
Yf
¢ g0 Q ol ©
& @ S

® Quality indicator (good for set quality): soon...
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Example: NSGA-II Diversity Preservation

Density Estimation
crowding distance:

= sort solutions wrt. each
objective

= crowding distance to neighbors:

d(z) R Z ’f'm(Z o 1) o fm(z + 1)’

obj. m
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SPEAZ2 and NSGA-II: Cycles in Optimization

Selection in SPEA2 and NSGA-II can result in
deteriorative cycles 3 ——— ' ' ™ Parcto skt -

Archive elements after t=5.000,000 <
Archive elements after t=10,000,000 o

=

]

=

(=]
T

< IR - S
T B0y
S

non-dominated
solutions already
found can be lost
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Hypervolume-Based Selection

Latest Approach (SMS-EMOA, MO-CMA-ES, HypE, ...)
use hypervolume indicator to guide the search: refinement!

Main Idea B >< [jecfﬁ_]rf?ce
Delete solutions with Hypervolume of A: '
the smallest 1 (A) = I (3)dz
hypervolume loss \ ;
dis) = lu(P)-lu(P/{sh) | 5
iteratively | aF)=1

But: can alsoresultin = iimize ‘
cycles if reference w(2)=0 fitness ommnr _|

contribution to
pomt IS not constant [Judt et al. 2011] hypervolume

and is expensive to compute exactly [Bringmann and Friedrich 2009]

Moreover: HypE [Bader and Zitzler 2011]
Sampling + Contribution if more than 1 solution deleted



Decomposition-Based Selection: MOEA/D

MOEA/D: Multiobjective Evolutionary Algorithm Based on

Decomposition [Zhang and Li 2007]

ldeas:

Optimize N scalarizing functions in parallel

Use best solutions of “neighbored scalarizing function” for
mating

keep the best solutions for each
scalarizing function tf,
eventually replace neighbors

use external archive for non- L
dominated solutions PR
several improved versions o .

-
-
-
-
-
-
Z -

recently
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Scalarizing Approaches

Open Questions:
= how to choose “the right” scalarization even if the direction in
objective space is given by the DM?
= combinations/adaptation of scalarization functions

* independent optimization vs. cooperation between single-
objective optimization
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Variation in EMO

= At first sight not different from single-objective optimization
= Most algorithm design effort on selection until now
= But: convergence to a set # convergence to a point

Open Question:
= how to achieve fast convergence to a set?

Related work:
= multiobjective CMA-ES [Igel et al. 2007] [VoR et al. 2010]
= set-based variation [Bader et al. 2009]
» set-based fithess landscapes [verel et al. 2011]

© Dimo Brockhoff, INRIA Lille — Nord Europe i ’ July 12, 2014



Overview

The Big Picture

Basic Principles of Multiobjective Optimization
= algorithm design principles and concepts
= performance assessment

Selected Advanced Concepts
* ndicator-based EMO
= preference articulation

A Few Examples From Practice
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Once Upon a Time...

... multiobjective EAs were mainly compared visually:

f‘ AA ‘:*#a A Ax
A
* A*"* ? .}* *ﬁ*

AF oxox, &
o R 32"5*
#
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Two Approaches for Empirical Studies

Attainment function approach:

minimize

Applies statistical tests directly
to the samples of approximation

sets

Gives detailed information about
how and where performance

differences occur

A attains

grand worst
attainment
surface 4

grand best
attainment

B attains

grand worst
attainment
surface

© Dimo Brockhoff, INRIA Lille — Nord Europe

minimize

Quality indicator approach:

= First, reduces each
approximation set to a single
value of quality

= Applies statistical tests to the
samples of quality values

Indicator A B
Hypervolume indicator | 6.3431  7.1924
e-indicator | 1.2090  0.12722
Ry indicator | 0.2434  0.1643
Rs indicator | 0.6454  0.3475

see e.g. [Zitzler et al. 2003]

July 12, 2014



Empirical Attainment Functions

three runs of two multiobjective optimizers

3. 25 3/3 03 13 23 3/3

e B e s s e e
5 10 15 20

frequency of attaining regions
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Attainment Plots

50% attainment surface for IBEA, SPEA2, NSGAZ (ZDT6)

1.35 B~ « .
MAAXAA AAA
AAAAA
1.3 - “AA&AAA“
4
1.25 F 7 ot
. % & Ry *ay
e Ay *
1.2 Txox *ﬂ'ﬂ
R
A N
_ : a4
- L L L. r“‘“-AAAA
[ 1.2 1.4 1.0 1.8 A
Asa

latest implementation online at
http://eden.dei.uc.pt/~cmfonsec/software.html

see [Fonseca et al. 2011]
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Quality Indicator Approach

Goal: compare two Pareto set approximations A and B

hypervolume 432.34 420.13

o distance 0.3308 0.4532 " .
o To T diversity 0.3637 03463 — A better
o - spread 0.3622 0.3601

B Oo . p cardinality 6 5

Comparison method C = quality measure(s) + Boolean function

quality Boolean
measure N function
A B > |R » statement
reduction Interpretation
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Example: Box Plots

epsilon indicator  hypervolume R indicator
IBEA NSGA-IISPEA2 IBEA NSGA-IISPEA2 IBEA NSGA-IISPEA2
0.08 ' 0.008¢ ' 0.00014
ol B oo e g W
DTLZZ 0.0 - Il
0.02 0. 002 0:600051 _
—_— A ' oF ===
1 2 3 1 > 3 1 2 3
0.6F T — 0.8 0.4 —
Knapsacko.i| 0 0.3
p 03 . . 0.4 * 0.2 -
0.2 0.2 0.1
0.1 ] 1 —— ) \ i . L i
1 2 3 1 2 3 1 2 3
0.35 0.35 0.12F
ZDT6 0.3 % 0,53 % I %
0.2 _ : 0.2 % : 0 oek .
O{)li) % O()l? 0.04} %
0.05 % 0.05 0.02
’ 1 2 3 ’ 1 2 3 ot 1 2 3
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Statistical Assessment (Kruskal Test)

ZDT6 DTLZ2
Epsilon R
r' > IBEA |NSGA2 SPEA2 f' > IBEA |NSGA2 SPEA2
IBEA ~0 () -0 () | IBEA 0 © |70 ©
NSGA2 |1 ~0 (%) | NSGA2 |1 1
SPEA2 |1 1 SPEA2 |1 ~0  (©
Overall p-value = 6.22079e-17. Overall p-value = 7.86834e-17.
Null hypothesis rejected (alpha 0.05) Null hypothesis rejected (alpha 0.05)

Knapsack/Hypervolume: H; = No significance of any differences
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Problems With Non-Compliant Indicators

5
| | | | | A A
Indicator A B B
ﬁ Generational distance | 3.46396  2.37411
ar Spacing (Schott) | 026476  0.19989 i
Max Pareto front error | 3.35489  3.31314
Extent | 3.56039  3.57319
'cg 3r z _
E A
= | _
A %
JANEE +
1 A + N i
/A +
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What Are Good Set Quality Measures?

There are three aspects [Zitzler et al. 2000]

COTIPATTITE TITTETCIT OPTITIZATTON TeCTIUTS CXPeTIEITITy AW ays TIVOIVeS 1T TTOTToTT
of performance. In the case of multiobjective optimization, the definition of quality is
substantially more complex than for single-objective optimization problems, because the
optimization goal itself consists of multiple objectives:

o The distance of the resulting nondominated set to the Pareto-optimal front should be

minimized.

¢ A good (in most cases uniform) distribution of the solutions found is desirable. The
assessment of this criterion might be based on a certain distance metric.

o The extent of the obtained nondominated front should be maximized, i.c., for each
objective, a wide range of values should be covered by the nondominated solutions.

In the literamre. some atrempts can be fonund to formalize the above definition (or parts

© Dimo Brockhoff, INRIA Lille — Nord Europe

Wrong! [Zitzler et al. 2003]

An infinite number of unary set measures is needed to detect

In general whether A is better than B
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Set Quality Indicators

Open Questions:
= how to design a good benchmark suite?
= are there other unary indicators that are (weak) refinements?
= how to compute indicators efficiently (enough for practice)?
= how to achieve good indicator values?
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Overview

The Big Picture

Basic Principles of Multiobjective Optimization
= algorithm design principles and concepts
= performance assessment

Selected Advanced Concepts
* ndicator-based EMO
= preference articulation

A Few Examples From Practice
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Indicator-Based EMO: Optimization Goal

When the goal is to maximize a unary indicator...
= we have a single-objective set problem to solve
= but what is the optimum?
= important: population size u plays a role!

Multiobjective Indicator . Single-objective
Problem Problem

Optimal p-Distribution:
A set of U solutions that maximizes a certain unary indicator |
among all sets of u solutions is called

optimal p-distribution for I. [Auger et al. 2009a]
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Optimal p-Distributions for the Hypervolume

Hypervolume indicator refines dominance relation
—> most results on optimal p-distributions for hypervolume

Optimal p-Distributions (example results)

[Auger et al. 2009a]:

= contain equally spaced points iff front is linear
» density of points « v/—f(z) with f’ the slope of the front
[Friedrich et al. 2011]:

OPT |+ log(min{A/a, B/b})

optimal p-distributions for the n
hypervolume correspond to HYP 1 VX VIR
g-approximations of the front ogiryp 1 4 VIOEA/a) loa(B/6)

n—2

| (probably) does not hold for > 2 objectives
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Indicator-Based EMO

Open Questions:
= How do the optimal p-distributions look like for >2 objectives?
= how to compute certain indicators quickly in practice?

= several recent improvements for the hypervolume indicator
[Yildiz and Suri 2012], [Bringmann 2012], [Bringmann 2013]

= how to do indicator-based subset selection quickly?
= what is the best strategy for the subset selection?

further open questions on indicator-based EMO available at
http://simco.gforge.inria.fr/doku.php?id=openproblems
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Overview

The Big Picture

Basic Principles of Multiobjective Optimization
= algorithm design principles and concepts
= performance assessment

Selected Advanced Concepts
* ndicator-based EMO
= preference articulation

A Few Examples From Practice
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Articulating User Preferences During Search

What we thought: EMO is preference-less

ZIVCIL DY 1€ DJIVL

Search before decision making: Optimization is performed without any pref-
erence Information given. The result of the search process 1s a set of
(1deally Pareto-optimal) candidate solutions from which the final choice
is made by the DM.

Decision makino durino search:e The DM can articunlate nreferences dnrino

[Zitzler 1999]

What we learnt: EMO just uses weaker preference information

selection

environmental Q preferable?
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Incorporation of Preferences During Search

Nevertheless...
= the more (known) preferences incorporated the better

= |n particular if search space is too large
[Branke 2008], [Rachmawati and Srinivasan 2006], [Coello Coello 2000]
A
©® Refine/modify dominance relation, e.g.: ‘

» using goals, priorities, constraints '
[Fonseca and Fleming 1998a,b] :

= using different types of cones
[Branke and Deb 2004]

® Use quality indicators, e.g.: .
1

= based on reference points and directions [Deb and Sundar 20086,
Deb and Kumar 2007]

= pased on binary quality indicators [Zitzler and Kiinzli 2004]
= based on the hypervolume indicator (now) [Zitzler et al. 2007]
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Example: Weighted Hypervolume Indicator

[Zitzler et al. 2007]

F E?‘QE
—y S
HOE }[ w(Z)dz i ?%g@
weighted
hypervolume

general
weight
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Weighted Hypervolume in Practice

IBEA ‘

weighted
Hypervolume

© Dimo Brockhoff, INRIA Lille — Nord Europe

IBEA

f o s f fs

weighted

Hypervolume two preference

points

fjrr -;2 f3 v:cza :'[5 f I':r

[Auger et al. 2009b]
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Application: Design Space Exploration

v I

Specification —>EN@ls]ilylb4=1ile]a Evaluation =—»Implementation

Pt

Mutation Environmental Latency

Selection Power
-

)

X, Mating
Selection

Recombination

Cost

G M G

Vv A
problem  mapping  architecture
graph set graph
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Application: Design Space Exploration

Truss Bridge Design
[Bader 2010]

intial brﬁdge warren truss
raghrsnde mirrored

WWAAAAAAAA
— . “

/7( ” dECkS |Oad - water level
20" 207

no robustness

T

N
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Application: Design Space Exploration

Truss Bridge Design
[Bader 2010]

intial brﬁdge warren truss
raghrsnde mirrore
fixed nodes

UMWAVAVAVAVAYS

7 /72 n decks i

IoadL ;
i water level

207 207

no robustness

Network Processor Design
[Thiele et al. 2002]
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Application: Design Space Exploration

Truss Bridge Design
[Bader 2010]

intial bridge: warren truss

Network Processor Design
[Thiele et al. 2002]

. Encryption/Decryption
fixed nodes

crypt Verify caps \§ () Voice Processing
3 | savesvc || saedrc || Savepns || close |Sconarios: | Scen2 || scemn | _Flow NRT [i /& jpheader Calc Check Flow NRT Forward
R : w., Decrypt yi i Modily  Sum
R Scenarlo: Scent :‘.':'--.:E:.f , . . H
R . SN | SerweSeet e s
: RN : Optimal Scaling Factor: 0.540 ik Rx | Very ST .
R : Total Memory: 9.963 Header er
e ] O O o] C o]

ARP .;chodm-c" Link
Tx
0 / ? OO

Look Up
Utlization: 14%  Utilization: 0%  Utlization: 86% Voke  RTPTz 7 UDPTx  Buld [P

B Route
load L ¢ Eocoder L RT Send  HeWer  LookUp

Flow RT Recy ™
i water level < I I L >

i right side mirrore

PowerPC Classifier DSP

] ¥
. st UDP Rx RTP Rx Dejitter Voi
n decks

20] Water resource

management
[Siegfried et al. 2009]

no robustness
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Application: Trade-Off Analysis

Module identification from biological data [Calonder et al. 2006]

. 1 ............................................................................
Find group of genes wrt X ; ; o GEf e GEL
different data types: 0'9'; """"" S X GEfjvs.PPIf, |
082+ _______ __________________________ + GEf, vs. metabolic, | |
= similarity of gene 3 0Ty + """""""""""""""""""""" A
expression profiles - 063><<++ ----------------------------------------- SRR
;_ 053%(— ---------- ﬁ'ﬁ ---------------------------------- s
= overlap of protein 04X&§( ----- — T ST
Interaction partners 3 o, % X __________________ e e
><I>< + I
02 ---- - AN e S IR R
. . X . . .
= metabolic pathway e %, o
map distances | \. | Cxxoy,
0 @ ; i i i L
0 0.2 0.4 0.6 0.8 "

distance objective f1 (AU
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Conclusions: EMO as Interactive Decision Supp«
A modeling

LA

g4

adjustment

analysis

specification optimization

visualization

preference
articulation

-

** decision making
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The EMO Community

Links:

= EMO mailing list: https://lists.dei.uc.pt/mailman/listinfo/emo-list

= MCDM mailing list: http://lists.jyu.fi/mailman/listinfo/mcdm-discussion
= EMO bibliography: http://www.lania.mx/~ccoello/EMOO/

= EMO conference series: http://www.dep.uminho.pt/EMO2015/

Books:

= Multi-Objective Optimization using Evolutionary Algorithms
Kalyanmoy Deb, Wiley, 2001

= Evolutionary Algorithms for Solving Multi Evolutionary Algorithms
for Solving Multi-Objective Problems Objective Problems, Carlos A.
Coello Coello, David A. Van Veldhuizen & Gary B. Lamont, Kluwer, 2nd
Ed. 2007

= Multiobjective Optimization—Interactive and Evolutionary
Approaches, J. Branke, K. Deb, K. Miettinen, and R. Slowinski, editors,
volume 5252 of LNCS. Springer, 2008 [(still) many open questions!]

= and more...
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PISA: http://www.tik.ee.ethz.ch/pisa/

SYSTEMS OPTIMIZATION

ETH Zirich - D-ITET - TIK - S0OF - FISA

this webpage might na longer be updated more.. -]

Download of Selectors, Variators and Performance Assessment

‘“‘P]SA This page contains the currently available variators and selector (see also Principles of PISA) as well as performance
Principles and assessment tools (see also Performance Assessment). The variators are mainly test and benchmark problems that
Documentation can be used to assess the performance of different optimizers. EXPO is a complex application form the are of

i PISA for Beginners computer design thai_: can be used as a benchmark problem too. The selectors are state-of—the-a_rt E\.rolutior'lar'yr
multi-objective optimization methods. If you want to write or submit a module, please look at Write and Submit a
Module. Links to documentation on the PISA specification can be found at Documentation.

@ |

’ Downloads Jaroslav Hajek pointed out a severe bug in the WFG selector, please redownload the module if your version is older
than 2010/02/03.
Perfarmance
Assessment
- Wnte and Submit a
~ Module Optimization Problems Optimization Algorithms
* Publications, Bugs, (variator) (selector)

Contact & License

GWILAB - Multi-Objective Groundwater Management SPAM - Set Preference Algorithm for Multiobjective

Optimization

Package: in Matlab .
Source:  InC

Binaries: Windows, Linux 32bit, Linux 64bit
LOTZ - Demonstration Program e
Source:  in SHV - Sampling-based HyperVolume-oriented algorithm
Binaries: Solans, Windows, Linux

More...

Source:  in
Binaries: Windows, Linux 32bit, Linux 64bit

LOTZ2 - Leading Ones Trailing Zeros maore...
Source: inC SIBEA - Simple Indicator Based Evolutionary Algorithm

Binaries: Solaris, Windows, Linux _ .
more...

~-Jmetal, Shark,

Binaries: Windows, Linux
Knapsack Problem

S « MOEA Framework, »

Binaries: Solaris, Windows, Linux

more...

more...

EXPO - Network Processor Design Problem . e
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Challenging Open (Research) Directions

= Benchmarking
= comparison with classical approaches
= where are real strengths of EMO (how much better?)
= algorithm recommendations for practice

= Many-objective Optimization

= growing EMO and MCDM to one field

Questions?
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