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A Brief Introduction to Multiobjective Optimization
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A Brief Introduction to Multiobjective Optimization

Observations: © there is no single optimal solution, but
® some solutions (e) are better than others (g)
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A Brief Introduction to Multiobjective Optimization

u weakly Pareto dominates v (u <per v): V1 <t <k: fi(u) < fi(v)
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A Brief Introduction to Multiobjective Optimizatio

cone dominance
Pareto dominance

-dominan
performance €-do ance

| | | | | | > cost
E 500 1000 1500 2000 2500 3000 3500

© Dimo Brockhoff EMO tutorial, PPSN’2016, Edinburgh, UK, September 2016



A Brief Introduction to Multiobjective Optimi

Pareto set: set of all non-dominated solutions (decision space)
Pareto front: its image in the objective space
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A Brief Introduction to Multiobjective Optimi

Pareto set: set of all non-dominated solutions (decision space)
Pareto front: its image in the objective space
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A Brief Introduction to Multiobjective Optim

decision space objective space
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solution of Pareto-optimal set ® vector of Pareto-optimal front
non-optimal decision vector @ non-optimal objective vector
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A Brief Introduction to Multiobjective Optimize

Q

min |

ideal point: best values
nadir point: worst values

} obtained for Pareto-optimal points
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Optimization vs. Decision Making

Multiobjective Optimization

combination of optimization of a set and a decision for a solution
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Selecting a Solution: Examples

Possible O ranking: performance more important than cost
Approaches:
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Selecting a Solution: Examples

Possible O ranking: performance more important than cost
Approaches: ® constraints: cost must not exceed 2400
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When to Make the Decision

Before Optimization:

ﬁ | :
VW rank objectives,

define constraints,...

=

\ (good) solution

|

v
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When to Make the Decision

Before Optimization:

o]
u rank objectives,

Y

&

define constraints,...

1
search for one
(good) solution
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When to Make the Decision

Before Optimization: After Optimization:

' rank objectives,

l define constraints,...

“search for a set of
(good) solutions

select one solution
considering
constraints, etc.

F

(good) solution

\ search for one o)

v
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When to Make the Decision

Before Optimization: After Optimization:
- .
rank objectives search for a set of
"' define constraints, .. (good) solutions
| a
= r
S to: vV select one solution
* | considering

| l constraints, etc.

Focus: learning about a problem
» trade-off surface

* |nteractions among criteria

= structural information

= also: interactive optimization
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Two Communities...

International Society on
/ Multiple Criteria Decision Making

= established field = (uite young field
(beginning in 1950s/1960s) (first papers in mid 1980s)

= bi-annual conferences since = bi-annual conference since
1975 2001

= background in economics, = background in computer
math, management and science, applied math and
social sciences engineering

» focus on optimization and » focus on optimization

decision making algorithms
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...Slowly Merge Into One

International Society on
M Multiple Criteria Decision Making

= MCDM track at EMO conference since 2009
= gspecial sessions on EMO at the MCDM conference since 2008

= joint Dagstuhl seminars since 2004
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One of the Main Differences

Blackbox optimization

re X (S1(z), -, [r(x))

only mild assumptions

—> EMO therefore well-suited for real-world engineering problems

non-linear  NOISY many objectives
uncertain huge
objectives problem search
expensive spaces

non-differentiable  (integrated simulations,  many constraints
real experiments)
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The Other Main Difference

Evolutionary Multiobjective Optimization

= set-based algorithms
= therefore possible to approximate the Pareto front in one run

/
performance Pareto front
environmental 7 A . A ) 110!
lecti mating approximation
selection .
J selection )
\*.“. %
Qf .‘ o.o
» 4 ¥ aee t,
‘3¢ :: ;’0‘:2‘
evaluation - Cyey
y variation gt A
""ﬂ—-—-—r" Y, max T %
» COSt
-

© Dimo Brockhoff



The History of EMO At A Glance

First EMO
algorithms

| Dominance
ranking

Elitist |

EMO
algo-
rithms

Scalari-
! zation- §
based
EMO

© Dimo Brockhoff

Visual
perfor-
mance
assess-
ment

Attain-
ment
functions

Statistical
performance
assessment

EMO tutorial, PPSN’2016, Edinburgh, UK, September 2016

Convergence
proofs

Running

Design :
time

of test
problems

Perfor- |

mance
indi-

cators

objective
problems

analyses

Preference
articulation

vization




The History of EMO At A Glance
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The EMO Community

_ from Google maps
The EMO conference series:

EMO 2013
Sheffield, GB

Munster, DE
« EMO 2015 \ /
Guimaraes, PT } ». EMO-2009

EMO 2017/

5 Nantes, FR .
AT | Emghzoéﬁ g
U N .. ~Matsushima, JP

EMO 2005

Guanajuato, MX < - EM O K-

| Ouro Preto, BR
Many further activities:

special sessions, spemal journal issues, workshops, tutorials, .
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Overview

The Big Picture
Algorithm Design Principles and Concepts

Performance Assessment
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Fitness Assignment: Principal Approaches

aggregation-based criterion-based dominance-based
problem decomposition VEGA SPEA2, NSGA-II
(multiple single-objective ‘modern” EMOA
optimization problems)
S GO S
changing
//Q/ g goals g
Q / Q : Q :
Ll ...,
o, . "..
I N
Q Q /1/ Q Q \ Q
maxT Q '-,.maxT Q maxT Q 3
— >V > V1 T > y1
max max max
solution-oriented e teeeeaaa set-oriented
scaling-dependent scaling-independent
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Solution-Oriented Problem Transformations

. parameters .
multiple single
objectives ! objective
(f,(), £,(x), ..., fu(X)) —>transformation —> s(x)

A scalarizing function sis a functions : Z — R that maps each

objective vector v = (uq,.

.. uy,) € Z toareal value s(u) € R

© Dimo Brockhoff
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Solution-Oriented Problem Transformations

. parameters .
multiple single
objectives ! objective

(f1(x), 2(X), --., f(X)) —transformation —> s(x)

fo

M Example 1: weighted sum approach

(Wy, Wy, ...y W)
|

Y =Wy T WY '

7N
AN
/}5\@} ..
NS /3\ />>’-.\ |

o\\ /\\ /'/ Disadvantage: not all Pareto-

max 4 x// N . optimal solutions can be found if
AN N, the front is not convex

7\

N
N

max
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Solution-Oriented Problem Transformations

. parameters .
multiple single
objectives ! objective

(f1(x), 2(X), --., f(X)) —transformation —> s(x)

N Example 2: weighted Tchebycheff
wo | — (Y
’ > > l
9 > > — y=max | A(u-2z)| —
Q... — |

. Several other scalarizing functions
iy 1 are known, see e.g. [Miettinen 1999

max T
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General Scheme of Most Set-Oriented EMO

mating selection (stochastic)
A

fitness assignment
partitioning into
dominance classes

. \4
population (archiv) offspring

i rank refinement within
dominance classes

environmental selection (greedy heuristic)
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Ranking of the Population Using Dominance

... goes back to a proposal by David Goldberg in 1989.
... IS based on pairwise comparisons of the individuals only.

dominance rank: by how
many individuals is an
Individual dominated?
MOGA, NPGA

dominance count: how many
iIndividuals does an individual
dominate?

SPEA, SPEA2

dominance depth: at which
front is an individual located?
NSGA, NSGA-II, most of the
recently proposed algorithms

max T

Q

dominance
count

B > f1

—
max

© Dimo Brockhoff
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lllustration of Dominance-Based Partitioning

f, f, dominance depth
L 3
2 2
1
minl 0 minl
:fl :fl
<+ <

min min
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Refinement of Dominance Rankings

Goal: rank incomparable solutions within a dominance class

© Diversity information

Kernel method k-th nearest neighbor Histogram method
diversity = diversity = diversity =
function of the function of distance number of elements
distances to k-th nearest neighbor within box(es)
Q Q
f f
f 9 Q sl ©
¢ 0 :

® (Contribution to a) quality indicator
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Example: NSGA-II Diversity Preservation

Crowding Distance (CD)

= sort solutions with regard to
each objective

= assign CD maximum value to
extremal objective vectors

= compute CD based on the
distance to the neighbors in

each objective

CD(Z) . dl (7’) 4.4 dm(z)

fl,max - fl,min fm,max - fm,min

© Dimo Brockhoff EMO tutorial, PPSN’2016, Edinburgh, UK, September 2016
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SPEA2 and NSGA-II: Deteriorative Cycles

Selection in SPEA2 and NSGA-II can result in
deteriorative cycles N — ' ' " Parcto st -

Archive elements after t=5.000,000 <
Archive elements after t=10.000.000 o

e

]

=

(=]
T

> IR -
T B0y
S

non-dominated
solutions already
found can be lost
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Remark: Many-Objective Optimization

= high number of objectives

-> percentage of non-dominated solutions within a
random sample quickly approaches 100 %

—> optimization is mainly guided by diversity criterion
—> apply secondary criterion compliant with dominance relation

600
| , b ) \ ‘ N
500 et i hta b SRR e st A Lt e e i A e A\}éx el AL
.,"im:.!&%;‘.yf""\%‘.,‘. '1;1.:";\‘;"}?’:??'. ‘M.”&f'xﬁ“f"ﬁf"*‘;’ﬁ;!‘f wﬁ*ﬁ\ﬁr} T 3 rv‘h: 3‘"‘ *' :‘B'Hf'r‘?ﬁ? ] ':",{"%‘M# -"*;‘,;{ w ﬁgrf‘ ﬁf,{.:“ﬁ'{’ lf*#%:::‘
H "y :

400
Q
5
w
©
Q
&
g 300k NSCAT ——
: : SPEA2 -------
g NSGA-II with modified crowding distance --------
5 e-MOEA archive e
§ .: £-MOEA population

200 |

100

o E

100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+006
function evaluations
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Hypervolume-Based Selection

Latest Approach (SMS-EMOA, MO-CMA-ES, HypE, ...)
use hypervolume indicator to guide the search: refines dominance

o e s s X reference
Main idea - point 7

Delete solutions with Hypervolume of A:
the smallest
Iy(A) =

hypervolume contribution_‘
d(s) = Iu(P)-Iu(P /{s}) 5 |

(Z)df

-—-1‘.__I 11

o(z) =1
| ;

iteratively S
minimize : ‘
_ w(2)=0 fitness Df point: |
But: can also result in contribution to
hypervolume

cycles on single solutions
[Judt et al. 2011], [Lopez-lbainez et al. 2011]

and is expensive to compute exactly for many objectives
Bringmann and Friedrich 2009]
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Indicator-Based Selection

= Concept can be generalized to any quality indicator

A (unary) quality indicator [ is a function] : ¥ = 2% — R

that assigns a Pareto set approximation a real value.
Y,

Multiobjective Indicator . Single-objective
Problem Problem

= for example: R2-indicator [Brockhoff et al. 2012], [Trautmann et al. 2013],
[Diaz-Manriquez et al. 2013]

= (Generalizable also to contribution to larger sets

HypE [Bader and Zitzler 2011]: Hypervolume sampling + contribution if
more than 1 (random) solution deleted
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The Optimization Goal in Indicator-Based E

When the goal is to maximize a unary indicator...
= we have a single-objective problem on sets
= but what is the optimum?
= |mportant: population size u plays a role!

Optimal p-Distribution:
A set of u solutions that maximizes a certain unary indicator |

among all sets of u solutions is called optimal p-distribution for |I.
[Auger et al. 2009a]

of 5 points: __0of 10 points: ~ of 20 points: ~ of 50 points:
1.00 ¢ 1.00 ¢ 1.00 - 1.00

75 ] 751" 7540 75

- * -*
-
50 s0{ ° s0{ '+, 50
* *
25 25 :
. see http://www.tik.ee.ethz.ch/sop/
0 — download/supplementary/testproblems/
0 25 s 75 100 .0 25 &
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Optimal p-Distributions for the Hypervolume

Hypervolume indicator refines dominance relation
—> most results on optimal p-distributions for hypervolume

Optimal p-Distributions (example results)

[Auger et al. 2009a]:

= contain equally spaced points iff front is linear
= density of points o v/ —f'(z) with f’ the slope of the front
[Friedrich et al. 2011]:

OPT 1+ log(min{A/a, B/b})

optimal p-distributions for the n
hypervolume correspond to HYP 1 YOV
g-approximations of the front ogiryp 1 Y102 /a) 1ox(B/b)

n—2

| (probably) does not hold for > 2 objectives
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Decomposition-Based Selection: MOEA/D

MOEA/D: Multiobjective Evolutionary Algorithm Based on

Decomposition [Zhang and Li 2007]

ldeas:

optimize N scalarizing functions in parallel

use best solutions of neighbor subproblems for mating
keep the best solution for each scalarizing function
update neighbors

use external archive for $1 4
non-dominated solutions

several variants and enhancements

-
-
-
-
-
-
Z -
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Remark: Variation in EMO

= at first sight not different from single-objective optimization
= most research on selection mechanisms (until now)

= Dbut:

convergence to a set # convergence to a point

Open Question:

how to achieve fast convergence to a set?

Related work:

set-based gradient of the HV [Emmerich et al. 2007]
multiobjective CMA-ES [lgel et al. 2007] [VoR et al. 2010]
RM-MEDA [Zhang et al. 2008]

set-based variation [Bader et al. 2009]

set-based fitness landscapes [Verel et al. 2011]

offline and online configuration based on libraries of variation
operators [Bezerra et al. 2015] [Hadka and Reed 2013]

© Dimo Brockhoff
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Overview

The Big Picture
Algorithm Design Principles and Concepts

Performance Assessment
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Once Upon a Time...

... multiobjective EAs were mainly compared visually:

A **Qi A

'y

AA"* x % 'S A&** * ‘Q‘ s ﬁ**
* *

« SE¥e 3.35)




Two Approaches for Empirical Studies

Attainment function approach

minimize

applies statistical tests directly
to the approximation set

detailed information about how
and where performance

differences occur

A attains

_gran_d best

attainment

grand worst
attainment
surface

© Dimo Brockhoff

minimize

minimize

B attains

grand best
attainment

grand worst
attainment

surface -|

minimize

Quality indicator approach

reduces each approximation set
to a single quality value

= applies statistical tests to the

quality values

Indicator A B
Hypervolume indicator | 6.3431  7.1924
e-indicator | 1.2090  0.12722
Ry indicator | 0.2434  0.1643
Rs indicator | 0.6454  0.3475

see e.q. [Zitzler et al. 2003]
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Empirical Attainment Functions

three runs of two multiobjective optimizers

3. 25 3/3

3. 13 213 . 3/3

B s s B s e e e
5 10

frequency of attaining regions
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Attainment Plots

50% attainment surface for IBEA, SPEA2, NSGAZ (ZDT6)

f

1.35 F  ~ 4+ e,
a AA&AA .
" a AAAA
1.3 F A““&AA
Y
-
- * * X
L.25 b R L
;: i SV
- X
1.2 ~ X % *"ﬂ
%
A A A A
1.15 ¢ ~
e Y PR
A
AAA A
I L L AArA‘A‘rM
A A A oa
1.2 1.4 1.6 1.8 .

latest implementation online at
http://eden.dei.uc.pt/~cmfonsec/software.html
R package: http://lopez-ibanez.eu/eaftools

see also [Fonseca et al. 2011]
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Quality Indicator Approach

ldea:
= transfer multiobjective problem into a set problem
= define an objective function (“quality indicator”) on sets
= use the resulting total (pre-)order (on the quality values)

Question:

Can any total (pre-)order be used or are there any requirements
concerning the resulting preference relation?

= Underlying dominance relation (on sets)

should be reflected!
A = B:= VyElexEACC Spa/r Yy
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Refinements and Weak Refinements

ref

O < refines a preference relation < iff

ref ref

ASBABAA=ASBABZXA (better = better)

= fulfills requirement

ref

® < weakly refines a preference relation < iff

ref
A<XBABALA=A<B (better = weakly better)

ref
= does not fulfill requirement, but < does not contradict <

I sought are total refinements... [Zitzler et al. 2010]
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Example: Refinements Using Indicators

ref

A < B:<=I(A) >1(B)

I(A) = volume of the

In objective space

weakly dominated area

A
. refinement
-------- )
VO
._._._._’.... T
.‘ A °
I(A) *

-

© Dimo Brockhoff

ref

A < B :<I(AB) <I(B,A)

I(A,B) = how much needs A to
be moved to weakly dominate B

refinement

vO

A!




Example: Weak Refinement / No Refineme

ref ref

A< B:<I1(AR) <I(B,R) A= B:=1(A) <I(B)
I(A,R) = how much needs A to I(A) = variance of pairwise
be moved to weakly dominate R distances

weak refinement no refinement
............ N
]
] %
max § L — & max §
— |--‘ — e >
max max

unary epsilon indicator unary dlverS|ty iIndicator
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Quality Indicator Approach

Goal: compare two Pareto set approximations A and B

hypervolume 432.34 420.13

°- distance 0.3308 0.4532 " "
o TN diversity 0.3637  0.3463 A better
* % = spread 0.3622 0.3601

B® ¢ cardinality 6 5

Comparison method C = quality measure(s) + Boolean function

quality Boolean

measure N function
A, B > |R » sStatement

reduction Interpretation
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Summary: Quality Indicators

A quality indicator

= maps a solution set to a real number

= can be used with standard performance assessment
= report median, variance, ...
= boxplots
= statistical tests

= should optimally refine the dominance relation on sets

Recommendation:
» use hypervolume (refinement)
= or epsilon indicator or R2 indicator (are weak refinements)
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Automated Benchmarking

State-of-the-art in single-objective optimization: Blackbox
Optimization Benchmarking (BBOB) with COCO platform

https://github.com/numbbo/coco

This year: first release of a bi-objective test suite
and corresponding BBOB-2016 workshop @ GECCO

Focus on target-based runlengths
= gives (nearly) anytime, interpretable results

» defines problem=(test function instance, single-objective goal
e.g. min. indicator difference to reference set, target precision)

» reports average runtimes (aRT) to reach target precision

COCO provides data profiles, scaling plots, scatter plots, tables,
statistical tests, etc. automatically
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Exemplary BBOB-2016 Results

1.0 ‘bbob: B.'abj"-'"f'i"fs'fi"'2'"[')' T g st 30pe

10, 10, 10, 10, 10, 10, 10, 10, 10770 3.0, TOULTA LD in

B G S &y GA-MUHTIOB)(NSG/
¢ SMS-EMOA-PM

Data from 15 submitted algorithms J

¥ u!wu—ull\ A e AR AR A=

MO DIRECT-hv(Ran

i B——EMAT-SMs
Ll ..HMAT'D! ECT

loal0 of (# f-evals / dimension)

Proportion of function+target pairs
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Exemplary BBOB-2016 Results

1.0r5on: biobj : f1-f55, 2-D 4 g best20ie

10, 10, 10, 10, 10, 10, 10, 10, 10770 3.0, TOULTA LD in

Proportion of function+target pairs

Rs-s

loal0 of (# 1
I\:‘IO DIR
MO DIR

__________

0.2} A I "

1.0 ‘bbob: bIObJ-f1f5520D4* MO i
10, 10 10, 10 10 10, 10 10 10, 10 10,{10, lQP,St:E@PlO in
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A
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OA-PM
FCT-hv(HV-
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FCT-hv(ND)
ECT

S

- ’/_'_95:‘-_
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-_ = , , L_Péf( . ?I'DO?QQZY'I' ""' ¥
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Exemplary BBOB-2016 Results
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Conclusions: EMO as Interactive Decision Suppt
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The EMO Community

Links:

= EMO mailing list: https://lists.dei.uc.pt/mailman/listinfo/emo-list

= MCDM mailing list: http://lists.jyu.fi/mailman/listinfo/mcdm-discussion
= EMO bibliography: http://www.lania.mx/~ccoello/EMOO/

= EMO conference series: http://www.emo2017.org/

Books:

= Multi-Objective Optimization using Evolutionary Algorithms
Kalyanmoy Deb, Wiley, 2001

= Evolutionary Algorithms for Solving Multi Evolutionary Algorithms
for Solving Multi-Objective Problems Objective Problems, Carlos A.
Coello Coello, David A. Van Veldhuizen & Gary B. Lamont, Kluwer, 2"
Ed. 2007

= Multiobjective Optimization—Interactive and Evolutionary
Approaches, J. Branke, K. Deb, K. Miettinen, and R. Slowinski, editors,
volume 5252 of LNCS. Springer, 2008 [(still) many open questions!]

= and more...
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Software
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Welcome to the jMetal Web Site
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Computer Engineering and
Networks Laboratory

JMetal is ... Summary of features Download from Sourceforge

© 2009 Institut TIK, ETH 3

jMetal stands for Metaheuristic Algorith
in Java, and it is an object-orien
Java-based framework for multi-objec
optimization with metaheuristics.

You can use it to ... MOEA Framework

A Free and Open Source Java Framework for Multiobjective Oprimizartion

Home Examples Downloads Documentation Support Donate

The object-oriented architecture of
framework and the included features allow y
to: experiment with the provided classic
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integrate jMetal in other tools, efc. A Framework for |n novati oh Current Version: 2.4

Released: Jan 02, 2015
The MOEA Framework is a free and open source Java library for developing and experimenting with multiobjective
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0 This repository

numbbo / coco

<> Code Issues 117

github.com/numbbo/coco/

@ Unwatch ~

Pull requests 1 Projects 0 Pulse Graphs Settings

Numerical Black-Box Optimization Benchmarking Framework http://coco.gforge.inria.fr/ — Edit

0 8,076 commits

¥ 11 branches s 27 releases

11

W Unstar

20

¥ Fork 15

22 15 contributors

Branch: master = MNew pull request

Gueate new file | Upload fils | Find file

') brockho committed on GitHub Merge pull request #1148 from numbbo/development

B code-experiments
B code-postprocessing
I code-preprocessing
i docs

B howtos

[ii)

clang-format

[ii)

hgignare

[ii)

AUTHORS

[

LICENSE

README.md

[

[

do.py

[

doxygen.ini
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update sharp ridge to generalize in large dim

Fixed the colors for ECDF plots.

added script to merge lines in the reconstructed .info files (e.g. fo...

Merge branch 'development’ of https://github.com/numbbo/coco into mer...
Merge branch 'development’ of https://github.com/numbbo/coco into dim...
raising an error in bbob2009_logger.c when best_value is NULL. Plus s...
raising an error in bbob2009_logger.c when best_value is NULL. Plus s...
small correction in AUTHORS

Update LICENSE

Update README.md

Added wersion number to the experiments and preprocessing.

moved all files into code-experiments/ folder besides the do.py scrip...

EMO tutorial, PPSN

Latest commit bf15dad on 13 Aug

a month ago
a month ago
2 months ago
a month ago
a month ago
2 years ago

2 years ago

& months ago
2 months ago
4 months ago
3 months ago

10 months ago



Personal Advertisement

we are hiring!

at the moment:
1 engineer position for 18 months in Paris
+ potential PhD, postdoc, and internship positions

If you are interested, please talk to me later
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Challenging Open (Research) Directions
= from algorithms to toolkits
» libraries of modules for each task (selection, variation, etc.)
= problem-specific algorithm configuration/ parameter tuning
= penchmarking
= comparison with classical approaches
= design/selection of practically relevant problems
= Algorithm/toolkit recommendations for practice
* integration of EMO and MCDM into one field
» |nteractive preference articulation and learning
* |nteractive problem design
» integration of problem-specific knowledge

Questions?
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