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Abstract— Semidefinite programming can be considered
over any real closed field, including fields of Puiseux se-
ries equipped with their nonarchimedean valuation. Nonar-
chimedean semidefinite programs encode parametric families
of classical semidefinite programs, for sufficiently large values
of the parameter. Recently, a correspondence has been es-
tablished between nonarchimedean semidefinite programs and
stochastic mean payoff games with perfect information. This
correspondence relies on tropical geometry. It allows one to
solve generic nonarchimedean semidefinite feasibility problems,
of large scale, by means of stochastic game algorithms. In
this paper, we show that the mean payoff of these games can
be interpreted as a condition number for the corresponding
nonarchimedean feasibility problems. This number measures
how close a feasible instance is from being infeasible, and vice
versa. We show that it coincides with the maximal radius of a
ball in Hilbert’s projective metric, that is included in the feasible
set. The geometric interpretation of the condition number relies
in particular on a duality theorem for tropical semidefinite
feasibility programs. Then, we bound the complexity of the
feasibility problem in terms of the condition number. We finally
give explicit bounds for this condition number, in terms of the
characteristics of the stochastic game. As a consequence, we
show that the simplest algorithm to decide whether a stochastic
mean payoff game is winning, namely value iteration, has a
pseudopolynomial complexity when the number of random
positions is fixed.

I. INTRODUCTION

A. Motivation

Semidefinite programming (SDP) consists in optimizing
a linear function over a spectrahedron, the latter being the
intersection of a cone of positive semidefinite matrices with
an affine space. Semidefinite programs arise in a number
of applications from engineering sciences and combinatorial
optimization. We refer the reader to [1], [2] for more
background on the theory and applications of semidefinite
programming.

Spectrahedra form a class of convex semialgebraic sets.
Even though these sets are usually defined over the field
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of real numbers, their definition is meaningful over any
real closed field. In particular, the complexity of SDP
and related questions can be investigated over real closed
nonarchimedean fields, like fields of Puiseux series. Such
nonarchimedean SDP instances, which arise in perturbation
theory, encode parametric families of classical SDP instances
(over the reals), for large enough (or small enough) values
of the parameter. The study of the nonarchimedean case
is also motivated by unsettled questions concerning the
complexity of ordinary SDP. Indeed, the latter are solvable in
“polynomial time” only in a restricted sense. More precisely,
complexity bounds for SDP, obtained by interior point or
by the ellipsoid methods, are only polynomial in the log
of certain metric estimates whose bit-size can be doubly
exponential in the size of the input [3]. It is unknown whether
the SDP feasibility problem belongs to NP.

Semidefinite feasibility problems over the nonarchimedean
valued field of Puiseux series have been studied in [4].
It is shown there that, under a genericity condition, these
problems are equivalent to solving stochastic mean payoff
games with perfect information and finite state and action
spaces. Stochastic mean payoff games have an unsettled
complexity: they belong to NP ∩ coNP but no polynomial
time algorithm is currently known [5], [6]. However, several
practically efficient algorithms to solve stochastic mean pay-
off games have been developed. In this way, one can solve
nonarchimedean semidefinite instances of a scale probably
unreachable by interior point methods. For instance, the
benchmarks presented in [4] show that random instances of
these problems with as many as 10000 variables could be
solved by value iteration in a few seconds. In addition, the
benchmarks there indicate a phase transition, value iteration
easily decides most feasibility instances. The hard random
instances are concentrated in a small region of the instance
space.

B. Main results

In order to explain why value iteration is so efficient on
many nonarchimedean SDP instances, we introduce here
a notion of condition number for stochastic mean payoff
games. Essentially, for a feasible instance, the condition
number is the inverse of the distance of the data to an infea-
sible instance, and vice versa. We show that this condition
number coincides with the absolute value of the mean payoff.
We establish a universal bound for the time of convergence
of value iteration, involving the condition number and an
auxiliary metric estimate, the distance of point 0 to the set
of “bias vectors” (Theorem 16). Then, we effectively bound

23rd International Symposium on Mathematical Theory of Networks and Systems
Hong Kong University of Science and Technology, Hong Kong, July 16-20, 2018

160



the condition number and the latter distance, for stochastic
mean payoff games with perfect information (Theorems 18
and 19). We arrive, in particular, at a bound that becomes
pseudopolynomial when the number of “random” positions
of the game is fixed.

To arrive at these results, we develop a metric geometry
approach of the condition number. We use Hilbert’s projec-
tive metric, which arises in Perron–Frobenius theory [7]. The
same metric, up to a logarithmic change of variable, arises in
tropical geometry [8], [9]. We also prove duality results for
stochastic mean payoff games, showing, essentially, that the
condition number of the primal and dual problems coincide.
In summary, our main results show that the complexity of
value iteration is governed by metric geometry properties:
this leads to a general method to derive complexity bounds,
which can be applied to various classes of Shapley operators.

C. Related works

When specialized to stochastic mean payoff games with
perfect information, our bounds should be compared with
the one of Boros, Elbassioni, Gurvich, and Makino [10].
The authors of [10] generalize the “pumping” algorithm,
developed for deterministic games by Gurvich, Karzanov,
and Khachiyan [11], to the case of stochastic games. The
resulting algorithm is also pseudopolynomial if the number
of random positions is fixed. The algorithm of Ibsen-Jensen
and Miltersen [12] yields a stronger bound in the case of
simple stochastic games, still assuming that the number of
random positions is fixed.

The duality results in Section IV-A extend to stochastic
games some duality results for deterministic games by Grig-
oriev and Podolskii [13]. In contrast, our approach builds
on [9], deriving duality results from a minimax Collatz–
Wielandt type theorem of Nussbaum [14]. Other duality re-
sults, by Bodirsky and Mamino, in the context of satisfiability
problems, have appeared in [15].

D. Organization of the paper

Earlier results on the relation between nonarchimedean
semidefinite programming and stochastic mean payoff games
are presented in Section II, leading to the introduction of the
notion of condition number. Some background on nonlinear
Perron–Frobenius theory is presented in Section III. The new
results are included in Section IV, in which we characterize
the condition number, and in Section V, in which we derive
complexity estimates for value iteration in terms of the
condition number.

II. MOTIVATION: THE CORRESPONDENCE BETWEEN
NONARCHIMEDEAN SEMIDEFINITE PROGRAMMING AND

STOCHASTIC MEAN PAYOFF GAMES

In this section, we summarize some of the main results
of [4], which motivate the present work. Throughout this
paper, given k ∈ N, we denote the set {1, . . . , k} by [k].

A. Nonarchimedean semidefinite programs

We start by introducing semidefinite programming over
nonarchimedean fields. More specifically, the model of
nonarchimedean field used in this paper is the field K
of (absolutely convergent generalized real) Puiseux series,
which are series in the parameter t of the form

x =

∞∑
i=1

cλi
tλi , (1)

where (i) (λi)i>1 is a strictly decreasing sequence of real
numbers that is either finite or unbounded, (ii) cλi

∈ R\{0}
for all λi, (iii) and the series (1) is absolutely convergent
for t ∈ R sufficiently large. There is also a special, empty
series, which is denoted by 0. The field K is ordered, with
a total order defined by x > 0 ⇐⇒ cλ1 > 0. In addition,
it is known that K is a real closed field [16]. Actually, our
approach applies to other nonarchimedean fields with a real
value group [17], it is helpful, however to have a concrete
field in mind, like K. Henceforth, we denote by K>0 the set
of nonnegative series, i.e., the series x that satisfy x = 0 or
x > 0.

Given symmetric matrices Q(0),Q(1), . . . ,Q(n) ∈
Km×m, we define the associated spectrahedron (over
Puiseux series) as the set{

x ∈ Kn : Q(0) + x1Q
(1) + · · ·+ xnQ

(n) is PSD
}
, (2)

where “PSD” stands for positive semidefinite. (We point out
that the definition of positive semidefinite matrices makes
sense over any real closed field.) The problem which we
are interested in is to determine whether a spectrahedron
over Puiseux series is empty or not. This corresponds to the
analog of the semidefinite feasibility problem over the field
K. This problem is also related to the standard semidefinite
feasibility problem over the field of real numbers associated
with the spectrahedra{
x ∈ Rn : Q(0)(t) + x1Q

(1)(t) + · · ·+ xnQ
(n)(t) is PSD

}
,

(3)
for t large enough. Here, Q(i)(t) stands for the real symmet-
ric matrix obtained by evaluating the entries of Q(i) at the
value t. The relation between the problem over Puiseux series
and the one over real numbers is described in the following
lemma, and is a consequence of quantifier elimination over
real closed fields:

Lemma 1. The spectrahedron (2) over the field K is empty
if and only if, for t sufficiently large, the spectrahedron (3)
over R is empty.

In this paper, we consider a slightly different problem
which already retains much of the difficulty of the semidef-
inite feasibility problem over the field K: given symmetric
matrices Q(1), . . . ,Q(n) ∈ Km×m, determine whether the
following spectrahedral cone{

x ∈ Kn>0 : x1Q
(1) + · · ·+ xnQ

(n) is PSD
}

(4)

is trivial, meaning that it is reduced to the zero point. We
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refer to [4] for further details on the relation between the
original semidefinite feasibility problems and the problems
above for spectrahedral cones.

B. Valuation map and tropical semifield

As a nonarchimedean field, K is equipped with a valuation
map val : K→ R∪{−∞} defined by val(x) := λ1 for x 6= 0
as in (1), and val(0) := −∞. This valuation map has the
following properties:

val(x+ y) 6 max(val(x), val(y)) (5)
val(xy) = val(x) + val(y) . (6)

We point out that equality holds in (5) as soon as the leading
terms of x and y do not cancel. In particular, this condition
is satisfied when x,y > 0.

The tropical (or max-plus) semifield Tmax can be though
of as the image of K>0 by the valuation map. More precisely,
this semifield is defined as the set Tmax := R ∪ {−∞}
endowed with the addition x ⊕ y := max(x, y) and the
multiplication x�y := x+y. The term “semifield” refers to
the fact that the addition does not have an opposite law. The
reader may consult [18], [19], [20] for more information on
the tropical semifield.

The operations above are extended in the usual way to
matrices with entries in Tmax. The resulting matrix product
is also denoted by �. Henceforth, for any z ∈ Tnmax and
β ∈ Tmax, we denote by β + z the vector of Tnmax with
entries β + zi. Finally, we denote by 0 the neutral element
for addition in Tmax (i.e., 0 := −∞), as well as any vector
that has all components equal to 0.

We consider Tmax equipped with the topology defined
by the distance (a, b) 7→ | exp(a) − exp(b)|, and Tnmax

equipped with the product topology. On Rn we also use
Hilbert’s seminorm [8], defined by ‖x‖H := t(x) − b(x),
where t(x) := maxi∈[n] xi and b(x) := mini∈[n] xi. This
seminorm induces a norm on the quotient space of Rn by
the tropical parallelism relation, which is defined by: x ‖ y
if, and only if, there exists α ∈ R such that x = α+ y. We
denote by BH(z, r) the Hilbert ball of center z ∈ Rn and
radius r ∈ R+, i.e., BH(z, r) := {x ∈ Rn | ‖x− z‖H 6 r}.
We also endow Tmax with the standard order 6, which is
extended to vectors entrywise.

Another algebraic structure that we will use in this paper
is the completed min-plus semiring Tmin, which is the set
R ∪ {+∞} ∪ {−∞} equipped with (a, b) 7→ min{a, b}
as addition and (a, b) 7→ a + b as multiplication (with the
convention (−∞)+(+∞) = (+∞)+(−∞) = (+∞)). The
corresponding matrix product for matrices with entries in
Tmin will be denoted by �′. Given A ∈ Tm×nmax , the operator
A] : Tmmin 7→ Tnmin is defined by:

A](y) := (−A>)�′ y ,

where A> denotes the transpose of A. The operator A] will
be called the adjoint of A, being an adjoint in a categorical
sense as it satisfies the following property:

A� x 6 y if and only if x 6 A](y) , (7)

for any y ∈ Tmmin and x ∈ Tnmax.

C. Stochastic zero-sum games with mean payoff

A stochastic mean payoff game can be specified by two
matrices A ∈ Tm×nmax and B ∈ Tm×qmax , and a row-stochastic
matrix P ∈ [0, 1]q×n, where m, n and q are integers. We
assume that every row of B has at least one finite entry, and
that the same is true for every column of A.

The rules of the game are as follows. Two players, called
Max and Min, control disjoint sets of states, respectively
indexed by [m] and [n], and alternatively move a pawn over
these states. When the pawn is located on a state j ∈ [n] of
Player Min, she selects a state i ∈ [m] such that Aij 6= −∞,
moves the pawn to state i and pays to Player Max the amount
−Aij . When the pawn is on a state i ∈ [m] of Player Max, he
selects k ∈ [q] such that Bik 6= −∞, moves the pawn to state
k and receives from Player Min the payment Bik. Finally,
at state k the pawn is moved by nature to state l ∈ [n] with
probability Pkl.

A (positional) strategy for Player Min is a function
σ : [n]→ [m] such that Aσ(j)j 6= −∞ for all j. Similarly, a
(positional) strategy for Player Max is a function τ : [m]→
[q] such that Biτ(i) 6= −∞ for all i. If Min and Max play
according to the strategies σ and τ , and start from state
j0 ∈ [n], the movement of the pawn is described by a Markov
chain over the disjoint union [m]] [n]] [q]. Then, the payoff
(of Player Max) is defined as the average payoff

gj0(σ, τ) := lim
N→+∞

Eστ
( 1

N

N∑
p=1

(−Aipjp +Bipkp)
)
,

where Eστ refers to the expectation over the trajectories
j0, i0, k0, j1, i1, k1, . . . , with respect to the probability mea-
sure determined by these strategies. The objective of Players
Min and Max is to find a strategy which respectively mini-
mizes and maximizes the payoff. Liggett and Lippman [21]
showed that there exists a pair of optimal strategies (σ∗, τ∗),
which satisfies

gj(σ
∗, τ) 6 gj(σ

∗, τ∗) 6 gj(σ, τ
∗) ,

for every initial state j ∈ [n] and pair of Min/Max strategies
(σ, τ). In this case, the quantity gj(σ∗, τ∗) is referred to as
the value of the game when starting from state j. The state j
is said to be winning (for Player Max) when the associated
value is nonnegative. It is said to be strictly winning for
the same player if the associated value is positive. A dual
terminology applies to Player Min.

With any such a game is associated a Shapley operator.
The latter is the map F : Tnmax → Tnmax defined by

F = A] ◦B ◦ P , (8)

i.e., F (x) = A](B � (Px)), where Px denotes the usual
matrix-vector product of P and x. The finiteness assumptions
on the entries of the matrices A,B imply that F preserves
both Tnmax and Rn. It is convenient to consider the vector
vk := F k(0), for k ∈ N, where F k = F ◦ · · · ◦ F denotes
the k-th iterate of F . The jth entry vkj represents the value
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of the game in finite horizon k with initial state j, associated
with the same data. The vector

χ(F ) := lim
k→∞

vk/k = lim
k→∞

F k(0)/k

is known as the escape rate vector of F . We shall recall in
Section III why this escape rate does exist. It is known that

gj(σ
∗, τ∗) = χj(F ) , (9)

i.e., the value of the mean payoff game coincides with the
limit of the mean value per time unit of the finite horizon
game, as the horizon tends to infinity.

In this way, solving a mean payoff games reduces to a
dynamical systems issue: computing the escape rate vector
of a Shapley operator.

D. Zero-sum games associated with nonarchimedean
semidefinite programs

The correspondence between semidefinite feasibility prob-
lems for spectrahedral cones and stochastic mean payoff
games is given in the next theorem:

Theorem 2. With every spectrahedral cone C of the form (4)
is associated a stochastic mean payoff game that satisfies
the following property: if the valuation of the entries of
the matrices Q(i) are chosen in a generic way, then C is
nontrivial if and only if at least one state in the associated
game is winning.

This correspondence is established in [4] by considering
the following problem:

P(F ) : does there exist x ∈ Tnmax such that
x 6= 0 and x 6 F (x)?

where F : Tnmax → Tnmax is the Shapley operator of the game
associated with the spectrahedral cone C. This problem is
said to be feasible when it admits a solution, and infeasible
otherwise. We point out that P(F ) is feasible if, and only
if, the associated stochastic mean payoff game has a winning
state. Equivalently, this amounts to the fact that the set

S(F ) := {x ∈ Tnmax : x 6 F (x)} (10)

is nontrivial, meaning that it is not reduced to the point 0.
When the genericity assumption of Theorem 2 is satisfied,
S(F ) is precisely the image under the valuation map of C.
Similarly, we can consider the problem:

PR(F ) : does there exist x ∈ Rn such that x� F (x)?

where y � z stands for the fact that yi < zi for all i.
This problem is feasible if, and only if, the set S(F ) is
strictly nontrivial, meaning that there exists x ∈ Rn such
that x� F (x). This corresponds to the property where every
state of the game has a positive value.

The Shapley operator and the associated feasibility prob-
lems P(F ) and PR(F ) provide further conditions under
which game algorithms are directly applicable to solve
nonarchimedean feasibility problems, disregarding the gener-
icity conditions of Theorem 2. This applies to the case where

the matrices Q(1), . . . ,Q(n) are (negated) Metzler matrices,
which means that off-diagonal entries are nonpositive:

Theorem 3. For any Metzler matrices Q(1), . . . ,Q(n), we
have:

(i) if P(F ) is infeasible, or equivalently, S(F ) is trivial,
then C is trivial.

(ii) if PR(F ) is feasible, or equivalently, S(F ) is strictly
nontrivial, then C is strictly nontrivial, meaning that
there exists x ∈ Kn>0 such that the matrix x1Q

(1) +
· · ·+ xnQ

(n) is positive definite.

Following the analogy with the classical condition number
in linear programming (see, e.g., [22]), we are interested in
finding a numerical quantity measuring (the inverse of) the
distance to triviality when the instance is nontrivial or to
nontriviality when it is trivial. In more details, we define the
condition number cond(F ) of the above problem P(F ) by:

(inf{‖u‖∞ : u ∈ Rn , P(u+ F ) is infeasible})−1 (11)

if P(F ) is feasible, and

(inf{‖u‖∞ : u ∈ Rn , P(u+ F ) is feasible})−1 (12)

if P(F ) is infeasible (with the convention 0−1 = +∞).
Here, u + F stands for the map x 7→ u + F (x), where the
addition is understood entrywise, and ‖ · ‖∞ stands for the
sup-norm, i.e., ‖u‖∞ := maxi |ui|. The condition number
condR(F ) of the problem PR(F ) is defined in the same
way as in (11) and (12) but replacing P by PR.

Remark 4. In [4], the Shapley operator associated with
a nonarchimedean SDP feasibility problem is written as
A] ◦ P ◦ B instead of A] ◦ B ◦ P . As there are trivial
reductions between the games correspondings to both forms,
we consider here a Shapley operator in the latter form. This is
more suitable to state the complexity estimates in Section V.

III. PRELIMINARY RESULTS OF NONLINEAR
PERRON–FROBENIUS THEORY

In this section, we recall some elements of nonlinear
Perron–Frobenius theory which will be used to study the
condition numbers introduced above. To do so, we next
axiomatize essential properties of the Shapley operators con-
sidered in Section II-C, following the “operator approach” of
stochastic games [23], [24]

A self-map F of Tnmax is said to be order-preserving when

x 6 y =⇒ F (x) 6 F (y) for all x, y ∈ Tnmax ,

and additively homogeneous when

F (λ+ x) = λ+ F (x) for all λ ∈ Tmax and x ∈ Tnmax .

We point out that any order-preserving and additively ho-
mogeneous self-map F of Tnmax which preserves Rn is
nonexpansive in the sup-norm, meaning that

‖F (x)− F (y)‖∞ 6 ‖x− y‖∞ for all x, y ∈ Rn .

Given an order-preserving and additively homogeneous
self-map F of Tnmax, the vectors x ∈ Tnmax satisfying
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x 6 F (x) can be thought of as the nonlinear analogues
of subharmonic functions. A central role in determining the
existence of such vectors is played by the limit χ(F ) =
limk→∞(F k(x)/k), for x ∈ Rn. When this limit exists, it
can be shown to be independent of the choice of x ∈ Rn,
and so it coincides with the escape rate vector χ(F ) of F .
The following theorem of Kohlberg implies that the limit
does exist when F preserves Rn and its restriction to Rn is
piecewise affine (meaning that Rn can be covered by finitely
many polyhedra such that F restricted to any of them is
affine).

Theorem 5. [25] A piecewise affine self-map F of Rn that
is nonexpansive in any norm admits an invariant half-line,
meaning that there exist z, w ∈ Rn such that

F (z + βw) = z + (β + 1)w

for any β ∈ R large enough. In particular, the escape rate
vector χ(F ) exists, and is given by the vector w.

Kohlberg’s theorem applies to Shapley operators of
stochastic mean payoff games with finite state and action
spaces and perfect information. Indeed, the Shapley oper-
ator (8) of the game described in Section II-C is order-
preserving and additively homogeneous, and its restriction
to Rn is piecewise affine.

For a general order preserving and additively homoge-
neous self-map of Tnmax, the escape rate vector may not
exist. We can still, however, recover information about the se-
quences (F k(x)/k)k through the Collatz–Wielandt numbers
of F . Assuming that F is a continuous, order-preserving,
and additively homogeneous self-map F of Tnmax, we define
the upper Collatz–Wielandt number of F by:

cw(F ) := inf{µ ∈ R : ∃z ∈ Rn, F (z) 6 µ+ z} , (13)

and the lower Collatz–Wielandt number of F by:

cw(F ) := sup{µ ∈ R : ∃z ∈ Rn, F (z) > µ+ z} . (14)

A relation between the escape rate vector and the upper
Collatz–Wielandt number is given in the next theorem, which
is derived in [9] from a minimax result of Nussbaum [14].

Theorem 6. [9, Lemma 2.8] Let F be a continuous, order-
preserving, and additively homogeneous self-map of Tnmax.
Then,

lim
k→∞

t(F k(x)/k) = cw(F ) =

sup{µ ∈ Tmax : ∃z ∈ Tnmax, z 6= 0, F (z) > µ+ z}

for any x ∈ Rn.

As noted in [9, Remark 2.10], the previous result can be
dualized when F preserves Rn.

Corollary 7. Let F be a continuous, order-preserving, and
additively homogeneous self-map of Tnmax that preserves Rn.
Then,

lim
k→∞

b(F k(x)/k) = cw(F )

for any x ∈ Rn.

As a consequence, when the escape rate vector exists, we
simply have

cw(F ) = t(χ(F )) and cw(F ) = b(χ(F )) .

Specializing this to the case where F is the Shapley operator
of a game, the quantities cw(F ) and cw(F ) respectively
correspond to the greatest and smallest values of the states
for the mean payoff problem.

In the sequel, we will consider especially the situation in
which there is a vector v ∈ Rn and a scalar λ ∈ R such that

F (v) = λ+ v . (15)

The scalar λ, which is unique, is known as the ergodic
constant, and (15) is referred to as the ergodic equation.
We will denote this scalar by ρ(F ) as it appears to be a
nonlinear extension of the spectral radius. The vector v is
known as a bias, or a potential. It is easily seen that if F
admits such a bias vector, then

cw(F ) = cw(F ) = ρ(F ) ,

and the condition that ρ(F ) > 0 means that the game is
winning for every initial state. The existence of a bias vector
is guaranteed by certain “ergodicity” assumptions [26].

IV. METRIC GEOMETRY PROPERTIES OF CONDITION
NUMBERS

A. Condition numbers vs Collatz–Wielandt numbers, and
duality

We point out that the definitions given in Section II-D of
the condition numbers cond(F ) and condR(F ) can be gen-
eralized to any continuous, order-preserving, and additively
homogeneous self-map F of Tnmax. The next proposition
provides a characterization of these condition numbers in
terms of the Collatz–Wielandt numbers of F .

Proposition 8. Let F be a continuous, order-preserving, and
additively homogeneous self-map of Tnmax. Then,

condR(F ) = |cw(F )|−1 and cond(F ) = |cw(F )|−1.

We define the dual of the mean payoff game of Section II-
D as the one whose Shapley operator is F ∗ = (B>)]◦P◦A>.
The following theorem will allow us to relate PR(F ) with
PR(F

∗) and P(F ∗).

Theorem 9 (Duality theorem). Let F = A] ◦ B ◦ P and
F ∗ = (B>)] ◦ P ◦ A>, where A ∈ Tm×nmax has at least one
finite entry per column, B ∈ Tm×qmax has at least one finite
entry per row, and P ∈ Rq×n is a row-stochastic matrix.
Then,

cw(F ∗) = −cw(F ) .

As a consequence of Theorem 9, we obtain:

Corollary 10. Let F = A]◦B◦P and F ∗ = (B>)]◦P ◦A>,
where A ∈ Tm×nmax has at least one finite entry per column,
B ∈ Tm×qmax has at least one finite entry per row, and P ∈
Rq×n is a row-stochastic matrix. Then,
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(i) The condition number of PR(F ) coincides with the
condition number of P(F ∗).

(ii) Either P(F ∗) is feasible or PR(F ) is feasible.
(iii) Only one of the problems PR(F ) and PR(F

∗) can be
feasible.

B. A geometric characterization of condition numbers

In this section, we study the inner radius of the feasible
sets of games, that is, given the Shapley operator F : Tnmax →
Tnmax of a game, we study the maximal radius of a Hilbert
ball contained in the set (10).

We start with the following simple lemma.

Lemma 11. Let F be an order-preserving and additively
homogeneous self-map of Tnmax. Assume z ∈ Rn and r ∈
R+ are such that r 6 b(F (z) − z). Then, the Hilbert ball
BH(z, r) is contained in S(F ).

For the condition in the previous lemma to be also
necessary for the inclusion to hold, we need an additional
assumption on F .

Definition 1. An order-preserving and additively homoge-
neous self-map F of Tnmax is said to be diagonal free when
Fi(x) is independent of xi for all i ∈ [n].

Lemma 12. When F is diagonal free, for any z ∈ Rn and
r ∈ R+ the Hilbert ball BH(z, r) is contained in S(F ) only
if r 6 b(F (z)− z).

If F is not diagonal free, the conclusion of Lemma 12
does not necessarily hold, as shown in the next example.

Example 13. Let us consider the order-preserving and ad-
ditively homogeneous map F = A] ◦ B, where A =(
0 0 0

)
and B =

(
−1 0 −1

)
. Then, for z =(

0 3 0
)>

, it can be verified that BH(z, 3) ⊂ S(F ) ={
x ∈ R3 : x 6 A] ◦B(x)

}
=
{
x ∈ R3 : A� x 6 B � x

}
.

However, we have

F (x) =

max{x1 − 1, x2, x3 − 1}
max{x1 − 1, x2, x3 − 1}
max{x1 − 1, x2, x3 − 1}

 ,

and so b(F (z)− z) = 0.

As a consequence of Lemmas 11 and 12, we obtain:

Theorem 14. Let F be a diagonal free self-map of Tnmax.
Then, S(F ) contains a Hilbert ball of positive radius if and
only if cw(F ) > 0. Moreover, when S(F ) contains a Hilbert
ball of positive radius, the supremum of the radii of the
Hilbert balls contained in S(F ) coincides with cw(F ).

Sergeev established in [27] a characterization of the inner
radius of polytropes, which corresponds to the special case
of Theorem 14 in which F is the Shapley operator of a game
with only one player and deterministic transitions.

Remark 15. The condition in Theorem 14 is not too restric-
tive. Indeed, it can be shown that in most cases of interest,
if the Shapley operator F of a mean payoff game is not
diagonal free, one can construct another mean payoff game

such that its Shapley operator is diagonal free and the inner
radius of its feasible set coincides with the one of S(F ).

V. BOUNDING THE COMPLEXITY OF VALUE ITERATION
BY THE CONDITION NUMBERS

In this section, F is an order-preserving and additively
homogeneous self-map of Tnmax which preserves Rn. We
also assume that F admits a bias vector v ∈ Rn, as in (15).

A. A universal complexity bound for value iteration

The most straightforward idea to solve a mean payoff
game is probably value iteration: we infer whether or not the
mean payoff game is winning by solving the finite horizon
game, for a large enough horizon. This is formalized in
Fig. 1.

1: procedure VALUEITERATION(F )
2: . F a Shapley operator from Rn to Rn

3: . The algorithm will report whether Player Max or Player
Min wins the mean payoff game represented by F

4: u := 0 ∈ Rn

5: repeat u := F (u) . At iteration `, u = F `(0) is the
value vector of the game in finite horizon `

6: until t(u) 6 0 or b(u) > 0
7: if t(u) 6 0 then return “Player Min wins”
8: else return “Player Max wins”
9: end

10: end

Fig. 1. Basic value iteration algorithm.

We next show, in Theorem 16, that this value iteration
algorithm terminates and is correct, provided the mean
payoff of the game is nonzero (i.e., ρ(F ) 6= 0), and the
operations are performed in exact arithmetic. We shall see
in Corollaries 23 and 24 that these two restrictions can be
eliminated, at the price of an increase of the complexity
bound.

It is convenient to introduce the following metric estimate,
which represents the minimal Hilbert’s seminorm of a bias
vector

R(F ) := inf {‖u‖H : u ∈ Rn, F (u) = ρ(F ) + u} .

Since F is assumed to have a bias vector v ∈ Rn, we have
R(F ) 6 ‖v‖H < ∞ and ρ(F ) = cw(F ) = cw(F ). Hence,
by Proposition 8,

|ρ(F )|−1 = |cw(F )|−1 = |cw(F )|−1

= condR(F ) = cond(F ) .

We shall denote by cond(F ) this common quantity.
Note that |ρ(F )| has a remarkable interpretation, as the

value of an auxiliary game, in which there is an initial stage,
at which Player Max can decide either to keep his role or to
swap it with the role of Player Min. Then, the two players
play the mean payoff game as usual. Swapping roles amounts
to replacing F by the Shapley operator F̃ (x) := −F (−x).
Observe also that ρ(F̃ ) = −ρ(F ). Hence, the value of this
modified game is precisely max(ρ(F ), ρ(F̃ )) = |ρ(F )|.
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The following result bounds the complexity of value
iteration in terms of R(F ) and of the condition number
cond(F ).

Theorem 16. Suppose that the Shapley operator F has a
bias vector and that the ergodic constant ρ(F ) is nonzero.
Then, procedure VALUEITERATION terminates after

Nvi 6 R(F ) cond(F )

iterations and returns the correct answer.

B. Bounding the condition number and the bias vector of a
stochastic mean payoff game

We next bound the condition number |ρ(F )|−1, and the
metric estimate R(F ), when F is a Shapley operator of a
stochastic game with perfect information and finite action
spaces. As in Section II-C, we assume that

F = A] ◦B ◦ P (16)

where A ∈ Tm×nmax has at least one finite entry per column,
B ∈ Tm×qmax has at least one finite entry per row, and P ∈
Rq×n is a row-stochastic matrix. To obtain explicit bounds,
we will assume that the finite entries of the matrices A and
B are integers, and we set

W := max {|Aij −Bih| : Aij 6= 0 , Bih 6= 0 ,

i ∈ [m] , j ∈ [n];h ∈ [q]} . (17)

This is not more special than assuming that the finite entries
of A and B are rational numbers (we may always rescale
rational payments so that they become integers). We also
assume that the probabilities Pil are rational, and that they
have a common denominator M ∈ N>0, Pil = Qil/M ,
where Qil ∈ [M ] for all i ∈ [q] and l ∈ [n].

We say that a state i ∈ [q] is nondeterministic if there are
at least two indices l, l′ ∈ [n] such that Pil > 0 and Pil′ > 0.

The following lemma improves an estimate in [10].

Lemma 17. Suppose that a Markov chain with n states is
irreducible, and that the transition probabilities are rational
numbers whose denominators divide an integer M . Let
k 6 n denote the number of states with at least 2 possible
successors. Let π ∈ (0, 1]n×n denote the invariant measure
of the chain. Then, the least common denominator of the
rational numbers (πi)i∈n is not greater than nMmin{k,n−1}.

We deduce the following result.

Theorem 18. Let F be a Shapley operator as above, still
supposing that F has a bias vector and that ρ(F ) is nonzero.
If k is the number of nondeterministic states of the game,
then cond(F ) 6 nMmin{k,n−1}.

To bound R(F ), we use the following idea. For 0 < α <
1, let vα denote the value of the discounted game associated
with F , meaning that vα = F (αvα). Since F represents
a zero-sum game with perfect information and finite state
and action spaces, it is known that vα has a Laurent series
expansion in powers of (1−α) with a pole of order at most 1
at α = 1, see [25]. We can deduce from this that the limit

of vα−ρ(F )/(1−α) as α→ 1− exists and that it is a bias,
which we call the Blackwell bias. By working out the limit,
we arrive at the following estimate.

Theorem 19. Let F be the Shapley operator in (16), still
supposing that it has a bias vector, and let v∗ be its Blackwell
bias. Then,

R(F ) 6 ‖v∗‖H 6 10n2WMmin{k,n−1} .

By combining Theorems 18 and 19, we arrive at the
following.

Corollary 20. Let F be the Shapley operator in (16), still
supposing that it has a bias vector and that ρ(F ) is nonzero.
Then, procedure VALUEITERATION stops after

Nvi 6 10n3WM2min{k,n−1} (18)

iterations and correctly decides which of the two players is
winning.

We next show that when specialized to deterministic
games, the universal estimate of Theorem 16 gives precisely
the complexity bound of Zwick–Paterson [28].

Lemma 21. Let F = A] ◦ B, where A,B ∈ Tm×nmax , and
suppose that there exists v ∈ Rn such that F (v) = ρ(F )+v.
Then

R(F ) 6 (n− 1)(|ρ(F )|+W ) ,

where W is defined as in (17), setting q = n.

For deterministic games with integer payments, the mean
payoff is given by the average weight of a circuit, which
has length at most n. It follows that |ρ(F )| > 1/n, unless
ρ(F ) = 0. Note also that ρ(F ) 6 W . By applying
Theorem 18, we arrive at the following bound for the number
of iterations Nvi of the algorithm in Fig. 1.

Corollary 22 (Compare with [28]). Let F = A] ◦B be the
Shapley operator of a deterministic game, where the finite
entries of A,B ∈ Tm×nmax are integers. If there exists v ∈ Rn
such that F (v) = ρ(F ) + v with ρ(F ) 6= 0, then

Nvi 6 2n2W .

The assumption ρ(F ) 6= 0 that is used in Theorem 16
can be relaxed, by appealing to the following perturbation
and scaling argument. This leads to a bound in which the
exponents of M and of n are increased.

Corollary 23. Let µ := nMmin{k,n−1}. Then, procedure
VALUEITERATION, applied to the perturbed and rescaled
Shapley operator 1 + 2µF , terminates unconditionally in
at most 21n4WM3min{k,n−1} iterations. If the algorithm
reports that Max wins, then Max is winning in the original
mean payoff game. If the algorithm reports that Min wins,
then Min is strictly winning in the original mean payoff
game.

The algorithm in Fig. 1 can be adapted to work in finite
precision arithmetic. Consider the variant of the main body
of this algorithm, given in Fig. 2. We assume that each
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evaluation of the Shapley operator F is performed with an
error of at most ε > 0 in the sup-norm.

u := 0 ∈ Rn, ` := 0 ∈ N, ε ∈ R>0

repeat
u := F (u); ` := ` + 1 . The operator F is evaluated in

approximate arithmetic, so that F (u) is at most at distance ε in
the sup-norm from its true value.
until `ε+ t(u) 6 0 or −`ε+ b(u) > 0
if `ε+ t(u) 6 0 then return “Player Min wins”
end
if −`ε+ b(u) > 0 then return “Player Max wins”
end

Fig. 2. Modification of the basic value iteration algorithm to work in finite
precision arithmetic.

Corollary 24. Let F be the Shapley operator in (16), still
supposing that it has a bias vector and that ρ(F ) is nonzero.
Let µ := nMmin{k,n−1}. Then, for any 0 < ε 6 µ−1/3,
value iteration performed with a numerical precision of ε at
each step (i.e., the algorithm in Fig. 2) stops after

Nvi 6 30n3WM2min{k,n−1} (19)

iterations and correctly decides which of the two players is
winning.

Observe that (19) is the bound (18) multiplied by 3.

VI. CONCLUDING REMARKS

We introduced a notion of condition number for stochastic
mean payoff games, and bounded the complexity of value
iteration in terms of this condition number. Whereas con-
dition numbers are familiar for problems over archimedean
fields, this leads to an appropriate notion of condition number
for nonarchimedean semidefinite programming. In particular,
our present results explain, at least in part, the perhaps
surprising benchmarks of [4], revealing that random nonar-
chimedean semidefinite feasibility instances with generic
valuations can be simpler to solve than their archimedean
analogues. In some sense, “good conditioning” provides a
quantitative version of “genericity,” and most instances in [4]
are well conditioned. This raises the issue of evaluating
the condition number on random instances. It is also an
interesting question to investigate whether the solution of
nonarchimedean SDP could be used, in general, to solve
archimedean SDP, and vice versa.
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