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Log-Barrier Interior Point Methods Are Not Strongly Polynomial\ast 

Xavier Allamigeon\dagger , Pascal Benchimol\ddagger , St\'ephane Gaubert\dagger , and Michael Joswig\S 

Abstract. We prove that primal-dual log-barrier interior point methods are not strongly polynomial, by con-
structing a family of linear programs with 3r + 1 inequalities in dimension 2r for which the number
of iterations performed is in \Omega (2r). The total curvature of the central path of these linear programs
is also exponential in r, disproving a continuous analogue of the Hirsch conjecture proposed by Deza,
Terlaky, and Zinchenko. Our method is to tropicalize the central path in linear programming. The
tropical central path is the piecewise linear limit of the central paths of parameterized families of clas-
sical linear programs viewed through ``logarithmic glasses."" This allows us to provide combinatorial
lower bounds for the number of iterations and the total curvature, in a general setting.
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1. Introduction. An open question in computational optimization asks whether (the fea-
sibility problem of) linear programming can be solved with a strongly polynomial algorithm.
This is known as Smale's 9th problem [Sma00]. Strong polynomiality requires the algorithm
to be polynomial time in the bit model (meaning that the execution time is polynomial in
the number of bits of the input) and the number of arithmetic operations to be bounded by
a polynomial in the number of numerical entries of the input, uniformly in their bit length.

It is instructive to consider interior point methods in view of this question. Since Kar-
markar's seminal work [Kar84], such methods have become indispensable in mathematical
optimization. Path-following interior point methods are driven to an optimal solution along
a trajectory called the central path. The best known upper bound on the number of itera-
tions performed by path-following interior point methods for linear programming, obtained
by Renegar [Ren88], is O(

\surd 
mL), where m is the number of inequality constraints and L

is the total bit size of all coefficients. Hence, they are polynomial in the bit model (every
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iteration can be done in strongly polynomial time). It is tempting to ask whether a suitable
interior point method could lead to a strongly polynomial algorithm in linear programming.
In other words, this raises the question of bounding the number of iterations by a polynomial
depending only on the number of variables and constraints.

Early on, Bayer and Lagarias recognized that the central path is ``a fundamental mathe-
matical object underlying Karmarkar's algorithm and that the good convergence properties of
Karmarkar's algorithm arise from good geometric properties of the set of trajectories"" [BL89,
p. 500]. Such considerations led Dedieu and Shub to consider the total curvature as an
informal complexity measure of the central path. Intuitively, a central path with a large to-
tal curvature should be harder to approximate by linear segments. They conjectured that
the total curvature of the central path is linearly bounded in the dimension of the ambient
space [DS05]. Subsequently, Dedieu, Malajovich, and Shub showed that this property is valid
in an average sense [DMS05]. However, Deza, Terlaky, and Zinchenko provided a counter-
example by constructing a redundant Klee--Minty cube [DTZ09]. This led them to propose
a revised conjecture, the ``continuous analogue of the Hirsch conjecture"" which says that the
total curvature of the central path is linearly bounded in the number of constraints.

In this paper, we disprove the conjecture of Deza, Terlaky, and Zinchenko, by constructing
a family of linear programs for which the total curvature is exponential in the number of
constraints. Moreover, we show that for the same family of linear programs, a significant class
of polynomial time interior point methods, namely the primal-dual path-following methods
with respect to a log-barrier function, are not strongly polynomial.

More precisely, given r \geqslant 1, we consider the linear program

LWr(t)

minimize x1

subject to x1 \leqslant t2,

x2 \leqslant t,

x2j+1 \leqslant t x2j - 1 , x2j+1 \leqslant t x2j

x2j+2 \leqslant t1 - 1/2j (x2j - 1 + x2j)

x2r - 1 \geqslant 0 , x2r \geqslant 0,

1 \leqslant j < r,

which depends on a parameter t > 1. The linear program LWr(t) has 2r variables and 3r+1
constraints. The notation LWr(t) for these linear programs refers to the ``long and winding""
nature of their central paths. More precisely, our first main result is the following.

Theorem A (see Theorem 25). The total curvature of the central path of the linear pro-
grams LWr(t) is exponential in r, provided that t > 1 is sufficiently large.

Our second main result provides an exponential lower bound for the number of iterations
of a large class of path-following interior point methods. We only require these methods to
stay in the so-called ``wide"" neighborhood of the central path; see section 2 for the definition.
Remarkable examples of such methods include short- and long-step methods, such as those of
Kojima, Mizuno, and Yoshise [KMY89a, KMY89b] and Monteiro and Adler [MA89], as well
as predictor-corrector methods, such as those of Mizuno, Todd, and Ye [MTY93] and Vavasis
and Ye [VY96].
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Theorem B (see Corollary 31). The number of iterations of any primal-dual path-following
interior point algorithm with a log-barrier function which iterates in the wide neighborhood
of the central path is exponential in r on the linear programs LWr(t), provided that t > 1 is
sufficiently large.

The proofs of these theorems rely on tropical geometry. The latter can be seen as the
(algebraic) geometry on the tropical (max-plus) semifield (\BbbT ,\oplus ,\odot ) where the set \BbbT = \BbbR \cup 
\{  - \infty \} is endowed with the operations a\oplus b = max(a, b) and a\odot b = a+ b. A tropical variety
can be obtained as the limit at infinity of a sequence of classical algebraic varieties depending
on one real parameter t and drawn on logarithmic paper, with t as the logarithmic base. This
process is known as Maslov's dequantization [Lit07], or Viro's method [Vir01]. It can be traced
back to the work of Bergman [Ber71]. In a way, dequantization yields a piecewise linear image
of classical algebraic geometry. Tropical geometry has a strong combinatorial flavor, and yet
it retains a lot of information about the classical objects [IMS07, MS15].

The tropical semifield can also be thought of as the image of a non-Archimedean field
under its valuation map. This is the approach we adopt here, by considering LWr(t) as a
linear program over a real closed non-Archimedean field of Puiseux series in the parameter t.
Then, the tropical central path is defined as the image by the valuation of the central path
over this field. We first give an explicit geometric characterization of the tropical central path,
as a tropical analogue of the barycenter of a sublevel set of the feasible set induced by the
duality gap; see section 4.1. Interestingly, it turns out that the tropical central path does
not depend on the external representation of the feasible set. This is in stark contrast with
the classical case; see [DTZ09] for an example. We study the convergence properties of the
classical central path to the tropical one in section 4.2.

We then show that, when t is specialized to a suitably large real value, the total curva-
ture of the central path of the linear program LWr(t) is bounded below by a combinatorial
curvature (the tropical total curvature) depending only on the image of the central path by
the non-Archimedean valuation (section 5). The linear programs LWr(t) have an inductive
construction, leading to a tropical central path with a self-similar pattern, resulting in an ex-
ponential number of sharp turns as r tends to infinity. In this way, we obtain the exponential
bound for the total curvature (Theorem A).

A further refinement of the tropical analysis shows that the number of iterations per-
formed by interior point methods is bounded from below by the number of tropical segments
constituting the tropical central path; see section 6. For the family of linear programs LWr(t),
we show that the number of such segments is necessarily exponential, leading to the expo-
nential lower bound for the number of iterations of interior point methods (Theorem B). We
provide an explicit lower bound for the value of the parameter t. It is doubly exponential in r,
implying that the bit length of t is exponential in r, which is consistent with the polynomial
time character of interior point methods in the bit model.

Related work. The redundant Klee--Minty cube of [DTZ09] and the ``snake"" in [DTZ08]
are instances which show that the total curvature of the central path can be in \Omega (m) for a
polytope described by m inequalities. Gilbert, Gonzaga, and Karas [GGK04] also exhibited
ill-behaved central paths. They showed that the central path can have a ``zig-zag"" shape with
infinitely many turns, on a problem defined in \BbbR 2 by nonlinear but convex functions.



LOG-BARRIER IPM ARE NOT STRONGLY POLYNOMIAL 143

The central path has been studied by Dedieu, Malajovich, and Shub [DMS05] via the
multihomogeneous B\'ezout theorem and by De Loera, Sturmfels, and Vinzant [DLSV12] using
matroid theory. These two papers provide an upper bound of O(n) on the total curvature
averaged over all regions of an arrangement of hyperplanes in dimension n.

In terms of iteration-complexity of interior point methods, several worst-case results
have been proposed [Ans91, KY91, JY94, Pow93, TY96, BL97]. In particular, Zhao and
Stoer [ZS93] showed that the iteration-complexity of a certain class of path-following methods
is governed by an integral along the central path. This quantity, called Sonnevend's curvature,
was introduced in [SSZ91]. The tight relationship between the total Sonnevend curvature and
the iteration-complexity of interior points methods have been extended to semidefinite and
symmetric cone programs [KOT13]. Note that Sonnevend's curvature is different from the
geometric curvature we study in this paper. To the best of our knowledge, there is no explicit
relation between the geometric curvature and the iteration-complexity of interior point meth-
ods. We circumvent this difficulty here by showing directly that the geometric curvature and
the number of iterations are exponential for the family LWr(t).

The present work relies on the considerations of amoebas (images by the valuation) of
algebraic and semialgebraic sets; see [EKL06, DY07, RGST05, Ale13] for background. An-
other ingredient is a construction of Bezem, Nieuwenhuis, and Rodr\'{\i}guez-Carbonell [BNRC08].
Their goal was to show that an algorithm of Butkovi\v c and Zimmermann [BZ06] has exponen-
tial running time. We arrive at our family of linear programs by lifting a variant of this
construction to Puiseux series.

Finally, let us point out that the first main result of this article, the exponential bound for
the total curvature of the central path, initially appeared in our preprint [ABGJ14]. We next
discuss the main differences with the present paper. In the original preprint, we exploited
different tools: to characterize the tropical central path, we used methods from model theory,
employing o-minimal structures and Hardy fields, in the spirit of Alessandrini [Ale13]. In
the present revision, we provide a more elementary proof, avoiding the use of model theory.
The original model theory approach, however, retains the advantage of greater generality. We
expect that this will allow one to extend some of the present results to other kinds of barrier
functions. In addition, we have added an explicit lower bound for the number of iterations,
our second main result here.

2. The primal-dual central path and its neighborhood. In this section, we recall the
definition of the central path and introduce the notions related to path-following interior
point methods which we will use in the rest of the paper.

In what follows, we consider a linear program of the form

LP(A, b, c) minimize \langle c, x\rangle subject to Ax+ w = b , (x,w) \in \BbbR n+m
+ ,

in which the slack variables w are explicit. Here and below, A is an m \times n matrix, b \in \BbbR m,
c \in \BbbR n, and we denote by \langle \cdot , \cdot \rangle the standard scalar product and by \BbbR + the set of nonnegative
reals. The dual linear program takes a similar form

DualLP(A, b, c) maximize \langle  - b, y\rangle subject to s - A\top y = c , (s, y) \in \BbbR n+m
+ ,

where \cdot \top denotes the transposition. For the sake of brevity, we set N := n +m to represent
the total number of variables in both linear programs. Let \scrF \circ be the set of strictly feasible
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primal-dual elements, i.e.,

\scrF \circ :=
\bigl\{ 
z = (x,w, s, y) > 0: Ax+ w = b , s - A\top y = c

\bigr\} 
,

which we assume to be nonempty. In this situation, for any given \mu > 0, the system of
equations and inequalities

(1)

Ax+ w = b,

s - A\top y = c,\biggl( 
xs
wy

\biggr) 
= \mu e,

x, w, y, s > 0

is known to have a unique solution (x\mu , w\mu , s\mu , y\mu ) \in \BbbR 2N ; here e stands for the all-1-vector
in \BbbR N ; further, xs and wy denote the Hadamard products of x by s and w by y, respectively.
The central path of the dual pair LP(A, b, c) and DualLP(A, b, c) of linear programs is defined
as the function which maps \mu > 0 to the point (x\mu , w\mu , s\mu , y\mu ). The latter shall be referred to
as the point of the central path with parameter \mu . The equality constraints in (1) define a real
algebraic curve, the central curve of the dual pair of linear programs, which has been studied
in [BL89] and [DLSV12]. The central curve is the Zariski closure of the central path.

The primal and dual central paths are defined as the projections of the central path onto
the (x,w)- and (s, y)-coordinates, respectively. Equivalently, given \mu > 0, the points (x\mu , w\mu )
and (s\mu , y\mu ) on the primal and dual central paths can be defined as the unique optimal
solutions of the following pair of logarithmic barrier problems:

minimize \langle c, x\rangle  - \mu 
\Bigl( \sum n

j=1 log(xj) +
\sum m

i=1 log(wi)
\Bigr) 

subject to Ax+ w = b , x > 0 , w > 0 ,

and
maximize \mu 

\Bigl( \sum n
j=1 log(sj) +

\sum m
i=1 log(yi)

\Bigr) 
+ \langle  - b, y\rangle 

subject to s - A\top y = c , s > 0 , y > 0 .

The uniqueness of the optimal solutions follows from the fact that the objective functions are
strictly convex and concave, respectively. The equivalence to (1) results from the optimality
conditions of the logarithmic barrier problems. The main property of the central path is that
the sequences (x\mu , w\mu ) and (s\mu , y\mu ) converge to optimal solutions (x\ast , w\ast ) and (s\ast , y\ast ) of the
linear programs LP(A, b, c) and DualLP(A, b, c) when \mu tends to 0.

The duality measure \=\mu (z) of an arbitrary point z = (x,w, s, y) \in \BbbR 2N
+ is defined by

(2) \=\mu (z) :=
1

N

\bigl( 
\langle x, s\rangle + \langle w, y\rangle 

\bigr) 
.

With this notation, observe that the point z belongs to the central path if and only if we have

(3)

\biggl( 
xs
wy

\biggr) 
= \=\mu (z)e .
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In other words, the difference ( xs
wy ) - \=\mu (z)e indicates how far the point z = (x,w, s, y) is from

the central path. This leads to introducing the neighborhood

(4) \scrN \theta :=
\Bigl\{ 
z \in \scrF \circ :

\bigm\| \bigm\| \bigm\| \biggl( xs
wy

\biggr) 
 - \=\mu (z)e

\bigm\| \bigm\| \bigm\| \leqslant \theta \=\mu (z)
\Bigr\} 

of the central path by bounding some norm of the deviation in terms of a precision parameter
0 < \theta < 1. Clearly, this neighborhood depends on the choice of the norm \| \cdot \| . In the context
of interior point methods, common choices include the \ell 2-norm and the \ell \infty -norm. However,
here we focus on the wide neighborhood

(5) \scrN  - \infty 
\theta :=

\Bigl\{ 
z \in \scrF \circ :

\biggl( 
xs
wy

\biggr) 
\geqslant (1 - \theta )\=\mu (z)e

\Bigr\} 
.

This arises from replacing \| \cdot \| in (4) by the one-sided \ell \infty -norm. The latter is the map sending
a vector v to max(0,maxi( - vi)). This is a weak norm in the sense of [PT14] (it is positively
homogeneous and subadditive), but it vanishes on some nonzero vectors.

Our first observation is that the map \=\mu commutes with affine combinations.

Proposition 1. Let z = (x,w, s, y) and z\prime = (x\prime , w\prime , s\prime , y\prime ) be two points in \scrF . Then, for all
\alpha \in \BbbR , we have

\=\mu ((1 - \alpha )z + \alpha z\prime ) = (1 - \alpha )\=\mu (z) + \alpha \=\mu (z\prime ) .

Proof. We set\Delta z := z\prime  - z and act similarly for the components, i.e.,\Delta z=(\Delta x,\Delta w,\Delta s,\Delta y).
Since z, z\prime \in \scrF , we have A\Delta x +\Delta w = 0 and \Delta s  - A\top \Delta y = 0. Employing these equalities,
it can be verified that \langle \Delta x,\Delta s\rangle + \langle \Delta w,\Delta y\rangle = 0. Therefore, the function \alpha \mapsto \rightarrow \=\mu (z + \alpha \Delta z) is
affine, which completes the proof.

Interior point methods follow the central path by computing a sequence of points in a
prescribed neighborhood \scrN \theta of the central path, in such a way that the duality measure
decreases. Here, we do not precisely specify \scrN \theta , but we only assume that it arises from
the choice of some weak norm \| \cdot \| . The basic step of the algorithm can be summarized as
follows. At iteration k, given a current point zk = (xk, wk, sk, yk) \in \scrN \theta with duality measure
\mu k = \=\mu (zk), and a positive parameter \mu < \mu k, the algorithm aims at solving the system (1)
up to a small error in order to get an approximation of the point of the central path with
parameter \mu . To this end, it starts from the point zk and exploits the Newton direction
\Delta z = (\Delta x,\Delta w,\Delta s,\Delta y), which satisfies

(6)

A\Delta x+\Delta w = 0,

\Delta s - A\top \Delta y = 0,\biggl( 
xk\Delta s
wk\Delta y

\biggr) 
+

\biggl( 
\Delta xsk

\Delta w yk

\biggr) 
= \mu e - 

\biggl( 
xksk

wkyk

\biggr) 
.

Then, the algorithm follows the direction \Delta z and iterates to a point of the form

z(\alpha ) := zk + \alpha \Delta z ,
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where 0 < \alpha \leqslant 1. The correctness and the convergence of the approach are based on the
conditions that, first, the point zk+1 := z(\alpha ) still belongs to the neighborhood \scrN \theta and, second,
the ratio of the new value \mu k+1 := \=\mu (z(\alpha )) of the duality measure with \mu k is sufficiently small.
The following lemma shows that, in fact, the whole line segment between zk and z(\alpha ) is
contained in \scrN \theta .

Lemma 2. If zk and z(\alpha ) are contained in \scrN \theta , then z(\beta ) \in \scrN \theta for all \beta \in [0, \alpha ].

Proof. The point z(\beta ) lies in \scrF \circ since the latter set is convex. We use the notation
z(\beta ) = (x(\beta ), w(\beta ), s(\beta ), y(\beta )). Using the last equality in (6), we can write\Bigl( 

x(\beta )s(\beta )
w(\beta )y(\beta )

\Bigr) 
= \beta \mu e+ (1 - \beta )

\Bigl( 
xksk

wkyk

\Bigr) 
+ \beta 2

\bigl( 
\Delta x\Delta s
\Delta w\Delta y

\bigr) 
.

The first two equalities in (6) entail \langle \Delta x,\Delta s\rangle + \langle \Delta w,\Delta y\rangle = 0. Exploiting the last equality,
we get \=\mu (z(1)) = \mu . Then, it follows from Proposition 1 that \=\mu (z(\beta )) = (1 - \beta )\mu k + \beta \mu . We
deduce that \Bigl( 

x(\beta )s(\beta )
w(\beta )y(\beta )

\Bigr) 
 - \=\mu (z(\beta ))e = (1 - \beta )

\Bigl[ \Bigl( 
xksk

wkyk

\Bigr) 
 - \mu ke

\Bigr] 
+ \beta 2

\bigl( 
\Delta x\Delta s
\Delta w\Delta y

\bigr) 
.

The same relation holds when \beta = \alpha . In this way, we eliminate the term
\bigl( 
\Delta x\Delta s
\Delta w\Delta y

\bigr) 
to write\Bigl( 

x(\beta )s(\beta )
w(\beta )y(\beta )

\Bigr) 
 - \=\mu (z(\beta ))e =

\biggl( 
(1 - \beta ) - \beta 2

\alpha 2
(1 - \alpha )

\biggr) \Bigl[ \Bigl( 
xksk

wkyk

\Bigr) 
 - \mu ke

\Bigr] 
+

\beta 2

\alpha 2

\Bigl[ \Bigl( 
x(\alpha )s(\alpha )
w(\alpha )y(\alpha )

\Bigr) 
 - \=\mu (z(\alpha ))e

\Bigr] 
.

Since \beta \leqslant \alpha \leqslant 1, the term (1 - \beta ) - \beta 2

\alpha 2 (1 - \alpha ) is nonnegative. Using the fact that zk and z(\alpha )
belong to \scrN \theta , and using the subadditivity and positive homogeneity of the weak norm \| \cdot \| ,
we deduce that\bigm\| \bigm\| \bigm\| \Bigl( x(\beta )s(\beta )

w(\beta )y(\beta )

\Bigr) 
 - \=\mu (z(\beta ))e

\bigm\| \bigm\| \bigm\| \leqslant 

\biggl( 
(1 - \beta ) - \beta 2

\alpha 2
(1 - \alpha )

\biggr) 
\theta \mu k +

\beta 2

\alpha 2
\theta \=\mu (z(\alpha ))

= \theta 

\biggl( 
(1 - \beta )\mu k +

\beta 2

\alpha 
\mu 

\biggr) 
\leqslant \theta 
\bigl( 
(1 - \beta )\mu k + \beta \mu 

\bigr) 
= \theta \=\mu (z(\beta )) as \beta \leqslant \alpha .

The implementation of the basic iteration step which we have previously described varies
from one interior point method to another. In particular, there exist several strategies for the
choice of the neighborhood, the parameter \mu with respect to the current value of the duality
measure \mu k, and the step length \alpha , in order to achieve a polynomial time complexity. Let us
describe the main ones in more detail. Considering the large variety of existing path-following
interior point methods in the literature, we stick to the classification of [Wri97, Chapter 5],
to which we refer the reader for a complete account of the topic.

Short-step interior point methods, such as in [KMY89a, MA89], use an \ell 2-neighborhood
of prescribed size \theta , set \mu to \sigma \mu k where \sigma < 1 is constant throughout the method (chosen in
a careful way to ensure the convergence), and set \alpha to 1. In contrast, long-step interior point
methods, such as in [KMY89b], exploit the wider neighborhood \scrN  - \infty 

\theta , allow more freedom for
the choice of \mu at every iteration (\mu is set to \sigma \mu k where \sigma < 1 is chosen in prescribed interval
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[\sigma \mathrm{m}\mathrm{i}\mathrm{n}, \sigma \mathrm{m}\mathrm{a}\mathrm{x}]), and take \alpha \in [0, 1] as large as possible to ensure that z(\alpha ) \in \scrN  - \infty 
\theta . Another

important class of methods, the so-called predictor-corrector ones, make use of two nested
\ell 2-neighborhoods \scrN \theta \prime and \scrN \theta (\theta \prime < \theta ), and alternate between predictor and corrector steps.
In the former, \mu is optimistically set to 0 (the duality measure of optimal solutions), while \alpha 
is chosen as the largest value in [0, 1] such that z(\alpha ) \in \scrN \theta . The next corrector step aims at
``centering"" the trajectory by performing one Newton step in the direction of the point of the
central path with parameter \mu k+1 = \=\mu (z(\alpha )). This means that the duality measure is kept to
\mu k+1, and the step length is set to 1. A careful choice of \theta depending on \theta \prime ensures that we
obtain in this way a point in the narrower neighborhood \scrN \theta \prime .

The predictor-corrector scheme, initially introduced in [MTY93], has inspired several
works. Let us mention that of Vavasis and Ye [VY96], who took a step towards a strongly
polynomial complexity by arriving at an iteration-complexity upper bound depending only on
the matrix A. Their technique was later refined into more practical algorithms; see [MMT98,
MT03, KT13]. The difference between these methods and the original predictor-corrector
method is that they sometimes exploit a direction other than the Newton one, called the
layered least squares direction. However, in such iterations, the step length \alpha is always chosen
so that for all 0 \leqslant \beta \leqslant \alpha , the point z(\beta ) lies in the neighborhood \scrN \theta (see [VY96, Theorem 9]).

As a consequence of Lemma 2 and the previous discussion, the aforementioned interior
point methods all share the property of describing a piecewise linear trajectory entirely in-
cluded in a certain neighborhood \scrN  - \infty 

\theta of the central path, where \theta is a prescribed value.1 We
stress that this property is the only assumption made in our complexity result, Theorem B,
on interior point methods. More formally, this trajectory is a polygonal curve in \BbbR 2N , i.e., a
union of finitely many segments [z0, z1], [z1, z2], . . . , [zp - 1, zp]. Since polygonal curves play an
important role in this paper, we introduce some terminology. We say that a polygonal curve
is supported by the vectors v1, . . . , vp when the latter correspond to the direction vectors of
the successive segments [z0, z1], [z1, z2], . . . , [zp - 1, zp]. In the case where we equip the curve
with an orientation, we assume that the direction vectors are oriented consistently.

3. Ingredients from tropical geometry. Tropical geometry provides a combinatorial ap-
proach to studying algebraic varieties defined over a field with a non-Archimedean valuation.
To deal with optimization issues, we need some valued field which is ordered. We restrict our
attention to one such field, which is particularly convenient for our application, to keep our
exposition elementary. Our field of choice, which we denote as \BbbK , are the absolutely conver-
gent generalized real Puiseux series. Here ``generalized"" means that we allow arbitrary real
numbers as exponents as in [Mar10]. Note that the ordinary Puiseux series have value group
\BbbQ , leading to restrictions which are artificial from a tropical perspective. In some sense, \BbbK is
the ``simplest"" real closed valued field for which we can obtain our results.

3.1. Fields of real Puiseux series and Puiseux polyhedra. The field \BbbK of absolutely
convergent generalized real Puiseux series consists of elements of the form

(7) \bfitf =
\sum 
\alpha \in \BbbR 

a\alpha t
\alpha ,

1We point out that the \ell 2-neighborhood with size \theta is obviously contained in \scrN  - \infty 
\theta .
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where a\alpha \in \BbbR for all \alpha , and such that (i) the support \{ \alpha \in \BbbR : a\alpha \not = 0\} either is finite or has
 - \infty as the only accumulation point, and (ii) there exists \rho > 0 such that the series absolutely
converges for all t > \rho . Note that the null series is obtained by taking an empty support.
When \bfitf \not = 0, the first requirement ensures that the support has a greatest element \alpha 0 \in \BbbR .
We say that the element \bfitf is positive when the associated coefficient a\alpha 0 is positive. This
extends to a total ordering of \BbbK , defined by \bfitf \leqslant \bfitg if \bfitg  - \bfitf is the null series or positive.
Equivalently, the relation \bfitf \leqslant \bfitg holds if and only if \bfitf (t) \leqslant \bfitg (t) for all sufficiently large t. We
write \BbbK + for the set of nonnegative elements of \BbbK .

The valuation map val : \BbbK \rightarrow \BbbR \cup \{  - \infty \} is given as follows. For \bfitf \in \BbbK , the valuation
val(\bfitf ) is defined as the greatest element \alpha 0 of the support of \bfitf if \bfitf \not = 0, and  - \infty otherwise.

Denoting by logt(\cdot ) :=
\mathrm{l}\mathrm{o}\mathrm{g}(\cdot )
\mathrm{l}\mathrm{o}\mathrm{g} t the logarithm with respect to the base t > 1, we have

val(\bfitf ) = lim
t\rightarrow +\infty 

logt | \bfitf (t)| ,

with the convention logt 0 =  - \infty . Observe that, for all \bfitf , \bfitg \in \BbbK , this yields

val(\bfitf + \bfitg ) \leqslant max(val(\bfitf ), val(\bfitg )) and val(\bfitf \bfitg ) = val(\bfitf ) + val(\bfitg ) .(8)

The inequality for the valuation of the sum turns into an equality when the leading terms in
the series \bfitf and \bfitg do not cancel. In particular, this is the case when \bfitf and \bfitg belong to \BbbK +.

We point out that \BbbK actually agrees with the field of generalized Dirichlet series origi-
nally considered by Hardy and Riesz [HR15]. This was already used in the tropical setting
in [ABG98]. Classical Dirichlet series can be written as

\sum 
k akk

s, and these are obtained
from (7) by substituting t = exp(s) and \alpha k = log k. It follows from results of van den Dries
and Speissegger [vdDS98] that the field \BbbK is real closed. The interest in such fields comes from
Tarski's principle, which says that every real closed field has the same first-order properties
as the reals.

As a consequence of the previous fact, we can define polyhedra over Puiseux series as
usual. In more detail, given d \geqslant 1, a (Puiseux) polyhedron is a set of the form

(9) \bfscrP = \{ \bfitx \in \BbbK d : \bfitA \bfitx \leqslant \bfitb \} ,

where \bfitA \in \BbbK p\times d, \bfitb \in \BbbK p (with p \geqslant 0), and \leqslant stands for the partial order over \BbbK p. By Tarski's
principle, Puiseux polyhedra have the same (first-order) properties as their analogues over \BbbR .
In particular, the Minkowski--Weyl theorem applies, so that every Puiseux polyhedron admits
an internal representation by means of a finite set of points and rays in \BbbK d.

Using a field of convergent series allows us to think of Puiseux polyhedra as parametric
families of ordinary polyhedra. Indeed, to any Puiseux polyhedron \bfscrP of the form (9), we
associate the family of polyhedra \bfscrP (t) \subset \BbbR d, defined for t large enough,

\bfscrP (t) := \{ x \in \BbbR d : \bfitA (t)x \leqslant \bfitb (t)\} .

The next proposition implies in particular that the family of polyhedra \bfscrP (t) is independent
of the choice of the external representation of \bfscrP .
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Proposition 3. Suppose that the Puiseux polyhedron \bfscrP is the Minkowski sum of the con-
vex hull of vectors \bfitu 1, . . . ,\bfitu q \in \BbbK d and of the convex cone generated by vectors \bfitv 1, . . . ,\bfitv r \in 
\BbbK d (here, the notions of convex hull and convex cone are understood over \BbbK ). Then, for
t large enough, the polyhedron \bfscrP (t) is the Minkowski sum of the convex hull of vectors
\bfitu 1(t), . . . ,\bfitu q(t) \in \BbbR d and of the convex cone generated by vectors \bfitv 1(t), . . . ,\bfitv r(t) \in \BbbR d (the
notions of convex hull and convex cone are now understood over \BbbR ).

Proof. Let \bfscrQ (t) denote the Minkowski sum of the convex hull of vectors \bfitu 1(t), . . . ,\bfitu q(t)
and of the convex cone generated by vectors \bfitv 1(t), . . . ,\bfitv r(t). Since \bfscrP contains \bfitu 1, . . . ,\bfitu q,
together with the rays \BbbK +\bfitv 

1, . . . ,\BbbK +\bfitv 
r, we have \bfitA \bfitu i \leqslant \bfitb and \bfitA \bfitv j \leqslant 0 for all i \in [q] and

j \in [r]. It follows that \bfitA (t)\bfitu i(t) \leqslant \bfitb (t) and \bfitA (t)\bfitv j(t) \leqslant 0 hold for all i \in [q] and j \in [r] and
for t large enough. Hence, \bfscrP (t) \supset \bfscrQ (t) for t large enough.

Let us now consider an extreme point \bfitu of \bfscrP . Then, a characterization of the extreme
points of a polyhedron shows that the collection of gradients of the constraints \bfitA k\bfitx \leqslant \bfitb k,
k \in [p], which are active at point \bfitx = \bfitu constitutes a family of full rank. This property
can be expressed in the first-order theory of \BbbK . It follows that, for t large enough, the same
property holds for the collection of the gradients of the constraints \bfitA k(t)x \leqslant \bfitb k(t), k \in [p],
that are active at point x = \bfitu (t). Hence \bfitu (t) is an extreme point of \bfscrP (t), and so \bfitu (t) must
belong to the set \{ \bfitu 1(t), . . . ,\bfitu q(t)\} . A similar argument shows that if \bfitv \in \BbbK d generates an
extreme ray of \bfscrP , the ray generated by \bfitv (t) is extreme in \bfscrP (t) for t large enough, and so
\bfitv (t) \in \cup \ell \in [r]\BbbR +\bfitv 

\ell (t). It follows that \bfscrP (t) \subset \bfscrQ (t) holds for t large enough.

Remark 4. One can show, by arguments of the same nature as in the latter proof, that
for all \bfitx \in \BbbK d,

\bfitx \in \bfscrP \Leftarrow \Rightarrow (\bfitx (t) \in \bfscrP (t) for t large enough) .(10)

Note, however, that the smallest value t0 such that \bfitx (t) \in \bfscrP (t) for all t \geqslant t0 cannot be
bounded uniformly in \bfitx .

3.2. Tropical polyhedra. Tropical polyhedra may be informally thought of as the ana-
logues of convex polyhedra over the tropical semifield \BbbT . Note that in this semifield, the zero
and unit elements are  - \infty and 0, respectively. Given \lambda \in \BbbT \setminus \{  - \infty \} , we shall also denote
by \lambda \odot ( - 1) the inverse of \lambda for the tropical multiplication, i.e., \lambda \odot ( - 1) :=  - \lambda . The tropical
addition and multiplication extend to vectors and matrices in the usual way. More precisely,
A \oplus B := (Aij \oplus Bij)ij and A \odot B := (

\bigoplus 
k Aik \odot Bkj)ij , where A and B are two matrices of

appropriate sizes with entries in \BbbT . Further, the d-fold Cartesian product \BbbT d is equipped with
the structure of a semimodule, thanks to the tropical multiplication \lambda \odot v := (\lambda \odot vi)i of a
vector v with a scalar \lambda .

A tropical halfspace of \BbbT d is the set of points x \in \BbbT d which satisfy one tropical linear
(affine) inequality,

max(\alpha 1 + x1, . . . , \alpha d + xd, \beta ) \leqslant max(\alpha \prime 
1 + x1, . . . , \alpha 

\prime 
d + xd, \beta 

\prime ) ,

where \alpha , \alpha \prime \in \BbbT d and \beta , \beta \prime \in \BbbT . A tropical polyhedron is the intersection of finitely many
tropical halfspaces. Equivalently, it can be written in the form\bigl\{ 

x \in \BbbT d : A\odot x\oplus b \leqslant A\prime \odot x\oplus b\prime 
\bigr\} 
,
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where A,A\prime \in \BbbT p\times d and b, b\prime \in \BbbT p for some p \geqslant 0. The tropical semifield \BbbT = \BbbR \cup \{  - \infty \} is
equipped with the order topology, which gives rise to the product topology on \BbbT d. Tropical
halfspaces, and thus tropical polyhedra, are closed in this topology. Note also that the subset
topology on \BbbR d \subset \BbbT d agrees with the usual Euclidean topology.

An analogue of the Minkowski--Weyl theorem allows for the ``interior representation"" of a
tropical polyhedron \scrP in terms of linear combinations of points and rays [GK11]. That is to
say, there exist finite sets U, V \subset \BbbT d such that \scrP is the set of all points of the form\Biggl( \bigoplus 

u\in U
\alpha u \odot u

\Biggr) 
\oplus 

\Biggl( \bigoplus 
v\in V

\beta v \odot v

\Biggr) 
,(11)

where \alpha u, \beta v \in \BbbT and
\bigoplus 

u\in U \alpha u is equal to the tropical unit, i.e., the real number 0. We shall
say that the tropical polyhedron \scrP is generated by the sets U and V . The term

\bigoplus 
u\in U \alpha u \odot u

is a tropical convex combination of the points in U , while
\bigoplus 

v\in V \beta v \odot v is a tropical linear
combination of the vectors in V . These are the tropical analogues of convex and conic hulls,
respectively. Indeed, all scalars \alpha u, \beta v are implicitly nonnegative in the tropical sense, i.e.,
they are greater than or equal to the tropical zero element  - \infty . We point out that the
``tropical polytopes"" considered by Develin and Sturmfels [DS04] are obtained by omitting
the term

\bigoplus 
u\in U \alpha u \odot u and requiring the vectors v \in V to have finite coordinates in the

representation (11).
If \scrP is a nonempty tropical polyhedron, the supremum sup(u, v) = u\oplus v with respect to

the partial order \leqslant of \BbbT d of any two points u, v \in \scrP also belongs to \scrP . If in addition \scrP is
compact, then the supremum of an arbitrary subset of \scrP is well defined and belongs to \scrP .
Consequently, there is a unique element in \scrP which is the coordinatewise maximum of all
elements in \scrP . We call it the (tropical) barycenter of \scrP , as it is the mean of \scrP with respect
to the uniform idempotent measure.

The tropical segment between the points u, v \in \BbbT d, denoted by tsegm(u, v), is defined as the
set of points of the form \lambda \odot u\oplus \mu \odot v such that \lambda \oplus \mu = 0. Equivalently, the set tsegm(u, v)
is the tropical polyhedron generated by the sets U = \{ u, v\} and V = \emptyset . As illustrated in
Figure 1, tropical segments are polygonal curves, and the direction vectors supporting every
ordinary segment have their entries in \{ 0,\pm 1\} [DS04, Proposition 3]. We shall slightly refine
this statement in the case where u \leqslant v, and propose a characterization of tropical segments
between any two such points. To this end, for K \subset [d], we denote by eK the vector whose kth
entry is equal to 1 if k \in K, and 0 otherwise.

Lemma 5. Let u, v \in \BbbT d such that u \leqslant v. The tropical segment tsegm(u, v) is a polygonal
curve which, when oriented from u to v, consists of ordinary segments supported by direction
vectors of the form eK1 , . . . , eK\ell where K1 \subsetneq \cdot \cdot \cdot \subsetneq K\ell and \ell \leqslant d.

Conversely, any polygonal curve from the point u to v in which the successive ordinary
segments are supported by direction vectors of the form eK1 , . . . , eK\ell where K1 \subsetneq \cdot \cdot \cdot \subsetneq K\ell 

coincides with the tropical segment tsegm(u, v).

Proof. We start by dealing with the first part of the statement. Since u \leqslant v, the set
tsegm(u, v) is reduced to the set of the points of the form u \oplus (\mu \odot v), where \mu \leqslant 0. Let
K(\mu ) be the set of i \in [d] such that ui < \mu + vi. When \mu ranges from  - \infty to 0, K(\mu ) takes
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Figure 1. The three possible shapes of (generic) tropical segments in dimension 2.

a finite number of values K0 = \emptyset \subsetneq K1 \subsetneq \cdot \cdot \cdot \subsetneq K\ell , where \ell \leqslant d. It is immediate that the
ordinary segments constituting the tropical segment tsegm(u, v) are supported by the vectors
eK1 , . . . , eK\ell .

We prove the second part of the statement by induction on \ell . When \ell = 1, the polygonal
curve reduces to a line segment [u, v], where v := u+\nu eK and \nu \geqslant 0. If \mu \leqslant 0, the combination
u\oplus (\mu \odot v) is equal to u when \mu <  - \nu , and to u+ (\mu + \nu )eK when \mu \geqslant  - \nu . We deduce that
the ordinary segment [u, v] coincides with the tropical segment tsegm(u, v).

Now, we assume that \ell > 1, and we split the polygonal curve, which we denote by \scrC , into
the subparts formed by the (\ell  - 1) first ordinary segments and the last segment, respectively.
Let w be the common vertex of the two subparts. We point out that u \leqslant w \leqslant v. Moreover,
v = w + \nu eK\ell for some \nu \geqslant 0. By the induction hypothesis, the two subparts respectively
coincide with the tropical segments tsegm(u,w) and tsegm(w, v). Moreover, w can be written
as u\oplus (( - \nu )\odot v). Indeed, for all i \in [d], we have

\bigl( 
u\oplus (( - \nu )\odot v)

\bigr) 
i
= max(ui, - \nu + vi). The

latter quantity is equal to max(ui, wi) if i \in K\ell , and to maxi(ui, - \nu +wi) otherwise. Besides,
we know that wi \geqslant ui, and that the equality holds when i /\in K\ell , as for all j < \ell the set Kj is
included in K\ell . We deduce that w belongs to the tropical segment tsegm(u, v), which implies
that \scrC = tsegm(u,w)\cup tsegm(w, v) is included in tsegm(u, v). Reciprocally, let x = u\oplus (\mu \odot v)
be an element of tsegm(u, v). If \mu \leqslant  - \nu , note that we have x = u \oplus 

\bigl( 
(\mu + \nu ) \odot w), as

w = u\oplus (( - \nu )\odot v). In this case, x belongs to tsegm(u,w). If \mu >  - \nu , then x \geqslant w. Then, we
can write x = x \oplus w = w \oplus (\mu \odot v) as w \geqslant u. We deduce that x \in tsegm(w, v). This shows
that \scrC coincides with tsegm(u, v).

We now relate tropical polyhedra with their classical analogues over Puiseux series via
the valuation map. The fact that sums of nonnegative Puiseux series do not suffer from
cancellation translates into the following.

Lemma 6. The valuation map is a monotone and surjective semifield homomorphism from
\BbbK + to \BbbT .

Proof. That val is a homomorphism is a consequence of (8) and the subsequent discussion.
Monotonicity and surjectivity are straightforward.

This carries over to Puiseux polyhedra in the nonnegative orthant.
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Proposition 7. The image under the valuation map of any Puiseux polyhedron \bfscrP \subset \BbbK d
+ is

a tropical polyhedron in \BbbT d.

Proof. Let \bfitU ,\bfitV \subset \BbbK d be two finite collections of vectors such that \bfscrP is the set of com-
binations of the form

\bfitx =
\sum 
\bfitu \in \bfitU 

\bfitalpha \bfitu \bfitu +
\sum 
\bfitv \in \bfitV 

\bfitbeta \bfitv \bfitv ,(12)

where \bfitalpha \bfitu ,\bfitbeta \bfitv \in \BbbK + and
\sum 

\bfitu \in \bfitU \bfitalpha \bfitu = 1. Observe that \bfitU and \bfitV both lie in \BbbK d
+ since \bfscrP \subset \BbbK d

+.
From Lemma 6, we deduce that val(\bfscrP ) is contained in the tropical polyhedron \scrP generated
by the sets U := val(\bfitU ) and V := val(\bfitV ). Conversely, any point in \scrP of the form (11) is the
image under the valuation map of \sum 

\bfitu \in \bfitU 

1

\bfitZ 
t\alpha u\bfitu +

\sum 
\bfitv \in \bfitV 

t\beta v\bfitv ,

where \bfitZ =
\sum 

u\in U t\alpha u is such that val\bfitZ = 0.

The special case of Proposition 7 concerning ``tropical polytopes"" in the sense of [DS04]
was already proved by Develin and Yu [DY07, Proposition 2.1]. One can show that, conversely,
each tropical polyhedron arises as the image under the valuation map of a polyhedron included
in \BbbK d

+; see [ABGJ15, Proposition 2.6].

3.3. Metric properties. In this section, we establish various metric estimates which will
be used in the analysis of the central path in section 6. These estimates involve several kinds
of metrics. We start with the nonsymmetric metric \delta \mathrm{F}, defined by

\delta \mathrm{F}(x, y) := inf
\bigl\{ 
\rho \geqslant 0: x+ \rho e \geqslant y

\bigr\} 
,

where x, y \in \BbbT d. Recall that e denotes the all-1-vector. Writing the inequality x + \rho e \geqslant y
as \rho \odot x \geqslant y reveals that \delta \mathrm{F} is the tropical analogue of the Funk metric which appears in
Hilbert's geometry [PT14]. Equivalently, we can write

\delta \mathrm{F}(x, y) = max(0,max
k

(yk  - xk)) ,

with the convention  - \infty  - ( - \infty ) =  - \infty . In this way, we observe that \delta \mathrm{F} is derived from the
one-sided \ell \infty -norm \| \cdot \| which we used to define the wide neighborhood of the central path
in (5), i.e., \delta \mathrm{F}(x, y) = \| x - y\| . We point out that \delta \mathrm{F}(x, y) < +\infty if and only if the support of
x contains the support of y, i.e., \{ k : xk \not =  - \infty \} \supset \{ k : yk \not =  - \infty \} .

The metric d\infty induced by the ordinary \ell \infty -norm is obtained by symmetrizing \delta \mathrm{F} as follows:

d\infty (x, y) := max(\delta \mathrm{F}(x, y), \delta \mathrm{F}(y, x)) .

We shall consider another symmetrization of \delta \mathrm{F}, leading to the affine version of Hilbert's
projective metric:

d\mathrm{H}(x, y) := \delta \mathrm{F}(x, y) + \delta \mathrm{F}(y, x) .
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The metric d\mathrm{H} was shown in [CGQ04] to be the canonical metric in tropical convexity. For
instance, the projection onto a convex set is well defined and is a best approximation in
this metric. The relevance of Hilbert's geometry to the study of the central path was already
observed by Bayer and Lagarias [BL89]. Notice that d\mathrm{H}(x, y) < +\infty if and only if the supports
of the two vectors x, y \in \BbbT d are identical.

We extend our notation to sets as follows. Given X,Y \subset \BbbT d we define

d\mathrm{H}(X,Y ) := sup
x\in X

inf
y\in Y

d\mathrm{H}(x, y) and d\infty (X,Y ) := sup
x\in X

inf
y\in Y

d\infty (x, y) .

These are the directed Hausdorff distances from X to Y induced by d\mathrm{H} and d\infty , respectively.
In order to establish the metric properties of this section, we repeatedly use the following

elementary inequalities: if t > 1 and \gamma 1, . . . , \gamma p \in \BbbR +,

(13) max(logt \gamma 1, . . . , logt \gamma p) \leqslant logt(\gamma 1 + \cdot \cdot \cdot + \gamma p) \leqslant max(logt \gamma 1, . . . , logt \gamma p) + logt p .

We start with a metric estimate over classical and tropical segments. Given t > 1 and a
vector x \in \BbbR d

+, we denote by logt x the vector of \BbbT d with entries logt xi. Moreover, if X \subset \BbbR d
+,

logtX is short for \{ logt x : x \in X\} .

Lemma 8. Let S = [u, v] be a segment in \BbbR d
+, and let Strop be the tropical segment between

the points logt u and logt v, where t > 1. Then

d\infty (Strop, logt S) \leqslant logt 2 .

Proof. Let x := \lambda \odot (logt u)\oplus \mu \odot (logt v) be a point of the tropical segment Strop, where
\lambda , \mu \in \BbbT are such that \lambda \oplus \mu = 0. Now the point

x\prime :=
t\lambda u+ t\mu v

t\lambda + t\mu 

belongs to S. Using (13) and \lambda \oplus \mu = 0, we get 0 \leqslant logt(t
\lambda + t\mu ) \leqslant logt 2. Similarly, for all

i \in [d], we have xi \leqslant logt(t
\lambda ui + t\mu vi) \leqslant xi + logt 2. We deduce that xi  - logt 2 \leqslant logt x

\prime 
i \leqslant 

xi + logt 2. As a consequence, d\infty (x, logt x
\prime ) \leqslant logt 2. It follows that d\infty (Strop, logt S) \leqslant 

logt 2.

We now focus on estimating the distance between tropical polyhedra and related loga-
rithmic deformations of convex polyhedra. To this end, we consider a Puiseux polyhedron
\bfscrP included in the nonnegative orthant, as well as the associated parametric family of poly-
hedra \bfscrP (t) over \BbbR . The following theorem shows that the tropical polyhedron val(\bfscrP ) is the
log-limit of the polyhedra \bfscrP (t), and that the convergence is uniform. This is related to a
result of Briec and Horvath, who established in [BH04] a uniform convergence property for a
parametric family of convex hulls.

Theorem 9. Let \bfscrP \subset \BbbK d
+ be a Puiseux polyhedron. Then the sequence (logt\bfscrP (t))t of

logarithms of real polyhedra converges to the tropical polyhedron val(\bfscrP ) with respect to the
directed Hausdorff distance d\mathrm{H}.
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Proof. By Proposition 3, we can find finite sets \bfitU ,\bfitV \subset \BbbK d
+ such that for sufficiently large

t, the real polyhedron \bfscrP (t) is generated by the sets of points \bfitU (t) := \{ \bfitu (t) : \bfitu \in \bfitU \} \subset \BbbR d
+ and

rays \bfitV (t) := \{ \bfitv (t) : \bfitv \in \bfitV \} \subset \BbbR d
+. Let \bfitu \in \bfitU . If t is large enough, then \bfitu i(t) = 0 is equivalent

to val(\bfitu )i =  - \infty for all i \in [d]. Thus \delta \mathrm{F}(logt \bfitu (t), val\bfitu ), as well as \delta \mathrm{F}(val\bfitu , logt \bfitu (t)),
converge to 0 when t \rightarrow +\infty . The situation is similar for \bfitv (t) and val\bfitv for any \bfitv \in \bfitV .

Moreover, the tropical polyhedron \scrP := val(\bfscrP ) is generated by the sets val(\bfitU ) and val(\bfitV ),
as shown in the proof of Proposition 7.

Now consider x \in \bfscrP (t). From Carath\'eodory's theorem we know that there exist subsets
\{ \bfitu k(t)\} k\in K \subset \bfitU (t) and \{ \bfitv \ell (t)\} \ell \in L \subset \bfitV (t) with | K| + | L| \leqslant d + 1 such that the point x can
be written as

x =
\sum 
k\in K

\alpha k\bfitu 
k(t) +

\sum 
\ell \in L

\beta \ell \bfitv 
\ell (t) ,

where \alpha k, \beta \ell > 0 for k \in K, \ell \in L, and
\sum 

k\in K \alpha k = 1. By using (13), we get that, for all
i \in [d],

(14)
\bigoplus 
k\in K

\bigl( 
(logt \alpha k)\odot logt \bfitu 

k
i (t)

\bigr) 
\oplus 
\bigoplus 
\ell \in L

\bigl( 
(logt \beta \ell )\odot logt \bfitv 

\ell 
i (t)
\bigr) 
\leqslant logt xi

\leqslant 

\biggl[ \bigoplus 
k\in K

\bigl( 
(logt \alpha k)\odot logt \bfitu 

k
i (t)

\bigr) 
\oplus 
\bigoplus 
\ell \in L

\bigl( 
(logt \beta \ell )\odot logt \bfitv 

\ell 
i (t)
\bigr) \biggr] 

+ logt(| K| + | L| ) .

Setting \gamma := maxk\in K \alpha k, we have 1
| K| \leqslant \gamma \leqslant 1. Now we define

x\prime :=

\Biggl( \bigoplus 
k\in K

\alpha \prime 
k \odot uk

\Biggr) 
\oplus 

\Biggl( \bigoplus 
\ell \in L

\beta \prime 
\ell \odot v\ell 

\Biggr) 
,

where \alpha \prime 
k := logt(\alpha k/\gamma ), \beta 

\prime 
\ell := logt \beta \ell , u

k := val(\bfitu k), and v\ell := val(\bfitv \ell ). By the choice of \gamma 
we have

\bigoplus 
k\in K \alpha \prime 

k = 0, and thus x\prime \in \scrP . Further, xi > 0 if and only if there exists k \in K
such that \bfitu k

i (t) > 0 or \ell \in L such that \bfitv \ell 
i (t) > 0. Provided that t is sufficiently large, this

is equivalent to the fact that uki >  - \infty for some k \in K, or v\ell i >  - \infty for some \ell \in L. This
latter property amounts to x\prime i >  - \infty . Consequently, we have d\mathrm{H}(logt x, x

\prime ) < +\infty , and we
can derive from (14) that

(15) x\prime i  - max

\biggl( 
logt | K| +max

k\in K
\delta \mathrm{F}(logt \bfitu 

k(t), uk),max
\ell \in L

\delta \mathrm{F}(logt \bfitv 
\ell (t), v\ell )

\biggr) 
\leqslant logt xi

\leqslant x\prime i + logt(| K| + | L| ) + max

\biggl( 
max
k\in K

\delta \mathrm{F}(u
k, logt \bfitu 

k(t)),max
\ell \in L

\delta \mathrm{F}(v
\ell , logt \bfitv 

\ell (t))

\biggr) 
for all i \in [d]. Finally, we deduce that

(16) d\mathrm{H}(logt\bfscrP (t),\scrP ) \leqslant logt(d+ 1) + max

\biggl( 
max
\bfitu \in \bfitU 

\delta \mathrm{F}(val\bfitu , logt \bfitu (t)),max
\bfitv \in \bfitV 

\delta \mathrm{F}(val\bfitv , logt \bfitv (t))

\biggr) 
+max

\biggl( 
logt(d+ 1) + max

\bfitu \in \bfitU 
\delta \mathrm{F}(logt \bfitu (t), val\bfitu ),max

\bfitv \in \bfitV 
\delta \mathrm{F}(logt \bfitv (t), val\bfitv )

\biggr) 
,

which tends to 0 when t \rightarrow +\infty .
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Remark 10. For the sake of brevity, we only stated and proved here the one-sided metric
estimates which we will use in the proof of our main results, leaving it to the interested reader
to derive the symmetrical metric estimates. For instance, the inequality d\infty (logt S, S

trop) \leqslant 
logt 2 can be shown by a method similar to that of Lemma 8. Likewise, a variant of the proof
of Theorem 9 shows that the reversed Hausdorff distance d\mathrm{H}(val(\bfscrP ), logt\bfscrP (t)) tends to zero
when t \rightarrow \infty .

Next we refine the convergence result just obtained by providing a metric estimate in the
special case where \bfscrP is a polyhedron given by constraints with monomial coefficients. Here a
Puiseux series of the form \pm t\alpha is called monomial, with the convention t - \infty = 0. Further, a
vector or a matrix is monomial if all its entries are. For a monomial matrix \bfitM = (\pm t\alpha ij ) of
size d\times d we introduce the quantity \eta (\bfitM ) > 0 by letting

\eta (\bfitM ) := min

\Biggl\{ 
\eta : \sigma , \tau \in Symd, \eta =

d\sum 
i=1

\alpha i\sigma (i)  - 
d\sum 

i=1

\alpha i\tau (i) > 0

\Biggr\} 
,

where Symd stands for the symmetric group over [d]. We use the convention min \emptyset = +\infty .
Phrased differently, the determinant of \bfitM is a Puiseux series with finitely many terms with
decreasing exponents, and \eta (\bfitM ) provides a lower bound on the gap between any two successive
exponents (if any). This allows us to obtain explicit upper and lower bounds for logt| det\bfitM (t)| 
in terms of val(det\bfitM ). Note that these bounds hold without any assumption on the genericity
of the matrix \bfitM .

Lemma 11. Let \bfitM \in \BbbK d\times d be a monomial matrix. Then, for all t > 1, we have

logt| det\bfitM (t)| \leqslant val(det\bfitM ) + logt d! ,

and, if additionally t \geqslant (d!)1/\eta (\bfitM ), then we get

val(det\bfitM ) \leqslant logt| det\bfitM (t)| + logt d! .

Proof. First, note that the statement is trivial when det\bfitM = 0, since in this case, the
determinant of \bfitM (t) vanishes for all t > 1. Now suppose that det\bfitM \not = 0. Since \bfitM is
monomial, every entry of \bfitM is of the form \epsilon ijt

\alpha ij where \epsilon ij \in \{ \pm 1\} . Therefore, we obtain

det\bfitM =

p\sum 
k=1

ckt
\beta k ,

where the following conditions are met: (i) each ck is a nonnull integer, and
\sum 

k| ck| \leqslant d!;

(ii) every \beta k is of the form
\sum d

i=1 \alpha i\sigma (i) for a certain permutation \sigma \in Symd; and (iii) \beta 1 >
\cdot \cdot \cdot > \beta p >  - \infty . With this notation, we have val(det\bfitM ) = \beta 1, and \beta i  - \beta i+1 \geqslant \eta (\bfitM ).
Similarly, for all t > 1, we have det\bfitM (t) =

\sum p
k=1 ckt

\beta k . This leads to

logt| det\bfitM (t)| \leqslant \beta 1 + logt

\Biggl( 
p\sum 

k=1

| ck| t\beta k - \beta 1

\Biggr) 
\leqslant val(det\bfitM ) + logt d! .
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Further, provided that t \geqslant (d!)1/\eta (\bfitM ), we have

p\sum 
k=2

| ck| t\beta k - \beta 1 \leqslant (d! - 1)t\beta 2 - \beta 1 \leqslant (d! - 1)t - \eta (\bfitM ) \leqslant 1 - 1/d! ,

and so

logt| det\bfitM (t)| \geqslant \beta 1 + logt

\Biggl( 
1 - 

p\sum 
k=2

| ck| t\beta k - \beta 1

\Biggr) 
\geqslant val(det\bfitM ) - logt d! .

Recall that we write e for the all-1-vector of an appropriate size.

Theorem 12. Let \bfscrP \subset \BbbK d
+ be a polyhedron of the form \{ \bfitx \in \BbbK d : \bfitA \bfitx \leqslant \bfitb \} where \bfitA and \bfitb 

are monomial. Let \eta 0 be the minimum of the quantities \eta (\bfitM ) where \bfitM is a square submatrix
of
\bigl( 

\bfitA \bfitb 0
e\top 0 1

\bigr) 
of order d. Then, for all t \geqslant (d!)1/\eta 0, we have

d\mathrm{H}(logt\bfscrP (t), val(\bfscrP )) \leqslant logt
\bigl( 
(d+ 1)2(d!)4

\bigr) 
.

Proof. We employ the notation introduced in the proof of Theorem 9. Note that the
inequality given in (16) holds for any sets \bfitU ,\bfitV generating the polyhedron \bfscrP . In particular,
we can set\bfitU to the set of vertices of\bfscrP , and \bfitV to a set consisting of precisely one representative
of every extreme ray of the recession cone of \bfscrP .

Let \bfitu \in \bfitU . Since \bfitu is a vertex, there exists a subset I of cardinality d such that \bfitA I\bfitu = \bfitb I ,
where \bfitA I and \bfitb I consist of the rows of \bfitA and \bfitb , respectively, which are indexed by i \in I,
and \bfitA I is invertible. Therefore, by Cramer's rule, every coordinate \bfitu i can be expressed as a
fraction of the form \pm det\bfitM / det\bfitA I where \bfitM is a submatrix of

\bigl( 
\bfitA \bfitb 

\bigr) 
of size d\times d. Recall

that \bfitu i is nonnegative, and hence \bfitu i = | det\bfitM | /| det\bfitA I | . By definition, \eta (\bfitM ) and \eta (\bfitA I) are
greater than or equal to \eta 0. From Lemma 11 we derive that

val(\bfitu i) - 2 logt d! \leqslant logt \bfitu i(t) \leqslant val(\bfitu i) + 2 logt d!

for all t \geqslant (d!)1/\eta 0 . Since these inequalities hold for all i \in [d], we deduce that the two
quantities \delta \mathrm{F}(val\bfitu , logt \bfitu (t)) and \delta \mathrm{F}(logt \bfitu (t), val\bfitu ) are bounded by 2 logt d!.

The recession cone of \bfscrP is the set \{ \bfitz \in \BbbK d : \bfitA \bfitz \leqslant 0\} . Since \bfscrP is contained in the positive
orthant, so is the recession cone. Therefore, without loss of generality, we can assume that
every \bfitv \in \bfitV satisfies

\sum 
i \bfitv i = 1. In this way, the elements of \bfitV precisely correspond to

the vertices of the polyhedron \{ \bfitz \in \BbbK d : \bfitA \bfitz \leqslant 0 , e\top \bfitz = 1\} . Using the same arguments as
above, we infer that, for all \bfitv \in \bfitV , the two values \delta \mathrm{F}(val\bfitv , logt \bfitv (t)) and \delta \mathrm{F}(logt \bfitv (t), val\bfitv )
are bounded by 2 logt d!, as soon as t \geqslant (d!)1/\eta 0 . Now the claim follows from (16).

4. The tropical central path. Our core idea is to introduce the tropical central path of a
linear program over Puiseux series. This is defined as the image of the classical primal-dual
central path under the valuation map. By (3) the classical central path is a segment of a
real algebraic curve, and so its tropicalization is a segment of a (real) tropical curve and thus
piecewise linear. It will turn out that for certain Puiseux linear programs the tropical central
path carries a substantial amount of metric information. In sections 5 and 6 we will see that
this applies to the linear programs LWr(t). As its key advantage the tropical central path
turns out to be much easier to analyze than its classical counterpart.
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4.1. A geometric characterization of the tropical central path. As in section 2, we
consider a dual pair of linear programs, except that now the coefficients lie in the field \BbbK of
absolutely convergent real Puiseux series from section 3.1:

minimize \langle \bfitc ,\bfitx \rangle subject to \bfitA \bfitx +\bfitw = \bfitb , (\bfitx ,\bfitw ) \in \BbbK N
+ ,LP(\bfitA , \bfitb , \bfitc )

maximize \langle  - \bfitb ,\bfity \rangle subject to \bfits  - \bfitA \top \bfity = \bfitc , (\bfits ,\bfity ) \in \BbbK N
+ ,DualLP(\bfitA , \bfitb , \bfitc )

where \bfitA \in \BbbK m\times n, \bfitb \in \BbbK m, \bfitc \in \BbbK n, and N := n+m. Here, the Euclidean scalar product \langle \cdot , \cdot \rangle 
is extended by setting \langle \bfitu ,\bfitv \rangle :=

\sum 
i \bfitu i\bfitv i for any vectors \bfitu ,\bfitv with entries over \BbbK . Further, we

define

\bfscrP := \{ (\bfitx ,\bfitw ) \in \BbbK N
+ : \bfitA \bfitx +\bfitw = \bfitb \} and \bfscrQ := \{ (\bfits ,\bfity ) \in \BbbK N

+ : \bfits  - \bfitA \top \bfity = \bfitc \} ,

which correspond to the feasible regions of the two Puiseux linear programs. Moreover, we
let \bfscrF := \bfscrP \times \bfscrQ be the set of primal-dual feasible points, and \bfscrF \circ := \{ \bfitz \in \bfscrF : \bfitz > 0\} is the
strictly feasible subset. Throughout we will make the following assumption.

Assumption 13. The set \bfscrF \circ is nonempty.

This allows us to define the central path of the Puiseux linear programs LP(\bfitA , \bfitb , \bfitc ) and
DualLP(\bfitA , \bfitb , \bfitc ). Indeed, applying Tarski's principle to the real closed field \BbbK shows that,
for all \bfitmu \in \BbbK such that \bfitmu > 0, the system

(17)

\bfitA \bfitx +\bfitw = \bfitb ,

\bfits  - \bfitA \top \bfity = \bfitc ,\biggl( 
\bfitx \bfits 
\bfitw \bfity 

\biggr) 
= \bfitmu e,

\bfitx ,\bfitw ,\bfity , \bfits > 0

has a unique solution in \BbbK 2N . We denote this solution as \bfscrC (\bfitmu ) = (\bfitx \bfitmu ,\bfitw \bfitmu , \bfits \bfitmu ,\bfity \bfitmu ) and
refer to it as the point of the central path with parameter \bfitmu . Similarly, by Tarski's principle,
\bfscrF \not = \emptyset ensures that the two linear programs have the same optimal value \bfitnu \in \BbbK . We let
(\bfitx \ast ,\bfitw \ast ) \in \bfscrP and (\bfits \ast ,\bfity \ast ) \in \bfscrQ be a pair of primal and dual optimal solutions. Equivalently,
we have \bfitnu = \langle \bfitc ,\bfitx \ast \rangle = \langle  - \bfitb ,\bfity \ast \rangle .

Let \scrP \subset \BbbT N , \scrQ \subset \BbbT N , and \scrF \subset \BbbT 2N be the images under the valuation map of the primal
and dual feasible polyhedra \bfscrP , \bfscrQ , and \bfscrF , respectively. Similarly we write (x\ast , w\ast ) \in \BbbT N and
(s\ast , y\ast ) \in \BbbT N for the coordinatewise valuations of the optimal solutions (\bfitx \ast ,\bfitw \ast ) and (\bfits \ast ,\bfity \ast ).

Given a primal-dual feasible point \bfitz = (\bfitx ,\bfitw , \bfits ,\bfity ) \in \bfscrF , the duality gap, denoted by
gap(\bfitz ), is defined as the difference between the values of the primal and dual objective func-
tions, i.e., \langle \bfitc ,\bfitx \rangle + \langle \bfitb ,\bfity \rangle . We recall that gap(\bfitz ) is equivalently given by the complementarity
gap defined as the sum of the pairwise product of primal/dual variables:

gap(\bfitz ) = \langle \bfitx , \bfits \rangle + \langle \bfitw ,\bfity \rangle .

Observe that the right-hand side of the latter equality consists of sums of nonnegative terms
(of the form \bfitx j\bfits j and \bfitw i\bfity i). Consequently, we can apply the valuation map termwise and
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define, for all z = (x,w, s, y) \in \scrF , the tropical duality gap as

tgap(z) := \langle x, s\rangle \BbbT \oplus \langle w, y\rangle \BbbT ,

where \langle \cdot , \cdot \rangle \BbbT stands for the tropical analogue of the scalar product, i.e., \langle u, v\rangle \BbbT :=
\bigoplus 

i(ui\odot vi).
Then the quantity tgap(z) equals the valuation of the duality gap of any primal-dual feasible
\bfitz with val(\bfitz ) = z. The study of the tropical central path will require the following tropical
sublevel set induced by the tropical duality gap:

\scrF \lambda := \{ z \in \scrF : tgap(z) \leqslant \lambda \} ,

which is defined for any \lambda \in \BbbR . Now we present a few basic facts about this collection of
sublevel sets.

Proposition 14. Let \bfitmu \in \BbbK such that \bfitmu > 0, and let \lambda = val(\bfitmu ). Then
(i) the set \scrF \lambda is a bounded tropical polyhedron given by \scrP \lambda \times \scrQ \lambda where

\scrP \lambda := \{ (x,w) \in \scrP : \langle s\ast , x\rangle \BbbT \oplus \langle y\ast , w\rangle \BbbT \leqslant \lambda \} ,
\scrQ \lambda := \{ (s, y) \in \scrQ : \langle x\ast , s\rangle \BbbT \oplus \langle w\ast , y\rangle \BbbT \leqslant \lambda \} ;

(ii) the image under val of the point \bfscrC (\bfitmu ) lies in \scrF \lambda .

Proof. We start with the proof of (ii). By definition, \bfscrC (\bfitmu ) \in \bfscrF so that val(\bfscrC (\bfitmu )) \in \scrF .
Moreover, we have tgap

\bigl( 
val(\bfscrC (\bfitmu ))

\bigr) 
= val(gap(\bfscrC (\bfitmu )). Since gap(\bfscrC (\bfitmu )) = N\bfitmu by (2), we

deduce that the previous quantity is equal to the valuation of N\bfitmu , which is \lambda . This forces
val(\bfscrC (\bfitmu )) to lie in \scrF \lambda .

We need to show that \scrF \lambda is a tropical polyhedron which is bounded. To this end we
consider \bfitz = (\bfitx ,\bfitw , \bfits ,\bfity ) \in \bfscrF . Recall that \bfitnu is the common optimal value of the primal and
the dual Puiseux linear programs. Then we obtain

gap(\bfitz ) =
\bigl( 
\langle \bfitc ,\bfitx \rangle  - \bfitnu 

\bigr) 
+
\bigl( 
\langle \bfitb ,\bfity \rangle + \bfitnu 

\bigr) 
= gap(\bfitx ,\bfitw , \bfits \ast ,\bfity \ast ) + gap(\bfitx \ast ,\bfitw \ast , \bfits ,\bfity ) .

Since the right-hand side of this identity is a sum of two nonnegative terms, applying the
valuation map yields tgap(z) = tgap(x,w, s\ast , y\ast )\oplus tgap(x\ast , w\ast , s, y) for all z = (x,w, s, y) \in \scrF .
Thus we can express the tropical sublevel set \scrF \lambda as

\scrF \lambda = \{ (x,w, s, y) \in \scrF : tgap(x,w, s\ast , y\ast )\oplus tgap(x\ast , w\ast , s, y) \leqslant \lambda \} = P \lambda \times Q\lambda .

In particular, the set \scrF \lambda is a tropical polyhedron.
To complete our proof we still have to show that \scrF \lambda is bounded. As the entries of every

z \in \scrF \lambda are greater than or equal to  - \infty \in \BbbT , we just need to prove that \scrF \lambda is bounded from
above. To this end, pick some point z\circ = (x\circ , w\circ , s\circ , y\circ ) in \scrF \lambda which has finite coordinates.
For instance, we can take z\circ = val(\bfscrC (\bfitmu )) by making use of (ii). Now consider an arbitrary
point (x,w, s, y) \in \scrF \lambda . As \scrF \lambda = \scrP \lambda \times \scrQ \lambda , we know that (x,w, s\circ , y\circ ) \in \scrF \lambda . In particular,
tgap(x,w, s\circ , y\circ ) \leqslant \lambda or, equivalently,\Biggl\{ 

xj \odot s\circ j \leqslant \lambda for all j \in [n] ,

wi \odot y\circ i \leqslant \lambda for all i \in [m] .
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Since s\circ j , y
\circ 
i >  - \infty , this entails that xj \leqslant \lambda \odot (s\circ j )

\odot ( - 1) and wi \leqslant \lambda \odot (y\circ i )
\odot ( - 1) for all i \in [m]

and j \in [n]. Similarly, the entries of (s, y) are bounded, too. This completes the proof
of (i).

As a bounded tropical polyhedron the set \scrF \lambda admits a (tropical) barycenter. Recall that
the latter was defined as the coordinatewise maximum of that set. The following theorem
relates this barycenter with the valuation of the central path, and gives rise to the definition
of the tropical central path.

Theorem 15. The image under the valuation map of the central path of the pair of primal-
dual linear programs LP(\bfitA , \bfitb , \bfitc ) and DualLP(\bfitA , \bfitb , \bfitc ) can be described by

(18) val(\bfscrC (\bfitmu )) = barycenter of \{ z \in val(\bfscrF ) : tgap(z) \leqslant val(\bfitmu )\} 

for any \bfitmu \in \BbbK such that \bfitmu > 0.

Proof. Let \lambda := val(\bfitmu ), and denote by \=z = (\=x, \=w, \=s, \=y) the barycenter of the tropical
polyhedron \scrF \lambda . By construction we have val(\bfscrC (\bfitmu )) \leqslant \=z. Moreover, since tgap

\bigl( 
\=z
\bigr) 
\leqslant \lambda , we

also have \=xj \odot \=sj \leqslant \lambda and \=wi \odot \=yi \leqslant \lambda for all i \in [m] and j \in [n]. It follows that

(19)

\Biggl\{ 
\lambda = val(\bfitx \bfitmu 

j \bfits 
\bfitmu 
j ) = val(\bfitx \bfitmu 

j )\odot val(\bfits \bfitmu j ) \leqslant \=xj \odot \=sj \leqslant \lambda ,

\lambda = val(\bfitw \bfitmu 
j \bfity 

\bfitmu 
j ) = val(\bfitw \bfitmu 

i )\odot val(\bfity \bfitmu 
i ) \leqslant \=wi \odot \=yi \leqslant \lambda .

As a consequence, the inequality val(\bfscrC (\bfitmu )) \leqslant \=z is necessarily an equality.

The quantity (18), which depends only on the valuation of \bfitmu , is called the tropical central
path at \lambda = val(\bfitmu ) and is denoted by

\scrC \mathrm{t}\mathrm{r}\mathrm{o}\mathrm{p}(\lambda ) = (x\lambda , w\lambda , s\lambda , y\lambda ) .

Analogously, the primal and the dual tropical central paths are defined by projecting to
(x\lambda , w\lambda ) and (s\lambda , y\lambda ), respectively. As shown in (19), the primal and dual components of
the tropical central path are characterized by

(20) x\lambda j \odot s\lambda j = \lambda = w\lambda 
i \odot y\lambda i

for all i \in [m] and j \in [n]. The next statement shows that the tropical central path is a
polygonal curve with a particularly simple structure.

Proposition 16. The tropical central path \lambda \mapsto \rightarrow \scrC \mathrm{t}\mathrm{r}\mathrm{o}\mathrm{p}(\lambda ) is a monotone piecewise linear
function, whose derivative at each smooth point is a vector of the form (eK , e[N ]\setminus K) for some
K \subset [N ].

Proof. Let us denote by g : \BbbT N \rightarrow \BbbT the function which sends (x,w) to \langle s\ast , x\rangle \BbbT \oplus \langle y\ast , w\rangle \BbbT .
Pick finite generating sets U \subset \BbbT N and V \subset \BbbT N \setminus \{ ( - \infty , . . . , - \infty )\} for the tropical polyhedron
\scrP . Since (x\lambda , w\lambda ) lies in \scrP , it can be expressed as

(x\lambda , w\lambda ) =

\Biggl( \bigoplus 
u\in U

\alpha u \odot u

\Biggr) 
\oplus 

\Biggl( \bigoplus 
v\in V

\beta v \odot v

\Biggr) 
,
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where
\bigoplus 

u\in U \alpha u = 0. The inequality g(x\lambda , w\lambda ) \leqslant \lambda now amounts to \alpha u \odot g(u) \leqslant \lambda and
\beta v \odot g(v) \leqslant \lambda for all u \in U and v \in V . As (x\lambda , w\lambda ) is the barycenter of \scrP \lambda , the coefficients
\alpha u and \beta v can be chosen to be maximal. This enforces \alpha u = min

\bigl( 
0, \lambda \odot (g(u))\odot ( - 1)

\bigr) 
and

\beta v = \lambda \odot (g(v))\odot ( - 1), using the convention ( - \infty )\odot ( - 1) = +\infty . Note that g(v) \not =  - \infty for
all v \in V . Indeed, if there were a ray v \in V with g(v) =  - \infty , then any point of the form
(x\ast , w\ast )\oplus (\beta \odot v) would belong to \scrP \lambda . The latter conclusion would contradict the boundedness
of \scrP \lambda . Therefore, all \alpha u and \beta v belong to \BbbR . Observe also that \alpha u and \beta v, thought of as
functions of \lambda , are monotone and piecewise linear, and that their derivatives at any smooth
point take value in \{ 0, 1\} . It follows that \lambda \mapsto \rightarrow (x\lambda , s\lambda ) is piecewise linear and monotone, and
that its derivative at any smooth point is of the form eK .

A similar argument reveals that the map \lambda \mapsto \rightarrow (s\lambda , y\lambda ) is also piecewise linear and mono-
tone, with a derivative at any smooth point of the form eK

\prime 
for some set K \prime \subset [N ]. As a

consequence, the derivative of the map \scrC \mathrm{t}\mathrm{r}\mathrm{o}\mathrm{p} at any smooth point is of the form (eK , eK
\prime 
),

and, from (20), we get that K \prime = [N ] \setminus K. This proves our claim.

We end this section with the following direct consequence of Proposition 16.

Corollary 17. If \lambda \leqslant \lambda \prime , then \scrC \mathrm{t}\mathrm{r}\mathrm{o}\mathrm{p}(\lambda ) \leqslant \scrC \mathrm{t}\mathrm{r}\mathrm{o}\mathrm{p}(\lambda \prime ) \leqslant \scrC \mathrm{t}\mathrm{r}\mathrm{o}\mathrm{p}(\lambda ) + (\lambda \prime  - \lambda )e.

4.2. A uniform metric estimate on the convergence of the central path. So far, we
have related the tropical central path with the central path of the linear programs LP(\bfitA , \bfitb , \bfitc )
and DualLP(\bfitA , \bfitb , \bfitc ) over Puiseux series. These give rise to a parametric family of dual linear
programs LP(\bfitA (t), \bfitb (t), \bfitc (t)) and DualLP(\bfitA (t), \bfitb (t), \bfitc (t)) over the reals. The purpose of this
section is to relate the resulting family of central paths with the tropical central path. More
precisely, we will show that the logarithmic deformation of these central paths uniformly
converges to the tropical curve. In fact, we will even show that the logarithmic deformation of
the wide neighborhoods \scrN  - \infty 

\theta of these central paths collapses onto the tropical central path.
Let \bfscrP (t),\bfscrQ (t) \subset \BbbR N be the feasible sets of the linear programs LP(\bfitA (t), \bfitb (t), \bfitc (t)) and

DualLP(\bfitA (t), \bfitb (t), \bfitc (t)), respectively. (Note that this notation is compatible with that intro-
duced in section 3.1 thanks to Proposition 3.) Then \bfscrF (t) := \bfscrP (t) \times \bfscrQ (t) is the primal-dual
feasible set, while \bfscrF \circ (t) := \{ z \in \bfscrF (t) : z > 0\} comprises only those primal-dual points which
are strictly feasible. The following lemma relates the optimal solutions of LP(\bfitA , \bfitb , \bfitc ) and
DualLP(\bfitA , \bfitb , \bfitc ) with those of LP(\bfitA (t), \bfitb (t), \bfitc (t)) and DualLP(\bfitA (t), \bfitb (t), \bfitc (t)).

Lemma 18. There exists a real number t0 > 1 such that for all t > t0 the following three
properties hold:
(i) The set \bfscrF \circ (t) is nonempty;
(ii) the number \bfitnu (t) is the optimal value of LP(\bfitA (t), \bfitb (t), \bfitc (t)) and DualLP(\bfitA (t), \bfitb (t), \bfitc (t));
(iii) (\bfitx \ast (t),\bfitw \ast (t)) and (\bfits \ast (t),\bfity \ast (t)) constitute optimal solutions.

Proof. For two series \bfitu ,\bfitv \in \BbbK the equality \bfitu = \bfitv forces \bfitu (t) = \bfitv (t) for all t large
enough. A similar statement holds for inequalities like \bfitu \leqslant \bfitv and \bfitu < \bfitv . We infer that the
set \bfscrF \circ (t) is not empty if t \gg 1. Moreover, (\bfitx \ast (t),\bfitw \ast (t)) \in \scrP (t), (\bfits \ast (t),\bfity \ast (t)) \in \scrQ (t), and
\langle \bfitc (t),\bfitx \ast (t)\rangle = \langle  - \bfitb (t),\bfity \ast (t)\rangle = \bfitnu (t). Since LP(\bfitA (t), \bfitb (t), \bfitc (t)) and DualLP(\bfitA (t), \bfitb (t), \bfitc (t))
are dual to one another, we conclude that (\bfitx \ast (t),\bfitw \ast (t)) and (\bfits \ast (t),\bfity \ast (t)) form a pair of
optimal solutions.
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Throughout the following we will keep the value t0 from Lemma 18. When t > t0, we know
from Lemma 18(i) that the primal-dual central path of the linear programs LP(\bfitA (t), \bfitb (t), \bfitc (t))
and DualLP(\bfitA (t), \bfitb (t), \bfitc (t)) is well defined. In this case we denote by \scrC t(\mu ) the point of this
central path with parameter \mu , where \mu \in \BbbR and \mu > 0. Let us fix the real precision parameter
\theta in the open interval from 0 to 1. Then the set

\scrN  - \infty 
\theta ,t (\mu ) :=

\Bigl\{ 
z = (x,w, s, y) \in \bfscrF \circ (t) : \=\mu (z) = \mu and

\biggl( 
xs
wy

\biggr) 
\geqslant (1 - \theta )\mu e

\Bigr\} 
is a neighborhood of the point \scrC t(\mu ). A direct inspection shows that the union of the sets
\scrN  - \infty 

\theta ,t (\mu ) for \mu > 0 agrees with the wide neighborhood \scrN  - \infty 
\theta of the entire central path of the

linear program LP(\bfitA (t), \bfitb (t), \bfitc (t)) over \BbbR ; see (5). In order to stress the dependence on t, we
denote this neighborhood by \scrN  - \infty 

\theta ,t . With this notation, we have

\scrN  - \infty 
\theta ,t =

\bigcup 
\mu >0

\scrN  - \infty 
\theta ,t (\mu ) .

Further, let

(21) \delta (t) := 2d\mathrm{H}(logt\bfscrF (t),\scrF ) ,

which, by Theorem 9, tends to 0 when t goes to +\infty . The following result states that we can
uniformly bound the distance from the image of \scrN  - \infty 

\theta ,t (\mu ) under logt to the point \scrC \mathrm{t}\mathrm{r}\mathrm{o}\mathrm{p}(logt \mu )
of the tropical central path, independently of \mu .

Theorem 19. For all t > t0 and \mu > 0 we have

d\infty 
\bigl( 
logt\scrN  - \infty 

\theta ,t (\mu ), \scrC \mathrm{t}\mathrm{r}\mathrm{o}\mathrm{p}(logt \mu )
\bigr) 
\leqslant logt

\Bigl( N

1 - \theta 

\Bigr) 
+ \delta (t) .

Proof. Choose t > t0, \mu > 0, and z = (x,w, s, y) \in \scrN  - \infty 
\theta ,t (\mu ). Letting \lambda := logt \mu , we claim

that it suffices to prove that

(22) logt z \leqslant \scrC \mathrm{t}\mathrm{r}\mathrm{o}\mathrm{p}(\lambda ) + (logtN + \delta (t))e .

Indeed, by definition of the wide neighborhood \scrN  - \infty 
\theta ,t (\mu ), we have logt(x,w) \geqslant  - logt(s, y) +\bigl( 

\lambda + logt(1 - \theta )
\bigr) 
e. Using (22), we obtain

logt(x,w) \geqslant  - (s\lambda , y\lambda ) +

\biggl( 
\lambda  - logt

\Bigl( N

1 - \theta 

\Bigr) 
 - \delta (t)

\biggr) 
e = (x\lambda , w\lambda ) - 

\biggl( 
logt

\Bigl( N

1 - \theta 

\Bigr) 
+ \delta (t)

\biggr) 
e ,

where the last equality is due to (20). Analogously, we can prove that logt(s, y) \geqslant (s\lambda , y\lambda ) - \Bigl( 
logt

\bigl( 
N
1 - \theta 

\bigr) 
+\delta (t)

\Bigr) 
e. Finally, the inequality in (22) implies that logt z \leqslant \scrC \mathrm{t}\mathrm{r}\mathrm{o}\mathrm{p}(\lambda )+

\Bigl( 
logt

\bigl( 
N
1 - \theta 

\bigr) 
+

\delta (t)
\Bigr) 
e, since \theta > 0.

Now let us show that (22) holds. By definition of the duality measure \=\mu (z), we have
gap(z) = N \=\mu (z) = N\mu . Applying the map logt yields

(23) tgap(logt z) \leqslant logt gap(z) = \lambda + logtN ,
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where the inequality is a consequence of the first inequality in (13).
Let z\prime \in \scrF such that d\mathrm{H}(logt z, z

\prime ) < +\infty . Recall that

(24) z\prime  - \delta \mathrm{F}(logt z, z
\prime )e \leqslant logt z \leqslant z\prime + \delta \mathrm{F}(z

\prime , logt z)e .

The first inequality in (24) gives tgap(z\prime ) \leqslant tgap(logt z) + 2\delta \mathrm{F}(logt z, z
\prime ). In combination

with (23) this shows that z\prime lies in \scrF \lambda \prime 
for \lambda \prime := \lambda + logtN + 2\delta F (logt z, z

\prime ). The second
inequality in (24) now yields

logt z \leqslant z\prime + \delta \mathrm{F}(z
\prime , logt z)e \leqslant \scrC \mathrm{t}\mathrm{r}\mathrm{o}\mathrm{p}(\lambda \prime )+ \delta \mathrm{F}(z

\prime , logt z)e \leqslant \scrC \mathrm{t}\mathrm{r}\mathrm{o}\mathrm{p}(\lambda )+
\bigl( 
logtN +2d\mathrm{H}(logt z, z

\prime )
\bigr) 
e ,

where the second inequality follows from \scrC \mathrm{t}\mathrm{r}\mathrm{o}\mathrm{p}(\lambda \prime ) being the barycenter of \scrF \lambda \prime 
, and the last

inequality is a consequence of Corollary 17. As this argument is valid for all z\prime \in \scrF within a
finite distance from logt z, we obtain that logt z \leqslant \scrC \mathrm{t}\mathrm{r}\mathrm{o}\mathrm{p}(\lambda ) +

\bigl( 
logtN + \delta (t)

\bigr) 
e.

4.3. Main example. The family LWr(t) of linear programs over the reals from the intro-
duction may also be read as a linear program over the field \BbbK , when t is thought of as a formal
parameter. We denote this linear program by LWr. The goal of this section is to obtain a
complete description of the corresponding tropical central path.

Introducing slack variables \bfitw 1, . . . ,\bfitw 3r - 1 in the first 3r  - 1 inequalities of LWr, and
adding the redundant inequalities \bfitx i \geqslant 0 for 1 \leqslant i < 2r  - 1, gives rise to a linear program
LW

=
r , which is of the form LP(\bfitA , \bfitb , \bfitc ) in dimension N = 5r  - 1. (Note that the last two

inequalities of LWr are nonnegativity constraints, which is why we do not need slack variables
for them.) The dual Puiseux linear program (with slacks) is referred to as DualLW=

r . We
retain the notation introduced in section 4.1; for instance, we denote by \bfscrP and \bfscrQ the primal
and dual feasible sets, respectively.

To begin with, we verify that Assumption 13 is satisfied. Due to the lower triangular
nature of the system of inequalities in LWr, we can easily find a vector \bfitx satisfying every
inequality of this system in a strict manner. In other words, we can find (\bfitx ,\bfitw ) \in \bfscrP such that
\bfitx > 0 and \bfitw > 0. Moreover, since the feasible set of LWr is bounded, the set \bfscrP is bounded
as well. This implies that the dual feasible set \bfscrQ contains a point (\bfits ,\bfity ) satisfying \bfits > 0,
\bfity > 0. As a result, the set \bfscrF \circ is nonempty.

We focus on the description of the primal part \lambda \mapsto \rightarrow (x\lambda , w\lambda ) of the tropical central path,
since the dual part can be readily obtained by using the relations (20). It can be checked
that the optimal value of LW=

r , and subsequently of DualLW=
r , is equal to 0. Since in our

case, the primal objective vector \bfitc is given by the nonnegative vector (1, 0, . . . , 0) \in \BbbK n, we
deduce that we can choose the dual optimal solution (\bfits \ast ,\bfity \ast ) as (1, 0, . . . , 0) \in \BbbK n+m. As a
consequence of Theorem 15 and Proposition 14(i), the point (x\lambda , w\lambda ) on the primal tropical
central path agrees with the barycenter of the tropical sublevel set

(25) \scrP \lambda = \{ (x,w) \in \scrP : x1 \leqslant \lambda \} .

Recall that \scrP stands for val(\bfscrP ).
We first restrict our attention to the x-component of the tropical central path. To this

end, let \bfscrP \prime be the projection of the primal feasible set \bfscrP onto the coordinates \bfitx 1, . . . ,\bfitx 2r.
This is precisely the feasible set of the Puiseux linear program LWr. Further, let \scrP \prime be the
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image under val of \bfscrP \prime . Equivalently, this is the projection of \scrP onto x1, . . . , x2r. We claim
that \scrP \prime is given by the 3r + 1 tropical linear inequalities

(26)

x1 \leqslant 2 , x2 \leqslant 1,

x2j+1 \leqslant 1 + x2j - 1 , x2j+1 \leqslant 1 + x2j

x2j+2 \leqslant (1 - 1/2j) + max(x2j - 1, x2j)
1 \leqslant j < r,

which are obtained by applying the valuation map to the inequalities in LWr coefficientwise.
While this can be checked by hand, we can also apply [AGS16, Corollary 14], as \scrP \prime is a regular
set in \BbbT 2r, i.e., it coincides with the closure of its interior.

By (25) we deduce that the point x\lambda is the barycenter of the tropical polyhedron \{ x \in 
\scrP \prime : x1 \leqslant \lambda \} . We arrive at the following explicit description of x\lambda .

Proposition 20. For all \lambda \in \BbbR , the point x\lambda is given by the recursion

x\lambda 1 = min(\lambda , 2),

x\lambda 2 = 1,

x\lambda 2j+1 = 1 +min(x\lambda 2j - 1, x
\lambda 
2j)

x\lambda 2j+2 = (1 - 1/2j) + max(x\lambda 2j - 1, x
\lambda 
2j)

1 \leqslant j < r.

Proof. We introduce the family of maps Fj : (a, b) \mapsto \rightarrow (1 +min(a, b), 1 - 1/2j +max(a, b))
where 1 \leqslant j < r. With this notation, the point x lies in \scrP \prime and also satisfies x1 \leqslant \lambda if and
only if

(27) x1 \leqslant min(\lambda , 2) , x2 \leqslant 1 , (x\lambda 2j+1, x
\lambda 
2j+2) \leqslant Fj(x

\lambda 
2j - 1, x

\lambda 
2j)

for every 1 \leqslant j < r. Since the maps Fj are order preserving, the barycenter of the tropical
polyhedron defined by (27) is the point which attains equality in (27).

Observe that the map \lambda \mapsto \rightarrow x\lambda is constant on the interval [2,\infty [, while it is linear on
] - \infty , 0]. In contrast, on the remaining interval [0, 2], the shape of this map is much more
complicated. This is illustrated in Figure 2.

We now incorporate the slack variables \bfitw 1, . . . ,\bfitw 3r - 1 into our analysis. The point (\bfitx ,\bfitw )
in the primal feasible set \bfscrP is defined by the following constraints:

(28)

\bfitx 1 +\bfitw 1 = t2,

\bfitx 2 +\bfitw 2 = t,

\bfitx 2j+1 +\bfitw 3j = t\bfitx 2j - 1

\bfitx 2j+1 +\bfitw 3j+1 = t\bfitx 2j

\bfitx 2j+2 +\bfitw 3j+2 = t1 - 1/2j (\bfitx 2j - 1 + \bfitx 2j)

(\bfitx ,\bfitw ) \in \BbbK N
+ .

1 \leqslant j < r.

This entails that the points (x,w) in \scrP = val(\bfscrP ) satisfy the inequalities

(29)

w1 \leqslant 2 , w2 \leqslant 1,

w3j \leqslant 1 + x2j - 1 , w3j+1 \leqslant 1 + x2j

w3j+2 \leqslant (1 - 1/2j) + max(x2j - 1, x2j)
1 \leqslant j < r.
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Figure 2. Left: the x-components of the primal tropical central path of LWr for r \geqslant 5 and 0 \leqslant \lambda \leqslant 2.
Right: the projection of the tropical central path of LWr onto the (x2r - 1, x2r)-plane.

The following result states that all these inequalities are tight for all points (x\lambda , w\lambda ) on
the primal tropical central path.

Proposition 21. For all \lambda \in \BbbR , the point w\lambda is described by the following relations:

(30)

w\lambda 
1 = 2 , w\lambda 

2 = 1,

w\lambda 
3j = 1 + x\lambda 2j - 1

w\lambda 
3j+1 = 1 + x\lambda 2j

w\lambda 
3j+2 = (1 - 1/2j) + max(x\lambda 2j - 1, x

\lambda 
2j) = x\lambda 2j+2

1 \leqslant j < r.

Proof. Let \=w be the element defined by the relations in (30). We want to prove that
w\lambda = \=w. By Theorem 15 and Proposition 14(i), it suffices to show that the point (x\lambda , \=w)
is the barycenter of the tropical polyhedron \scrP \lambda . Given (x,w) \in \scrP \lambda , we have x \leqslant x\lambda , as x
belongs to \{ x \in \scrP \prime : x1 \leqslant \lambda \} and x\lambda is the barycenter of the latter set. Moreover, w satisfies
the inequalities given in (29). We deduce that w \leqslant \=w.

It now remains to show that (x\lambda , \=w) belongs to \scrP , since this immediately leads to (x\lambda , \=w) \in 
\scrP \lambda . In other words, we want to find a point (\bfitx ,\bfitw ) \in \bfscrP such that val(\bfitx ,\bfitw ) = (x\lambda , \=w). Let
us fix a sequence of positive numbers \alpha 0 =

1
2 > \alpha 1 > \cdot \cdot \cdot > \alpha r - 1 > 0. We claim that letting

(31) \bfitx 2j+1 := \alpha jt
x\lambda 
2j+1 , \bfitx 2j+2 := \alpha jt

x\lambda 
2j+2 (0 \leqslant j < r)
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Table 1
Coordinates of points on the primal tropical central path of LWr for some specific values of \lambda , where

1 \leqslant j < r and k = 0, 2, . . . , 2j - 1  - 2.

\lambda 4k
2j

4k+2
2j

4k+4
2j

4k+6
2j

4k+8
2j

x2j+1 j + 2k
2j

j + 2k+2
2j

j + 2k+2
2j

j + 2k+4
2j

j + 2k+4
2j

x2j+2 j + 2k+1
2j

j + 2k+1
2j

j + 2k+3
2j

j + 2k+3
2j

j + 2k+5
2j

w3j j + 2k
2j

j + 2k+2
2j

j + 2k+4
2j

j + 2k+4
2j

j + 2k+4
2j

w3j+1 j + 2k+2
2j

j + 2k+2
2j

j + 2k+2
2j

j + 2k+4
2j

j + 2k+6
2j

w3j+2 j + 2k+1
2j

j + 2k+1
2j

j + 2k+3
2j

j + 2k+3
2j

j + 2k+5
2j

and defining \bfitw in terms of the equalities in (28) yields such an admissible lift.

First, observe that \bfitx \geqslant 0 and val(\bfitx ) = x\lambda . Second, we have \bfitw 1 = t2  - \alpha 1t
x\lambda 
1 and

\bfitw 2 = \alpha 0t. Recall that x
\lambda 
1 \leqslant 2. Thus, \bfitw 1 and \bfitw 2 are nonnegative, and they satisfy val\bfitw 1 = 2

and val\bfitw 2 = 1. Now, let us consider j for 1 \leqslant j < r. We have

\bfitw 3j = t\bfitx 2j - 1  - \bfitx 2j+1 = \alpha j - 1t
1+x\lambda 

2j - 1  - \alpha jt
x\lambda 
2j+1 = (\alpha j - 1  - \alpha j)t

\=w3j + \alpha j(t
\=w3j  - tx

\lambda 
2j+1) .

As \=w3j = 1 + x\lambda 2j - 1 \geqslant x\lambda 2j+1, we have 0 \leqslant t \=w3j  - tx
\lambda 
2j+1 \leqslant t \=w3j , and this gives us \bfitw 3j \geqslant 0 and

val\bfitw 3j = \=w3j . A similar argument shows that \bfitw 3j+1 \geqslant 0 and val\bfitw 3j+1 = \=w3j+1. Finally, we
can write

\bfitw 3j+2 = t1 - 1/2j (\bfitx 2j - 1 + \bfitx 2j) - \bfitx 2j+2

=

\Biggl\{ 
(2\alpha j - 1  - \alpha j)t

x\lambda 
2j+2 if x\lambda 2j - 1 = x\lambda 2j ,

(\alpha j - 1  - \alpha j)t
x\lambda 
2j+2 + o(tx

\lambda 
2j+2) otherwise.

Since 2\alpha j - 1 > \alpha j - 1 > \alpha j , we obtain that \bfitw 3j+2 \geqslant 0, and val\bfitw 3j+2 = x\lambda 2j+2 = \=w3j+2.

Table 1 gives a summary of the values of the coordinates of the primal tropical central
path for specific values of \lambda which we shall use below.

5. Curvature analysis. The purpose of this section is to show how the combinatorial
analysis of the tropical central path translates into lower bounds on the total curvature of the
central path of a parametric family of linear programs over the reals. Our main application
will be a detailed version of Theorem A from the introduction, and a proof of this result.

Let us recall some basic facts concerning total curvature. Let \sigma be a twice continuously
differentiable curve parameterized over an interval [a, b]. Without loss of generality, assume
that \sigma is parameterized by its arc length, so that \| \sigma \prime (s)\| = 1 for all s \in [a, b]. Then, the

total curvature \kappa (\sigma , [a, b]) is defined as
\int b
a \| \sigma 

\prime \prime (s)\| ds. In other words, this is the integral of the
norm of the acceleration if we move on the curve at unit speed.

The definition of the total curvature can be generalized to nonsmooth curves as follows.
For two nonnull vectors x, y \in \BbbR d we denote by \angle xy the measure \alpha \in [0, \pi ] of the angle of the
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vectors x and y, so that

cos\alpha =
\langle x, y\rangle 
\| x\| \| y\| 

,

where \| \cdot \| refers to the Euclidean norm. Given three points U, V,W \in \BbbR d such that U \not = V and
V \not = W , we extend this notation to write \angle UVW for the angle formed by the vectors UV and
VW . If \tau is a polygonal curve in \BbbR d parameterized over an interval [a, b], the total curvature
\kappa (\tau , [a, b]) is defined as the sum of angles between the consecutive segments of the curve.
Then, if \sigma is an arbitrary curve, its total curvature \kappa (\sigma , [a, b]) is defined as the supremum of
\kappa (\tau , [a, b]) over all polygonal curves \tau inscribed in \sigma . We point out that, for smooth curves, this
coincides with the definition of the total curvature that we have previously given; see [AR89,
Chapter V] for more background.

Our approach is based on estimating the curvature of the central path using approxima-
tions by polygonal curves. Our first observation is concerned with limits of angles between
families of vectors arising from vectors over \BbbK .

Lemma 22. Let \bfitx ,\bfity be two nonnull vectors in \BbbK d, and let x := val(\bfitx ) and y := val(\bfity ).
Then the limit of \angle \bfitx (t)\bfity (t) for t \rightarrow +\infty exists. Moreover, if the sets argmaxi\in [d] xi and
argmaxi\in [d] yi are disjoint, then we have

lim
t\rightarrow +\infty 

\angle \bfitx (t)\bfity (t) =
\pi 

2
.

Proof. Since the field \BbbK is real closed, the Euclidean norm \| \cdot \| can be extended to a

function from \BbbK d to \BbbK by \| \bfitu \| :=
\sqrt{} \sum 

i \bfitu 
2
i for all \bfitu \in \BbbK d. As a consequence, the quotient

\langle \bfitx ,\bfity \rangle /
\bigl( 
\| \bfitx \| \| \bfity \| 

\bigr) 
is an element of \BbbK . Let \alpha be its valuation. We obtain

\alpha \leqslant max
i\in [d]

(xi + yi) - 
\biggl( 
max
i\in [d]

xi +max
i\in [d]

yi

\biggr) 
\leqslant 0 .

Suppose without loss of generality that \langle \bfitx ,\bfity \rangle \not = 0. Then, there exists a nonzero number c \in \BbbR 
such that

\langle \bfitx (t),\bfity (t)\rangle /
\bigl( 
\| \bfitx (t)\| \| \bfity (t)\| 

\bigr) 
= ct\alpha + o(t\alpha )

when t \rightarrow +\infty . If argmaxi\in [d] xi \cap argmaxi\in [d] yi = \emptyset , then \alpha < 0, implying that the limit of

cos\angle \bfitx (t)\bfity (t) = \langle \bfitx (t),\bfity (t)\rangle /
\bigl( 
\| \bfitx (t)\| \| \bfity (t)\| 

\bigr) 
as t \rightarrow +\infty is equal to 0.

We will use Lemma 22 in order to estimate the limit when t \rightarrow +\infty of the angle between
segments formed by triplets of successive points of the tropical central path. One remarkable
property is that the tropical central path of any Puiseux linear program is monotone; see
Proposition 16. We refine Lemma 22 to fit this setting.

Lemma 23. Let \bfitU ,\bfitV ,\bfitW \in \BbbK d, U := val(\bfitU ), V := val(\bfitV ), and W := val(\bfitW ). If
maxi\in [d] Ui < maxi\in [d] Vi < maxi\in [d]Wi, and the sets argmaxi\in [d] Vi and argmaxi\in [d]Wi are
disjoint, we have

lim
t\rightarrow +\infty 

\angle \bfitU (t)\bfitV (t)\bfitW (t) =
\pi 

2
.
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Proof. Let us remark that for all i \in [d], we have val(\bfitV i  - \bfitU i) \leqslant max(Ui, Vi), and
this inequality is an equality if Ui \not = Vi. Since maxi\in [d] Ui < maxi\in [d] Vi, we deduce that
maxi\in [d] val(\bfitV i - \bfitU i) = maxi\in [d] Vi, and that the arguments of the two maxima are equal. The
same applies to the coordinates of the vector val(\bfitW  - \bfitV ). We infer from Lemma 22 that
\angle \bfitU (t)\bfitV (t)\bfitW (t) tends to \pi /2 whenever argmaxi\in [d] Vi \cap argmaxi\in [d]Wi = \emptyset .

This motivates us to introduce a (weak) tropical angle

\angle \ast UVW :=

\Biggl\{ 
\pi 
2 if U, V,W satisfy the conditions of Lemma 23 ,

0 otherwise

for any three points U, V,W \in \BbbT d. We now consider a Puiseux linear program of the form
LP(\bfitA , \bfitb , \bfitc ), together with the associated family of linear programs LP(\bfitA (t), \bfitb (t), \bfitc (t)) and
their primal-dual central path \scrC t. We obtain the following.

Proposition 24. Let \lambda , \lambda \in \BbbR and \lambda 0 = \lambda < \lambda 1 < \cdot \cdot \cdot < \lambda p - 1 < \lambda p = \lambda . Then

lim inf
t\rightarrow \infty 

\kappa 
\Bigl( 
\scrC t,
\bigl[ 
t\lambda , t\lambda 

\bigr] \Bigr) 
\geqslant 

p - 1\sum 
k=1

\angle \ast \scrC \mathrm{t}\mathrm{r}\mathrm{o}\mathrm{p}(\lambda k - 1)\scrC \mathrm{t}\mathrm{r}\mathrm{o}\mathrm{p}(\lambda k)\scrC \mathrm{t}\mathrm{r}\mathrm{o}\mathrm{p}(\lambda k+1) .

Proof. Let \lambda \in \BbbR , and let \bfitU be the point of the central path of LP(\bfitA , \bfitb , \bfitc ) with parameter
\bfitmu equal to the Puiseux series t\lambda . If t is substituted by a sufficiently large real number, the
points \scrC t(t\lambda ) and\bfitU (t) are identical, since both satisfy the constraints given in (1) for A = \bfitA (t),
b = \bfitb (t), c = \bfitc (t), and \mu = t\lambda .

The monotonicity of the tropical central path shown in Proposition 16 allows us to apply
Lemma 23. From the previous discussion, we get that

lim
t\rightarrow \infty 

\angle \scrC t(t\lambda k - 1)\scrC t(t\lambda k)\scrC t(t\lambda k+1) \geqslant \angle \ast \scrC \mathrm{t}\mathrm{r}\mathrm{o}\mathrm{p}(\lambda k - 1)\scrC \mathrm{t}\mathrm{r}\mathrm{o}\mathrm{p}(\lambda k)\scrC \mathrm{t}\mathrm{r}\mathrm{o}\mathrm{p}(\lambda k+1)

for all k \in [p  - 1]. Since the total curvature can be approximated from below by measuring

angles of polygonal paths, we obtain \kappa 
\bigl( 
\scrC t, [t\lambda , t\lambda ]

\bigr) 
\geqslant 
\sum p - 1

k=1\angle \scrC t(t
\lambda k - 1)\scrC t(t\lambda k)\scrC t(t\lambda k+1).

We denote by LW=
r (t) and DualLW

=
r (t) the linear programs over \BbbR obtained by substi-

tuting the parameter t with a real value in the Puiseux linear programs LW=
r and DualLW=

r ,
respectively. We are now ready to state and prove the following detailed version of Theorem A.

Theorem 25. Assume that r \geqslant 2. For all \epsilon > 0, the total curvature of the primal central
path of the linear program LW

=
r (t) is greater than (2r - 2  - 1)\pi 2  - \epsilon , provided that t > 1 is

sufficiently large. Moreover, the same holds for the primal-dual central path.

Proof. We first focus on the primal-dual central path \scrC t of LW=
r (t). We will use Proposi-

tion 24 to provide a lower bound on lim inft\rightarrow \infty \kappa (\scrC t, [t0, t2]) by considering the subdivision of
the closed interval [0, 2] by the scalars \lambda k = 4k

2r - 1 for k = 0, 1, . . . , 2r - 2.
Given \lambda \in [0, 2], all the dual components of the point \scrC \mathrm{t}\mathrm{r}\mathrm{o}\mathrm{p}(\lambda ) of the tropical central path

are less than or equal to max(0, \lambda  - 1). This is a consequence of the identity (20) and the fact
that all the primal components are greater than or equal to min(1, \lambda ); see Propositions 20
and 21. Using Table 1, we deduce that the maximal component of the vector \scrC \mathrm{t}\mathrm{r}\mathrm{o}\mathrm{p}(\lambda k) is
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equal to r  - 1 + 2k+2
2r - 1 , and that it is uniquely attained by the coordinate w\lambda k

3(r - 1) when k is

odd, and by w\lambda k

3(r - 1)+1 when k is even. This implies \angle \ast \scrC \mathrm{t}\mathrm{r}\mathrm{o}\mathrm{p}(\lambda k - 1)\scrC \mathrm{t}\mathrm{r}\mathrm{o}\mathrm{p}(\lambda k)\scrC \mathrm{t}\mathrm{r}\mathrm{o}\mathrm{p}(\lambda k+1) =
\pi 
2 .

We deduce that the limit inferior of \kappa (\scrC t, [t0, t2]) is greater than or equal to (2r - 2  - 1)\pi 2 .
We now deal with the primal central path. Similarly to Proposition 24, we can show that

the limit inferior of the total curvature of the primal central path over [t0, t2] is bounded from
below by the sum of the tropical angles \angle \ast (x\lambda k - 1 , w\lambda k - 1)(x\lambda k , w\lambda k)(x\lambda k+1 , w\lambda k+1). Using the
arguments of the previous paragraph, we know that every angle is equal to \pi /2. We obtain
the expected lower bound.

Remark 26. One can refine Theorem 25 to additionally obtain a lower bound on the
curvature of the dual central path at the same time. This requires considering a slightly
modified version of LW=

r (t). More precisely, it can be shown that it suffices to add the
constraints x2r+1+w3r =

1
tr x2r - 1 and x2r+2+w3r+1 =

1
tr x2r involving the two extra variables

x2r+1, x2r+2 and the slack variables w3r and w3r+1.

Remark 27. Let us compare the lower bound of Theorem 25 with the upper bound of
Dedieu, Malajovich, and Shub [DMS05] obtained from averaging. Given a real m\times n matrix
A, vectors b \in \BbbR m and c \in \BbbR n, and an m\times m diagonal matrix E with diagonal entries \pm 1, we
consider the linear program

PE min c\top x, Ax+ w = b, Ew \geqslant 0 .

It is shown there that the sum of the total curvatures of the dual central paths of the 2m

linear programs PE arising from the various choices of sign matrices E does not exceed

(32) 2\pi n

\biggl( 
m - 1

n

\biggr) 
.

It can be verified that the dual linear program DualLW
=
r (t) is of the form PE for E =  - I,

where I is the identity matrix, n = 3r + 1, and m = 5r  - 1. By applying Stirling's formula
to (32) we see that the sum of the total curvatures of the dual central paths of the 2m linear
programs PE , arising from varying E, is bounded by

2\pi (3r + 1)

\biggl( 
5r  - 2

3r + 1

\biggr) 
= O

\biggl( \surd 
r
\Bigl( 3125
108

\Bigr) r\biggr) 
.

The lower bound of order \Omega (2r) from Theorem 25 shows that the total curvature of the dual
central path of at least one of these 2m linear programs is exponential in r.

6. Tropical lower bound on the complexity of interior point methods. In this section,
we derive a general lower bound on the number of iterations of interior point methods with
a log-barrier. That lower bound is given by the smallest number of tropical segments needed
to describe the tropical central path; see Theorem 29. Applying this result to the parametric
family of linear programs LW=

r (t) provides a proof of Theorem B.

6.1. Approximating the tropical central path by tropical segments. We return to the
general situation from section 4.1 and consider a dual pair of linear programs LP(\bfitA , \bfitb , \bfitc ) and
DualLP(\bfitA , \bfitb , \bfitc ) over Puiseux series.
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z6

z5z4

z3

z2

z1

z0

\scrC \mathrm{t}\mathrm{r}\mathrm{o}\mathrm{p}(\lambda )

\scrC \mathrm{t}\mathrm{r}\mathrm{o}\mathrm{p}(\lambda )

Figure 3. Tubular neighborhood \scrT ([\lambda , \lambda ]; \epsilon ) of the tropical central path (in light blue), containing an ap-
proximation by six tropical segments (in orange).

Let \epsilon > 0. For z \in \BbbR 2N we denote by \scrB \infty (z; \epsilon ) the closed d\infty -ball centered at z and with
radius \epsilon . Further, we fix \lambda , \lambda \in \BbbR such that \lambda \leqslant \lambda . The set

\scrT ([\lambda , \lambda ]; \epsilon ) :=
\bigcup 

\lambda \leqslant \lambda \leqslant \lambda 

\scrB \infty (\scrC \mathrm{t}\mathrm{r}\mathrm{o}\mathrm{p}(\lambda ); \epsilon )

is the tubular neighborhood of the section \scrC \mathrm{t}\mathrm{r}\mathrm{o}\mathrm{p}([\lambda , \lambda ]) of the tropical central path; see Fig-
ure 3. Lemma 5 and Proposition 16 yield that the tropical central path can be described as a
concatenation of finitely many tropical segments. By \gamma 

\bigl( 
[\lambda , \lambda ]

\bigr) 
we denote the smallest number

of tropical segments needed to describe the section \scrC \mathrm{t}\mathrm{r}\mathrm{o}\mathrm{p}
\bigl( 
[\lambda , \lambda ]

\bigr) 
.

Let us consider the union \scrS of a finite sequence of consecutive tropical segments

\scrS := tsegm(z0, z1) \cup tsegm(z1, z2) \cup \cdot \cdot \cdot \cup tsegm(zp - 1, zp) for z0, . . . , zp \in \BbbT 2N ,

which is contained in the tubular neighborhood \scrT := \scrT ([\lambda , \lambda ]; \epsilon ), and which further satisfies
z0 \in \scrB \infty (\scrC \mathrm{t}\mathrm{r}\mathrm{o}\mathrm{p}(\lambda ); \epsilon ) and zp \in \scrB \infty (\scrC \mathrm{t}\mathrm{r}\mathrm{o}\mathrm{p}(\lambda ); \epsilon ). That is, \scrS approximates the tropical central
path by p tropical segments, starting and ending in small neighborhoods of z0 and zp, respec-
tively; see Figure 3 for an illustration. Next we will show that, in this situation, the number
of tropical segments in \scrS is bounded from below by \gamma 

\bigl( 
[\lambda , \lambda ]

\bigr) 
, provided that the tubular neigh-

borhood \scrT is tight enough. To this end, we set \epsilon 0
\bigl( 
[\lambda , \lambda ]

\bigr) 
> 0 to one-sixteenth of the minimal

d\infty -distance between any two distinct vertices in the polygonal curve \scrC \mathrm{t}\mathrm{r}\mathrm{o}\mathrm{p}
\bigl( 
[\lambda , \lambda ]

\bigr) 
.

Proposition 28. If \epsilon < \epsilon 0
\bigl( 
[\lambda , \lambda ]

\bigr) 
, then p \geqslant \gamma 

\bigl( 
[\lambda , \lambda ]

\bigr) 
.

Proof. We use the abbreviations \gamma := \gamma 
\bigl( 
[\lambda , \lambda ]

\bigr) 
and \epsilon 0 := \epsilon 0

\bigl( 
[\lambda , \lambda ]

\bigr) 
. Let us consider a

sequence \lambda 0 = \lambda < \lambda 1 < \cdot \cdot \cdot < \lambda \gamma = \lambda such that \scrC \mathrm{t}\mathrm{r}\mathrm{o}\mathrm{p}([\lambda , \lambda ]) can be decomposed as the union
of \gamma successive tropical segments, i.e.,

\scrC \mathrm{t}\mathrm{r}\mathrm{o}\mathrm{p}([\lambda , \lambda ]) = tsegm(\scrC \mathrm{t}\mathrm{r}\mathrm{o}\mathrm{p}(\lambda 0), \scrC \mathrm{t}\mathrm{r}\mathrm{o}\mathrm{p}(\lambda 1)) \cup \cdot \cdot \cdot \cup tsegm(\scrC \mathrm{t}\mathrm{r}\mathrm{o}\mathrm{p}(\lambda \gamma  - 1), \scrC \mathrm{t}\mathrm{r}\mathrm{o}\mathrm{p}(\lambda \gamma )) .
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zk

z\ell 

\scrC \mathrm{t}\mathrm{r}\mathrm{o}\mathrm{p}(\lambda i)

\scrH 

eK

eL

zk

z\ell 

\scrC \mathrm{t}\mathrm{r}\mathrm{o}\mathrm{p}(\lambda i)

\scrH 

eK

eL

Figure 4. The tropical central path (in dark blue) and its tubular neighborhood \scrT (in light blue) near a
breakpoint \scrC \mathrm{t}\mathrm{r}\mathrm{o}\mathrm{p}(\lambda i), projected onto the plane (zk, z\ell ). The tropical halfspace \scrH defined in (36) is shown in
green. The cases \ell \in K and \ell \not \in K are depicted on the left and right, respectively. The dashed square delimits
the ball \scrB \infty (\pi (\scrC \mathrm{t}\mathrm{r}\mathrm{o}\mathrm{p}(\lambda i)); 4\epsilon ), while the dotted line corresponds to the line zk + z\ell = 0.

We claim that it suffices to show that, for all 0 < i < \gamma , at least one point zj belongs to
the neighborhood \scrB \infty (\scrC \mathrm{t}\mathrm{r}\mathrm{o}\mathrm{p}(\lambda i); 8\epsilon ) of the intermediate point \scrC \mathrm{t}\mathrm{r}\mathrm{o}\mathrm{p}(\lambda i). Indeed, this property
also trivially holds for i = 0 or i = p, by the choices of z0 and zp. As \epsilon < \epsilon 0, all these (p+ 1)
balls \scrB \infty (\scrC \mathrm{t}\mathrm{r}\mathrm{o}\mathrm{p}(\lambda i); 8\epsilon ) are pairwise disjoint. We infer that p \geqslant \gamma in these cases.

Consequently, we consider i such that 0 < i < \gamma , and study the shape of the tropical central
path in the neighborhood of the intermediate point \scrC \mathrm{t}\mathrm{r}\mathrm{o}\mathrm{p}(\lambda i). Without loss of generality,
we assume that \scrC \mathrm{t}\mathrm{r}\mathrm{o}\mathrm{p}(\lambda i) = 0. Let K,L \subset [2N ] such that eK and eL are the left and
right derivatives of \scrC \mathrm{t}\mathrm{r}\mathrm{o}\mathrm{p} at \lambda i, respectively. If K \subset L, Lemma 5 ensures that the union
of tsegm(\scrC \mathrm{t}\mathrm{r}\mathrm{o}\mathrm{p}(\lambda i - 1), \scrC \mathrm{t}\mathrm{r}\mathrm{o}\mathrm{p}(\lambda i)) and tsegm(\scrC \mathrm{t}\mathrm{r}\mathrm{o}\mathrm{p}(\lambda i), \scrC \mathrm{t}\mathrm{r}\mathrm{o}\mathrm{p}(\lambda i+1)) is a tropical segment. This
contradicts the minimality of \gamma . Therefore, we have K \not \subset L. In particular, K \not = L, which
implies that \scrC \mathrm{t}\mathrm{r}\mathrm{o}\mathrm{p}(\lambda i) is a vertex of the polygonal curve \scrC \mathrm{t}\mathrm{r}\mathrm{o}\mathrm{p}([\lambda , \lambda ]). Moreover, since \epsilon < \epsilon 0,
the point \scrC \mathrm{t}\mathrm{r}\mathrm{o}\mathrm{p}(\lambda i) is the only vertex of \scrC \mathrm{t}\mathrm{r}\mathrm{o}\mathrm{p}([\lambda , \lambda ]) contained in the ball \scrB \infty (\scrC \mathrm{t}\mathrm{r}\mathrm{o}\mathrm{p}(\lambda i); 8\epsilon ).
We derive

(33) \scrC \mathrm{t}\mathrm{r}\mathrm{o}\mathrm{p}(\lambda i + \lambda ) =

\Biggl\{ 
\lambda eK if  - 8\epsilon \leqslant \lambda \leqslant 0 ,

\lambda eL if 0 \leqslant \lambda \leqslant 8\epsilon .

By Proposition 16, the set L is nonempty. We fix k \in K \setminus L and \ell \in L, and denote by \pi 
the projection mapping z \in \BbbR 2N onto its coordinates (zk, z\ell ) \in \BbbR 2. We refer the reader to
Figure 4 for an illustration of the projection of the central path near the breakpoint \scrC \mathrm{t}\mathrm{r}\mathrm{o}\mathrm{p}(\lambda i).

First, we will prove the following useful inclusion of sets:

(34) \scrT \cap \pi  - 1
\bigl( 
\scrB \infty (\pi (\scrC \mathrm{t}\mathrm{r}\mathrm{o}\mathrm{p}(\lambda i)); 4\epsilon )

\bigr) 
\subset \scrB \infty (\scrC \mathrm{t}\mathrm{r}\mathrm{o}\mathrm{p}(\lambda i); 8\epsilon ) .

Indeed, let z \in \scrT such that \pi (z) \in \scrB \infty (\pi (\scrC \mathrm{t}\mathrm{r}\mathrm{o}\mathrm{p}(\lambda i)); 4\epsilon ). Then z = \scrC \mathrm{t}\mathrm{r}\mathrm{o}\mathrm{p}(\lambda ) + z\prime for some
\lambda \in [\lambda , \lambda ] and z\prime \in \scrB \infty (0; \epsilon ). If \lambda \leqslant \lambda i  - 6\epsilon , then by (33) and Corollary 17,

zk = (\scrC \mathrm{t}\mathrm{r}\mathrm{o}\mathrm{p}(\lambda ))k + z\prime k \leqslant (\scrC \mathrm{t}\mathrm{r}\mathrm{o}\mathrm{p}(\lambda i  - 6\epsilon ))k + \epsilon \leqslant  - 5\epsilon .
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Similarly, for \lambda \geqslant \lambda i+6\epsilon we can show that z\ell \geqslant 5\epsilon . Summing up we have \lambda i - 6\epsilon \leqslant \lambda \leqslant \lambda i+6\epsilon ,
and thus

d\infty (z, \scrC \mathrm{t}\mathrm{r}\mathrm{o}\mathrm{p}(\lambda i)) \leqslant d\infty (z, \scrC \mathrm{t}\mathrm{r}\mathrm{o}\mathrm{p}(\lambda )) + d\infty (\scrC \mathrm{t}\mathrm{r}\mathrm{o}\mathrm{p}(\lambda ), \scrC \mathrm{t}\mathrm{r}\mathrm{o}\mathrm{p}(\lambda i)) \leqslant \epsilon + 6\epsilon = 7\epsilon .

Second, observe that at least one segment tsegm(zj , zj+1) intersects the line \{ z \in \BbbR 2N : zk+
z\ell = 0\} . Indeed, we have z0k+z0\ell \leqslant (\scrC \mathrm{t}\mathrm{r}\mathrm{o}\mathrm{p}(\lambda ))k+(\scrC \mathrm{t}\mathrm{r}\mathrm{o}\mathrm{p}(\lambda ))\ell +2\epsilon . Moreover, we have \lambda < \lambda i - 8\epsilon ,
since if \lambda i  - 8\epsilon \leqslant \lambda < \lambda , then the point \scrC \mathrm{t}\mathrm{r}\mathrm{o}\mathrm{p}(\lambda ) would belong to the ball \scrB \infty (\scrC \mathrm{t}\mathrm{r}\mathrm{o}\mathrm{p}(\lambda i; 8\epsilon )) by
Corollary 17. We deduce that

z0k + z0\ell \leqslant (\scrC \mathrm{t}\mathrm{r}\mathrm{o}\mathrm{p}(\lambda ))k + (\scrC \mathrm{t}\mathrm{r}\mathrm{o}\mathrm{p}(\lambda ))\ell + 2\epsilon \leqslant (\scrC \mathrm{t}\mathrm{r}\mathrm{o}\mathrm{p}(\lambda i  - 8\epsilon ))k + (\scrC \mathrm{t}\mathrm{r}\mathrm{o}\mathrm{p}(\lambda i  - 8\epsilon ))\ell \leqslant  - 6\epsilon .

We can similarly prove that zpk + zp\ell > 0.
Our aim is to show that at least one extremity of the tropical segment tsegm(zj , zj+1)

belongs to \scrB \infty (\scrC \mathrm{t}\mathrm{r}\mathrm{o}\mathrm{p}(\lambda i); 8\epsilon ). By contradiction, suppose that zj , zj+1 /\in \scrB \infty (\scrC \mathrm{t}\mathrm{r}\mathrm{o}\mathrm{p}(\lambda i); 8\epsilon ).
Our argument is based on the projection of the segment onto the plane (zk, z\ell ). By (34), we
know that \pi (zj), \pi (zj+1) /\in \scrB \infty (\pi (\scrC \mathrm{t}\mathrm{r}\mathrm{o}\mathrm{p}(\lambda i)); 4\epsilon ).

Note that the intersection of tsegm(\pi (zj), \pi (zj+1)) with \scrB \infty (\pi (\scrC \mathrm{t}\mathrm{r}\mathrm{o}\mathrm{p}(\lambda i)); 4\epsilon ) is a tropical
segment tsegm(u, v) where u, v \in \partial \scrB \infty (\pi (\scrC \mathrm{t}\mathrm{r}\mathrm{o}\mathrm{p}(\lambda i)); 4\epsilon ). By assumption on tsegm(zj , zj+1),
the intersection of tsegm(\pi (zj), \pi (zj+1)) with the line \{ (zk, z\ell ) \in \BbbR 2 : zk+z\ell = 0\} is nonempty.
As the intersection of the latter line with \pi (\scrT ) is contained in \scrB \infty (\pi (\scrC \mathrm{t}\mathrm{r}\mathrm{o}\mathrm{p}(\lambda i)); 4\epsilon ) (see Fig-
ure 4), we deduce that

(35)

tsegm(u, v) \cap \{ (zk, z\ell ) \in \pi (\scrT ) : zk + z\ell = 0\} 

= tsegm(\pi (zj), \pi (zj+1)) \cap \scrB \infty (\pi (\scrC \mathrm{t}\mathrm{r}\mathrm{o}\mathrm{p}(\lambda i)); 4\epsilon ) \cap \{ (zk, z\ell ) \in \pi (\scrT ) : zk + z\ell = 0\} 
= tsegm(\pi (zj), \pi (zj+1)) \cap \{ (zk, z\ell ) \in \BbbR 2 : zk + z\ell = 0\} \not = \emptyset .

Now, we introduce the tropical halfspace

(36) \scrH = \{ (zk, z\ell ) \in \BbbT 2 : max(0, z\ell  - \epsilon ) \leqslant zk + \epsilon \} .

As shown in Figure 4, we have

\scrH \cap \pi (\scrT ) \cap \scrB \infty (\pi (\scrC \mathrm{t}\mathrm{r}\mathrm{o}\mathrm{p}(\lambda i)); 4\epsilon ) \subset \scrB \infty (\pi (\scrC \mathrm{t}\mathrm{r}\mathrm{o}\mathrm{p}(\lambda i)); 3\epsilon ) .

Since the points u and v are in \pi (\scrT ) \cap \partial \scrB \infty (\pi (\scrC \mathrm{t}\mathrm{r}\mathrm{o}\mathrm{p}(\lambda i)); 4\epsilon ), we deduce that they do not
belong to \scrH . The complement of \scrH is a tropically convex set, i.e., if z, z\prime \not \in \scrH , then the
tropical segment between z and z\prime is contained in the complement of \scrH . As a result, we have
tsegm(u, v)\cap \scrH = \emptyset . However, as shown in Figure 4, we have \{ (zk, z\ell ) \in \pi (\scrT ) : zk + z\ell = 0\} \subset 
\scrH . We deduce that there is a contradiction with (35).

We are now ready to establish a general lower bound on the number of iterations performed
by the class of log-barrier interior point methods described in section 2. The result is stated
in terms of polygonal curves contained in the wide neighborhood \scrN  - \infty 

\theta ,t of the central path,
since such curves are the trajectories followed by the log-barrier interior point methods. Our
proof combines Theorem 19 with Proposition 28.
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Theorem 29. For 0 < \theta < 1 suppose that t > t0 satisfies

(37) logt

\Bigl( 2N

1 - \theta 

\Bigr) 
+ \delta (t) < \epsilon 0

\bigl( 
[\lambda , \lambda ]

\bigr) 
.

Then, every polygonal curve [z0, z1] \cup [z1, z2] \cup \cdot \cdot \cdot \cup [zp - 1, zp] contained in the neighborhood

\scrN  - \infty 
\theta ,t , with \=\mu (z0) \leqslant t\lambda and \=\mu (zp) \geqslant t\lambda , contains at least \gamma 

\bigl( 
[\lambda , \lambda ]

\bigr) 
segments.

Proof. We first assume that \=\mu (z0) = t\lambda , \=\mu (zp) = t\lambda , and \=\mu (z0) \leqslant \=\mu (zi) \leqslant \=\mu (zp) for all i.
Consider z \in [zi, zi+1] for some 0 \leqslant i < p. By Proposition 1 we have \=\mu (z0) \leqslant \=\mu (z) \leqslant \=\mu (zp).
Since, z \in \scrN  - \infty 

\theta ,t by assumption, we deduce that z \in \scrN  - \infty 
\theta ,t (\mu ) for some \mu with \=\mu (z0) \leqslant \mu \leqslant 

\=\mu (zp).
We define \scrS as the union of the tropical segments tsegm(logt z

i, logt z
i+1) for 0 \leqslant i < p.

We have

d\infty 
\bigl( 
\scrS , \scrC \mathrm{t}\mathrm{r}\mathrm{o}\mathrm{p}([\lambda , \lambda ])

\bigr) 
\leqslant max

0\leqslant i<p
d\infty 
\bigl( 
tsegm(logt z

i, logt z
i+1), \scrC \mathrm{t}\mathrm{r}\mathrm{o}\mathrm{p}([\lambda , \lambda ])

\bigr) 
\leqslant logt 2 + max

0\leqslant i<p
sup

z\in [zi,zi+1]

d\infty 
\bigl( 
logt z, \scrC \mathrm{t}\mathrm{r}\mathrm{o}\mathrm{p}([\lambda , \lambda ])

\bigr) 
by Lemma 8

\leqslant logt 2 + sup
t\lambda \leqslant \mu \leqslant t\lambda 

d\infty 
\bigl( 
logt\scrN  - \infty 

\theta ,t (\mu ), \scrC \mathrm{t}\mathrm{r}\mathrm{o}\mathrm{p}([\lambda , \lambda ])
\bigr) 

\leqslant logt 2 + sup
t\lambda \leqslant \mu \leqslant t\lambda 

d\infty 
\bigl( 
logt\scrN  - \infty 

\theta ,t (\mu ), \scrC \mathrm{t}\mathrm{r}\mathrm{o}\mathrm{p}(logt \mu )
\bigr) 

\leqslant logt

\Bigl( 2N

1 - \theta 

\Bigr) 
+ \delta (t) by Theorem 19.

By choosing \epsilon := logt
\bigl( 
2N
1 - \theta 

\bigr) 
+\delta (t), this implies that \scrS is contained in the tubular neighborhood

\scrT ([\lambda , \lambda ]; \epsilon ). Moreover, z0 \in \scrN  - \infty 
\theta ,t (t\lambda ), and hence d\infty (z0, \scrC \mathrm{t}\mathrm{r}\mathrm{o}\mathrm{p}(\lambda )) \leqslant logt

\bigl( 
N
1 - \theta 

\bigr) 
+ \delta (t) by

Theorem 19. We deduce that z0 \in \scrB \infty (\scrC \mathrm{t}\mathrm{r}\mathrm{o}\mathrm{p}(\lambda ); \epsilon ). An analogous argument shows that
zp \in \scrB \infty (\scrC \mathrm{t}\mathrm{r}\mathrm{o}\mathrm{p}(\lambda ); \epsilon ). Since \epsilon < \epsilon 0

\bigl( 
[\lambda , \lambda ]

\bigr) 
(see (37)), we can apply Proposition 28, which

yields the claim in this special case.
We need to deal with the general case. We assume that \lambda < \lambda , since the case \lambda = \lambda 

is trivial; note that \gamma 
\bigl( 
[\lambda , \lambda ]

\bigr) 
= 0. Let j \in \{ 0, . . . , p  - 1\} be the largest integer such that

\=\mu (zj) \leqslant t\lambda , and let k \in \{ j + 1, . . . , p\} be the smallest integer such that \=\mu (zk) \geqslant t\lambda . With

this notation, we have \=\mu (zj) \leqslant t\lambda < \=\mu (zi) < t\lambda \leqslant \=\mu (zk) for all i \in \{ j + 1, . . . , k  - 1\} . By
Proposition 1, we can find z\prime \in [zj , zj+1[ such that \=\mu (z) = t\lambda . Similarly, let z\prime \prime \in ]zk - 1, zk] such

that \=\mu (z\prime \prime ) = t\lambda . Then, the polygonal curve [z\prime , zj+1]\cup \cdot \cdot \cdot \cup [zk - 1, z\prime \prime ] satisfies the assumptions
made in the first part of the proof, in addition to being included in the neighborhood \scrN  - \infty 

\theta ,t .

We deduce that p \geqslant k  - j \geqslant \gamma 
\bigl( 
[\lambda , \lambda ]

\bigr) 
.

6.2. An exponential lower bound on the number of iterations for our main example.
Let us consider the linear programs LW=

r (t) and DualLW=
r (t). A direct inspection reveals

that choosing any t0 > 1 is sufficient to meet the requirements of Lemma 18.
We focus on the section \scrC \mathrm{t}\mathrm{r}\mathrm{o}\mathrm{p}([0, 2]) of the associated tropical central path, i.e., we consider

\lambda = 0 and \lambda = 2. As explained in section 4.3 and illustrated in Figure 2, the projection of
\scrC \mathrm{t}\mathrm{r}\mathrm{o}\mathrm{p}

\bigl( 
[0, 2]

\bigr) 
onto the plane (x2r - 1, x2r) consists of 2r - 1 ordinary segments, which alternate
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their directions. This projection to two dimensions cannot be expressed as a concatenation of
less than 2r - 1 tropical segments in the plane (see Figure 1). Therefore, also the tropical central
path cannot be written as the union of fewer tropical segments in any higher dimensional space.
With our notation from section 6.1 this means that

\gamma 
\bigl( 
[0, 2]

\bigr) 
\geqslant 2r - 1 .

It remains to find t such that the condition (37) of Theorem 29 holds. It can be verified that
the minimal d\infty -distance between any two vertices in \scrC \mathrm{t}\mathrm{r}\mathrm{o}\mathrm{p}

\bigl( 
[0, 2]

\bigr) 
equals 1/2r - 2. Therefore,

we have \epsilon 0
\bigl( 
[0, 2]

\bigr) 
= 1/(24 \cdot 2r - 2). Every nonnull coefficient in the constraint matrix of LWr

is a monomial of degree in 1
2r - 1\BbbZ , and thus we may apply Theorem 12, where \eta 0 \geqslant 1/2r - 1.

As a consequence, if t \geqslant ((2N)!)2
r - 1

, we have

d\mathrm{H}(logt\bfscrF (t), val(\bfscrF )) \leqslant logt
\bigl( 
(2N + 1)2((2N)!)4

\bigr) 
.

Recall that N = 5r  - 1 is the total number of variables (including slacks), and that \delta (t) =
2d\mathrm{H}(logt\bfscrF (t), val(\bfscrF )). Now Theorem 29 specializes to the following result.

Theorem 30. Let 0 < \theta < 1, and suppose that

(38) t >

\biggl( \bigl( 
(10r  - 1)!

\bigr) 8
1 - \theta 

\biggr) 2r+2

.

Then, every polygonal curve [z0, z1] \cup [z1, z2] \cup \cdot \cdot \cdot \cup [zp - 1, zp] contained in the neighborhood
\scrN  - \infty 

\theta ,t of the primal-dual central path of LW=
r (t), with \=\mu (z0) \leqslant 1 and \=\mu (zp) \geqslant t2, contains at

least 2r - 1 segments.

Taking into account the discussion at the end of section 2, we may restate Theorem 30 in
terms of the complexity of interior point methods and prove Theorem B.

Corollary 31. Let 0 < \theta < 1, and suppose that t satisfies (38). Then, any log-barrier
interior point method which describes a trajectory contained in the neighborhood \scrN  - \infty 

\theta ,t of the

primal-dual central path of LW=
r (t), needs to perform at least 2r - 1 iterations to reduce the

duality measure from t2 to 1.

Remark 32. Corollary 31 requires the size \theta of the neighborhood to be fixed independently
of the parameter t. While this requirement can be relaxed slightly (the lower bound holds
as soon as log(1  - \theta ) = o(log t)), we point out that it is met by the interior point methods
discussed in section 2. For instance, for predictor-corrector methods, the radius of the outer
neighborhood is usually set to \theta = 1/2. Although this setting can be refined, one can show that
the proof of the convergence requires \theta to be chosen less than 4/5 (see [Wri97, Exercise 5.6]).

Remark 33. It would be interesting to test standard linear programming solvers on the
family LW=

r (t). It is obvious that solvers computing with bounded precision numbers are
unable to deal with coefficients as large as in our example, in light of the condition (38). This
already rules out most of the standard solvers. It would be worthwhile to explore how, e.g.,
SDPA-GMP can be used to deal with such input [Nak10]. That solver relies on the floating
point numbers with arbitrary precision mantissa provided by the GMP library.
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7. Combinatorial experiments. We now want to give some hints to the combinatorial
properties of the feasible region of the Puiseux linear program LWr, which we denote as
\bfscrR r. These are based on experiments for the first few values of r, which have been performed
with polymake [GJ00]. Notice that, since version 3.0, polymake offers linear programming and
convex hull computations over the field of Puiseux fractions with rational coefficients [JLLS16],
and the coefficients of LWr lie in this subfield. Notice that this is entirely independent of the
metric analysis which was necessary for our main results. Throughout we assume that r \geqslant 1.

By construction \bfscrR r is a convex polyhedron in the nonnegative orthant of \BbbK 2r which
contains interior points, which means that it is full-dimensional. Moreover, it is easy to check
that the exterior normal vectors of the defining inequalities positively span the entire space,
and hence \bfscrR r is bounded, i.e., a polytope over Puiseux series. None of these 3r+1 inequalities
is redundant, i.e., each inequality defines a facet. For instance, \scrR 1 is a quadrangle. However,
the polytope \bfscrR r is not simple for r \geqslant 2; i.e., there are vertices which are contained in more
than 2r facets. All these nonsimple vertices lie in the optimal face, which is given by x1 = 0.
By modifying the inequality x2r \geqslant 0 to x2r \geqslant \epsilon for sufficiently small \epsilon > 0 we obtain a simple
polytope \bfscrR \epsilon 

r as the feasible region of the perturbed linear program

LW
\epsilon 
r

minimize x1,

subject to x1 \leqslant t2,

x2 \leqslant t,

x2j+1 \leqslant t x2j - 1 , x2j+1 \leqslant t x2j

x2j+2 \leqslant t1 - 1/2j (x2j - 1 + x2j)

x2r - 1 \geqslant 0 , x2r \geqslant \epsilon .

1 \leqslant j < r,

For the remainder of this section we refer to our original construction LWr and its feasible
region as the unperturbed case. The unperturbed Puiseux polytope LWr can be seen as
the limit of the perturbed Puisuex polytopes LW\epsilon 

r when \epsilon goes to zero. See Figure 5 for a
visualization of \bfscrR \epsilon 

2.
The two facets x1 = t2 and x3 = tx2 play a special role. It can be verified that they do not

share any vertices, neither in the perturbed nor in the unperturbed case. In the unperturbed
r = 2 case these two facets cover all the vertices except for one, while four and 16 are uncovered
for r = 3 and r = 4, respectively.

Since the perturbation is only very slight, it follows that the dual graphs of the perturbed
and the unperturbed Puiseux polytopes are the same. For 2 \leqslant r \leqslant 6 we found that this
is a complete graph minus one edge, which corresponds to the special pair of disjoint facets
mentioned above. This should be compared with the following constructions. Let D be any
dual to 2-neighborly polytope; any two facets of D share a common ridge, i.e., a face of
codimension 2. Now pick any ridge and truncate it to produce a new polytope D\prime . The dual
graph of D\prime is a complete graph minus one edge. Note that the polytope D\prime may have many
vertices, as it is still very close to a polytope which is 2-neighborly.

In our experiments, for all r \leqslant 6, the primal graph of \bfscrR \epsilon 
r has diameter r+1 = (3r+1) - 2r,

which is precisely the Hirsch bound. This is in stark contrast with the unperturbed case in
which the diameter equals 3 for 2 \leqslant r \leqslant 6.
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Figure 5. Schlegel diagram of perturbed polytope \bfscrR \epsilon 
2 (for \epsilon = t - 1) projected onto the facet x3 = 0.

An interesting question is, Which values for \epsilon are small enough? Our experiments suggest
that \epsilon = t - 1 works for all r \geqslant 2. Employing generalized Puiseux series with valuations of
higher rank offers an alternative approach, which will always work because we may introduce
a second large infinitesimal s \gg t and set \epsilon = s - 1.

8. Concluding remarks. In the present work, we obtained a family of counterexamples
showing that standard polynomial time interior point methods exhibit a nonstrongly polyno-
mial time behavior. To do so, we considered non-Archimedean instances with a degenerate
tropical limit that we characterized by combinatorial means. This strategy is likely to be
applicable to other problems in computational complexity: tropicalization generally permits
us to test the sensitivity of classical algorithms to the bit length of the input.

A natural question is whether the present approach can also be extended to other interior
point methods (e.g., infeasible ones) or other barrier or penalty functions. Indeed, as should be
clear from [Ale13, ABGJ14], what ``really"" matters is to work with a Hardy field of functions
definable in an o-minimal structure. This allows for fields other than the absolutely convergent
generalized real Puiseux series considered here.

Smale's 9th problem in its original version [Sma00] is about the existence of a strongly
polynomial decision algorithm for the feasibility of a linear program. In the setting of interior
point methods, the feasibility problem is usually tackled by solving some auxiliary linear
program or linear complementarity problem involving additional constraints or variables; see,
e.g., [Wri97]. It would be interesting to check that the nonstrongly polynomial behavior
exhibited in this paper still appears in such auxiliary problems.

The weak tropical angle \angle \ast UVW used in Proposition 24 yields a bound on the total
curvature of nondecreasing paths. A similar approach allows one, more generally, to define a
notion of tropical curvature for arbitrary paths. This should also be compared with the notion
of curvature for tropical hypersurfaces introduced in [BdMR13]. We leave this for future work.
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