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Abstract. Recently, there has been a renewed interest in decomposition-based

approaches for evolutionary multiobjective optimization. However, the impact of

the choice of the underlying scalarizing function(s) is still far from being well un-

derstood. In this paper, we investigate the behavior of different scalarizing func-

tions and their parameters. We thereby abstract firstly from any specific algorithm

and only consider the difficulty of the single scalarized problems in terms of the

search ability of a (1+λ)-EA on biobjective NK-landscapes. Secondly, combin-

ing the outcomes of independent single-objective runs allows for more general

statements on set-based performance measures. Finally, we investigate the corre-

lation between the opening angle of the scalarizing function’s underlying contour

lines and the position of the final solution in the objective space. Our analysis is

of fundamental nature and sheds more light on the key characteristics of multiob-

jective scalarizing functions.

1 Introduction

Multiobjective optimization problems occur frequently in practice and evolutionary

multiobjective optimization (EMO) algorithms have been shown to be well-applicable

for them—especially if the problem under study is nonlinear and/or derivatives of the

objective functions are not available or meaningless. Besides the broad class of Pareto-

dominance based algorithms such as NSGA-II or SPEA2, a recent interest in the so-

called decomposition-based algorithms can be observed. Those decompose the multi-

objective problem into a set of single-objective, ‘scalarized’ optimization problems. Ex-

amples of such algorithms include MSOPS [1], MOEA/D [2], and their many variants.

We refer to [3] for a recent overview on the topic. The main idea behind those algo-

rithms is to define a set of (desired) search directions in objective space and to specify

the scalarizing functions corresponding to these directions. The scalarizing functions

can then be solved independently (such as in the case of MSOPS), or in a dependent

manner (like in MOEA/D where the recombination and selection operators are allowed

to use information from the solutions maintained in neighboring search directions).

Many different scalarizing functions have been proposed in the literature, see e.g. [4]

for an overview. Well-known examples are the weighted sum and the (augmented)

weighted Chebychev functions, where the latter has an inherent parameter that con-

trols the shape of the lines of equal function values in objective space. Especially with

respect to decomposition-based EMO algorithms, it has been reported that the choice

of the scalarizing function and their parameters has an impact on the search process [3].

Moreover, it has been noted that adapting the scalarizing function’s parameters dur-

ing the search can allow improvement over having a constant set of scalarizing func-

tions [5]. Although several studies on the impact of the scalarizing function have been
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conducted in recent years, e.g. [6], to the best of our knowledge, all of them investi-

gate it on a concrete EMO algorithm and on the quality of the resulting solution sets

when more than one scalarizing function is optimized (typically as mentioned above,

in a dependent manner). Thereby, the focus is not in understanding why those perfor-

mance differences occur but rather in observing them and trying to improve the global

algorithm. However, we believe that it is more important to first understand thoroughly

the impact of the choice of the scalarizing function for a single search direction be-

fore analyzing more complicated algorithms such as MOEA/D-like approaches with

specific neighboring structures, recombination, and selection operators. In this paper,

we fundamentally investigate the impact of the choice of the scalarizing functions and

their parameters on the search performance, independently of any known EMO algo-

rithm. Instead, we consider one of the most simple single-objective scalarizing search

algorithms, i.e., a (1 + λ)-EA with standard bit mutation, as an example of a local

search algorithm that optimizes a single scalarizing function, corresponding to a single

search direction in the objective space. Experiments are conducted on well-understood

bi-objective ρMNK-landscapes.

More concretely, we look experimentally at the impact of the parameters of a gen-

eralized scalarizing function (which covers the special cases of the weighted sum and

augmented Chebychev scalarizing functions) in terms of the position (angle/direction)

reached by the final points, as well as their quality with respect to the Chebychev func-

tion. We then consider how the opening of the cones that describe the lines of equal

scalarizing function values can provide a theoretical explanation for the impact of the

final position of the obtained solutions in objective space. We also investigate the result-

ing set quality in terms of hypervolume and ε-indicator if several scalarizing (1 + λ)-
EAs are run independently for different search directions in the objective space. Finally,

we conclude our findings with a comprehensive discussion of promising research lines.

2 Scalarizing Functions

We consider the maximization of two objectives f1, f2 that map search points x ∈ X
to an objective vector f(x) = (f1(x), f2(x)) = (z1, z2) in the so-called objective

space f(X). A solution x is called dominated by another solution y if f1(y) ≥ f1(x),
f2(y) ≥ f2(x), and for at least one i, fi(y) > fi(x) holds. The set of all solutions, not

dominated by any other, is called Pareto set and its image Pareto front.

Many ways of decomposing a multiobjective optimization problem into a (set of)

single-objective scalarizing functions exist, including the prominent examples of weigh-

ted sum (WS), weighted Chebychev (T), or augmented weighted Chebychev (Saug) [4].

For most of them, theoretical results, especially about which Pareto-optimal solutions

are attainable, exist [4, 7] but they are typically of too general nature to allow for state-

ments on the actual search performance of (stochastic) optimization algorithms. In-

stead, we are here not interested in any particular scalarizing function, but rather in

understanding which general properties of them influence the search behavior of EMO

algorithms. We argue by means of experimental investigations that it is not the actual

choice of the scalarizing function or their parameters that makes the difference in terms

of performance, but rather the general properties of the resulting lines of equal function

values. To this end, we consider the minimization of the following general scalarizing
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Table 1. Overview of the considered scalarizing functions, and the corresponding angles of the

lines of equal function values with the standard Pareto dominance cone.

scalar function parameters in Sgen opening angles reference

WS(z) = w1|z̄1 − z1| + w2|z̄2 − z2| α = 0, ε = 1 θ1 = arctan
(

−
w1
w2

)

θ2 = π

2 + arctan
(

w1
w2

)

[4, Eq. 3.1.1]

T(z) = max{λ1|z̄1 − z1|, λ2|z̄2 − z2|} α = 1, ε = 0 θ1 = 0
θ2 = π/2

[4, Eq. 3.4.2]

Saug(z) = T(z) + ε (|z̄1 − z1|+ |z̄2 − z2|) α = 1,

w1 = w2 = 1
θ1 = arctan

(

− ε

λ1+ε

)

θ2 = π

2 + arctan
(

ε

λ2+ε

)

[4, Eq. 3.4.5]

Snorm(z) = (1 − ε)T(z) + εWS(z) α = 1 − ε,

wi = 1/λi

θ1 = arctan(−
εw1

(1−ε)λ2+εw2
)

θ2 = π

2 + arctan(
εw2

(1−ε)λ1+εw1
)

here

function that covers the special cases of WS4, T, and Saug functions:

Sgen(z) = α ·max {λ1 · |z̄1 − z1|, λ2 · |z̄2 − z2|}+ ε (w1 · |z̄1 − z1|+ w2 · |z̄2 − z2|)

where z = (z1, z2) is the objective vector of a feasible solution, z̄ = (z̄1, z̄2) a utopian

point, λ1, λ2, w1, and w2 > 0 scalar weighting coefficients indicating a search direction

in objective space, and α ≥ 0 and ε ≥ 0 parameters to be fixed. For more details about

the mentioned scalarizing functions and their relationship, we refer to Table 1.

In the following, we also consider a case of Sgen that combines WS and T with a

single parameter ε: the normalized Snorm(z) = (1− ε)T(z)+ εWS(z) where α = 1− ε
and ε ∈ [0, 1]. For optimizing in a given search direction (d1, d2) in objective space,

we follow [1, 8] and set λi = 1/di.
5 In addition, we refer to the direction angle as

δ = arctan(d1/d2). For the case of Snorm, we furthermore choose w1 = cos(δ) and

w2 = sin(δ) (thus, w2
1 + w2

2 = 1) for the weighted sum part in order to normalize

the search directions in objective space uniformly w.r.t. their angles. Though, in many

textbooks you can find statements like “ε has to be chosen small (enough)”, we do not

make such an assumption but want to understand which influence ε has on the finally

obtained solutions and how it introduces a trade-off between the Chebychev approach

and a weighted sum. For the question of how small ε should be chosen to find all Pareto-

optimal solutions in exact biobjective discrete optimization, we refer to [9].

As mentioned above, one important property of a scalarizing function turns out to

be the shape of its sets of equal function values, which are known for the WS, T, and

Saug functions [4]. However, no description of the equi-function-value lines for the gen-

eral scalarizing function Sgen has been given so far. We think that it is necessary to state

those opening angles explicitly in order to gain a deeper intuitive understanding of the

above scalarizing approaches and related concepts such as the R2 indicator [8] or more

complicated scalarizing algorithms such as MOEA/D [2]. Moreover, it allows us to in-

vestigate how a linear combination of weighted sum and Chebychev functions affect the

search behavior of decomposition-based algorithms. The following proposition, proven

in the accompanying report [10], states these opening angles θi between the equi-utility

lines and the f1-axis, see also Fig. 2 for some examples.

4 Contrary to the standard literature, our formalization assumes minimization and we therefore

have included the utopian point z̄ that is typically assumed to be z̄ = (0, 0) for minimization.
5 The pathologic cases of directions parallel to the coordinates are left out to increase readability.
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Table 2. Parameter setting.
scalarizing functions ρMNK-landscapes (1 + λ)-EA

z̄ = (1, 1) ρ ∈ {−0.9,−0.8, . . . , 0.0, . . . , 0.9} λ = n
δ = j · 10−2 · π

2 , j ∈ [[1, 99]] m = 2 bit-flip rate = 1/n

Snorm: ε = ℓ · 10−2; ℓ ∈ [[0, 100]] n = 128 stopped after

Saug : ε = ℓ · 10−k; ℓ ∈ [[0, 10]]; k ∈ [[−1, 2]] k = 4 n iterations

Proposition 1. Let z̄ be a utopian point, λ1, λ2, w1, and w2 > 0 scalar weighting coef-

ficients, α ≥ 0 and ε ≥ 0, where at least one of the latter two is positive. Then, the polar

angles between the equi-utility lines of Sgen and the f1-axis are θ1 = arctan(− εw1

αλ2+εw2
)

and θ2 = π
2 + arctan( εw2

αλ1+εw1
).

3 Experimental Design

This section presents the experimental setting allowing us to analyze the scalarizing ap-

proaches introduced above on bi-objective ρMNK-landscapes. The family of ρMNK-

landscapes constitutes a problem-independent model used for constructing multiob-

jective multimodal landscapes with objective correlation [11]. A bi-objective ρMNK-

landscape aims at maximizing an objective function vector f : {0, 1}n → [0, 1]2. A

correlation parameter ρ defines the degree of conflict between the objectives. We inves-

tigate a random instance for each parameter combination given in Table 2.

We investigate the two scalarizing functions Snorm and Saug of Table 1 with different

parameter settings for the weighting coefficient vector and the ε parameter, as reported

in Table 2. In particular, the WS (resp. T) function corresponds to Snorm with ε =
1 (resp. ε = 0). The set of weighting coefficient direction angles δj with respect to

the f1-axis (j ∈ {1, . . . , 99}) are uniformly defined with equal distances in the angle

space. For both functions, we set λ1 = 1/ cos(δj), and λ2 = 1/ sin(δj). We recall

that for Snorm, wi = 1/λi, and for Saug, wi = 1. To evaluate the relative and the joint

performance of the considered scalarizing functions, we investigate the dynamics and

the performance of a randomized local search, a simple (1 + λ)-EA. After initially

drawing a random solution, at each iteration, λ offspring solutions are generated by

means of an independent bit-flip mutation, where each bit of the parent solution is

independently flipped with a rate 1/n. The solution with the best (minimum) scalarizing

function value among parent and offspring is chosen for the next iteration. For each

configuration, 30 independent executions are performed. Due to space limitations, we

shall only show a representative subset of settings allowing us to state our findings.

More exhaustive results can be found in [10].

4 Single Search Behavior

This section is devoted to the study of the optimization paths followed by single in-

dependent (1 + λ)-EA runs for each direction angle δ and parameter ε of a scalarized

problem. In particular, we study the final solution sets reached by the (1 + λ)-EA in

terms of diversity and convergence and give a sound explanation on how the search

behaviour is related to the lines of equal function values of the scalarizing functions.
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Fig. 1. Left: Angles of final solutions for Snorm and ρ = −0.7 as a function of δ. Middle: Average

deviation to best as a function of weight vector for Snorm and ρ = −0.7. Right: ε-values providing

the smallest deviation for every fixed direction in Snorm and ρ ∈ {−0.7, 0.0, 0.7}.

4.1 Diversity: Final Angle

In Fig. 1 (Left), we examine the average angle of the final solution reached by the

algorithm with respect to the f1-axis using Snorm. The final angle of solution x is defined

as φ(x) = arctan(f2(x)/f1(x)). It informs about the actual direction followed by

the search process. We can see that the final solutions are in symmetric positions with

respect to direction angle π/4. This is coherent with the symmetric nature of ρMNK-

landscapes [11]. For WS (ε = 1), every single direction angle infers a different final

angle. For T (ε = 0), the extreme direction angles end up reaching ‘similar’ regions of

the objective space. These regions actually correspond to the lexicographically optimal

points of the Pareto front, which is because of the choice of the utopian point that lies

beyond them. Without surprise, we can also see that T and WS do not always allow to

approach the same parts of the Pareto front when using the same direction angle.

When varying ε for a fixed δ, the search process is able to span a whole range

of positions that are achieved by either T or WS but for variable δ values. Actually,

when considering the direction angle being in the middle (i.e. δ ≈ π/4), the choice of

ε does not substantially impact the search direction—because T and WS do allow to

move to similar regions in this case. However, as the direction angle goes away from

the middle, the influence of ε grows significantly; and the search direction is drifting

in a whole range of values. This indicates that the choice of δ is not the only feature

that determines the final angle but also the choice of ε highly matters: For some specific

ε-values, the direction angles allow to distribute final angles fairly between the two

lexicographically optimal points of the Pareto front—in the sense that each direction

angle is inferring a different final angle, just like what we observe for WS. For some

other ε-values, however, it may happen that the final angles are similar for two different

direction angles. In particular, this is the case for large ε-values in Snorm, for which WS

has more impact than T. We remark that equivalent conclusions can be drawn when

examining Saug, which we do not detail here due to lack of space.

The distribution of final directions is tightly related to the diversity of solutions

computed by different independent single (1+λ)-EAs. As it will be discussed later, this

is of crucial importance from a multiobjective standpoint, since diversity in the objective

space is crucial to approach different parts of the Pareto front.

4.2 Convergence: Relative Deviation to Best

In the following, we examine the impact of the scalarizing function parameters on the

performance of the (1 + λ)-EA in terms of convergence to the Pareto front. For that
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purpose, we compute, for every direction angle δ, the best-found objective vector z⋆δ,T
corresponding to the best (minimum) fitness value with respect to T, over all exper-

imented parameter combinations and over all simulations we investigated. For both

functions Snorm and Saug, we consider the final objective vector z obtained for every

direction angle δ and every ε-value. We then compute the relative deviation of z with

respect to z⋆δ,T, which we define as follows: ∆(z) = (T(z)−T(z⋆δ,T))/T(z
⋆
δ,T). Notice

that this relative deviation factor is computed with respect to the T function, which is to

be viewed as a reference measure of solution quality. This value actually informs about

the performance of the (1 + λ)-EA for a fixed direction angle, but variable ε-values.

In Fig. 1 (Middle), we show the average relative deviation to best as a function of

direction angles (δ) for different ε-values. To understand the obtained results, one has

to keep in mind the results discussed in the previous section concerning the final angles

inferred by a given parameter setting. In particular, since WS and T do not infer similar

final angles, the final computed solutions lay in different regions of the objective space.

Also, for the extreme direction angles, different ranges of ε imply different final angles.

Thus, it is with no surprise that the average relative deviation to best can be substantial

in such settings. However, the situation is different when considering direction angles in

the middle (δ ≈ π/4). In fact, we observe that for such a configuration, the ε-value does

not have a substantial effect on final angles, i.e., final solutions lie in similar regions of

the objective space. Hence, one may expect that the search process has also the same

performance in terms of average deviation to best. This is actually not the case since

we can observe that the value of ε has a significant impact on the relative deviation

for the non-extreme direction angles. To better illustrate this observation, we show, in

Fig. 1 (Right), the ε-value providing the minimum average relative deviation to best as

a function of every direction angle. We clearly see that the best performances of the

(1 + λ)-EA for different direction angles are not obtained with the same ε-value.

4.3 Understanding the Impact of the Opening Angle

In this section, we argue that the dynamics of the search process observed previously

is rather independent of the scalarizing function under consideration or its parameters.

Instead, we show that the search process is guided by the positioning of the lines of

equal function values in the objective space—described by the opening angle, i.e., the

angle between the line of equal function values and the f1-axis (cf. Proposition 1).

Fig. 2 shows three typical exemplary executions of the (1 + λ)-EA in the objective

space for different parameter settings. The typical initial solution maps around the point

z = (0.5, 0.5) in the objective space, which is the average objective vector for a random

solution of ρMNK-landscapes. The evolution of the current solution can be explained

by the combination of two effects. The first one is given by the independent bit-flip mu-

tation operator, that produces more offspring in a particular direction compared to the

other ones, due to the underlying characteristics of the ρMNK-landscape under consid-

eration. The second one is given by the lines of equal function values, i.e., the current

solution moves perpendicular to the iso-fitness lines, following the gradient direction in

the objective space. We can remark that the search process is mainly guided by the lower

part of the cones of equal function values when the direction is above the initial solu-

tion, and vice versa. When the direction angle δ is smaller (resp. larger) than π/4, the
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dynamics of the search process are better captured by the opening angle θ1 (resp. θ2),

defined between the equi-fitness lines and the f1-axis. Geometrically, the optimal solu-

tion with respect to a scalarizing function should correspond to the intersection of one

of the ‘highest’ lines of equal fitness values in the gradient direction and the feasible

region of the objective space. Although the above description is mainly intuitive, a more

detailed analysis can support this general idea.

Let us focus on the influence of the opening angle θ1 when the direction angle δ
is smaller than π/4 (similar results hold for δ > π/4 and θ2). Fig. 3 shows the scatter

plots of the final angle φ as a function of the opening angle θ1 for different direction

angles δ ∈ [0, π/4]. A scatter plot gives a set of values (θ1(ε), φ(ε)) for the ε-values

under study. From Proposition 1, for a given direction angle δ, the opening angle θ1

belongs to the interval [δ − π/2, 0] for Snorm, and to the interval [−π/4, 0] for Saug.

Independently of the scalarizing function, when the direction angle is between 0 and

around 3π/16 (blue color), the value of φ is highly correlated with the opening angle

θ1. For such directions, a simple linear regression confirms this observation and allows

us to explain the relation between the opening angle and the final angle by means of the

following approximate equation: φ ≈ (c + π/4) + c · θ1, such that c equals 0.05, 0.2,

and 0.4 for ρ = −0.7, 0, and 0.7 respectively. We emphasize that this is independent

of the definition of the scalarizing function, and depends mainly on the property of the

lines of equal function values. The previous equation tells us that the lines of equal fit-

ness values are guiding the search process following the gradient direction given by the

opening angle in the objective space. Fig. 3 (Right) shows that the obtained final angles

are equivalent when the opening angle is the same, even for different direction angles

and/or scalarizing functions. In fact, we observe that the final angles obtained are very

similar for the scalarizing functions Snorm and Saug if δ is the same for both functions
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Fig. 4. Column 1 and 3 (resp. 2 and 4) depict the hypervolume (resp. epsilon) indicators for scalar

function Snorm. Left (resp. right): objective correlations ρ = −0.7 (resp. ρ = 0.7).

and the ε-values are chosen in order to have matching opening angles. Whatever the δ-

and ε-values, the points are close to the line y = x, which shows that independently of

the scalarizing function, the final angle is strongly correlated to the opening angle, and

not to a particular scalarizing function. Also, the opening of the lines of equal function

values have more impact on the dynamics of the search process than the direction an-

gle alone. In this respect, the opening angle should be considered as a key feature to

describe and understand the behavior of scalarizing search algorithms.

5 Global Search Behavior

In the previous section, we considered every single (1 + λ)-EA separately. However,

the goal of a general-purpose decomposition-based algorithm is to compute a set of

solutions approximating the whole Pareto front. In this section, we study the quality

of the set obtained when combining the solutions computed by different configurations

of the scalarizing functions. A natural way to do so is to use the same ε-value for all

direction angles. Fig. 4 illustrates the relative performance, in terms of hypervolume

difference and multiplicative epsilon indicators [12], when considering such a setting

and aggregating the solutions from the different weight vectors.

The hypervolume reference point is set to the origin, and the reference set is the

best-known approximation for the instance under consideration.

Over all the considered ρMNK-landscapes, we found that the ε-values minimizing

both indicator-values correspond to those that allow to well distribute the final angles

among direction angles (cf. Fig. 1) independently of the considered scalarizing func-

tion. Some differences can however be observed depending on the considered indicator,

especially for the most correlated instances as illustrated in Fig. 4. To explain the differ-

ence of optimal ε-values between both indicators, we remark that the lexicographically

optimal regions of the Pareto front approximation have a higher impact on the hypervol-

ume indicator value, due to the setting of the reference point. For instance, for ρ = 0.7,

the smallest ε-values concentrate the final angles to the extreme of the Pareto front,

which allows to obtain better results in terms of hypervolume. Contrarily, the epsilon

indicator values are better when the final angles are well-distributed around π/4.

Moreover, WS is found to be in general competitive with respect to other fixed

ε-values. This observation might suggest that WS is the best-performing parameter set-

ting, since every different direction angle leads to a different final angle. Nevertheless,

the diversity of final angles is not the only criterion that can explain quality. The effi-

ciency of the (1 + λ)-EA with respect to the single-objective problem implied by the

scalarizing function is also crucial. In Fig. 1, we observe that the ε-value exhibiting the

minimal average deviation to best is not necessarily the same for every direction. We

also observe that for direction angles in the middle of the weight space, the final angles
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Table 3. Comparison of WS, T, and non-uniform S
ε
⋆

norm and S
ε
⋆

aug configured with ε-values giving

the best deviation w.r.t every direction. The number in braces shows the number of other algo-

rithms that statistically outperform the algorithm under consideration w.r.t. a given indicator and

a Mann-Whitney signed-rank statistical test with a p-value of 0.05 (the lower, the better).

Avg. hypervolume difference (×10−1) Avg. multiplicative epsilon

ρ WS T S
ε
⋆

norm S
ε
⋆

aug WS T S
ε
⋆

norm S
ε
⋆

aug

−0.7 0.353 (2) 0.434 (3) 0.324 (0) 0.307 (0) 1.057 (0) 1.075 (3) 1.059 (0) 1.057 (0)

0.0 0.418 (2) 0.458 (3) 0.357 (1) 0.322 (0) 1.056 (0) 1.084 (3) 1.062 (1) 1.064 (1)

0.7 0.391 (3) 0.350 (2) 0.303 (0) 0.292 (0) 1.044 (0) 1.062 (3) 1.047 (1) 1.047 (1)

obtained for different ε-values can end up being very similar. Thus, it might be possible

that, by choosing different ε-values for different directions, one can find a configuration

for which final solutions are diverse, but also closest to the Pareto front. Indeed, we can

observe a significant difference between the non-uniform case where the scalarizing

function Snorm (or Saug) is configured with an ε providing the best deviation to best for

every direction, and the situation where ε is the same for all directions. As shown in

Table 3, such non-uniform configurations are both substantially better than T and also

competitive compared to WS. We only show the performance of the above non-uniform

configuration in order to illustrate how choosing different ε-values can improve the

quality of the resulting approximation set. However, this particular non-uniform con-

figuration might not be ‘optimal’. In other words, finding the ‘best’ parameter config-

uration in a setting where µ independent single (1 + λ)-EAs are considered, can itself

be formulated as an optimization problem with variables ε and δ; such that direction

angles in the optimal configuration might not necessarily be pairwisely different.

6 Open(ing) (Re)search Lines

We presented an extensive empirical study that sheds more light on the impact of scalar-

izing functions within decomposition-based evolutionary multiobjective optimization.

Our results showed that, given a weighting coefficient vector and a relative importance

of the weighted sum and the Chebychev term in the function, it is fundamentally the

opening of the lines of equal function values that explicitly guides the search towards a

specific region of the objective space. When combining multiple scalarizing search pro-

cesses to compute a whole approximation set, these lines play a crucial role to achieve

diversity. While our results are with respect to a rather simple setting where multi-

ple scalarizing search procedures are run independently, they make a fundamental step

towards strengthening the understanding of the properties and dynamics of more com-

plex algorithmic settings. It is our hope that the lessons learnt from our study can highly

serve to better tackle the challenges of decomposition-based approaches. They also rise

new interesting issues that were hidden by the complex design of well-established al-

gorithms. In the following, we identify a non-exhaustive number of promising research

directions that relate directly to our findings.

Ê Improving existing algorithms. Eliciting the best configuration to tackle a multi-

objective optimization problem by decomposition can highly improve search perfor-

mance. As we demonstrated, similar regions can be achieved using different parameter

settings, and the performance could be enhanced by adopting non-uniform configura-

tions. One research direction would be to investigate how such non-uniform configu-

rations perform when plugged into existing approaches. To our best knowledge, there
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exists no attempt in this direction, and previous investigations did only consider uniform

parameters, which do not necessarily guarantee to reach an optimal performance.

Ë Tuning the opening angles. Generally speaking, the parameters of existing scalar-

izing functions can simply be viewed as one specific tool to set up the openings of the

lines of equal function values. In this respect, other types of opening angles can be

considered without necessarily using a particular scalarizing function. This would offer

more flexibility when tuning decomposition-based algorithms, e.g., defining the open-

ing angles without being bound to a fixed closed-form definition, but adaptively, with

respect to the current search state. We believe that classical paradigms for on-line and

off-line parameter setting are worth to be investigated to tackle this challenging issue.

Ì Variation operators and problem-specific issues. In our study, we consider the

independent bit-flip mutation operator and bi-objective ρMNK-landscapes. In future

work, other problem types and search components should be investigated at the aim of

gaining in generality—also towards problems with more than two objectives.

Í Theoretical modeling. A challenging issue is to provide a framework, abstracting

from problem-specific issues, and allowing us to reason about decomposition-based ap-

proaches in a purely theoretical manner. This would enable us to better harness scalariz-

ing approaches and to derive new methodological tools in order to improve our practice

of decomposition-based evolutionary multiobjective optimization approaches.
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