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Abstract. We develop a tropical analog of the simplex algorithm for linear programming. In
particular, we obtain a combinatorial algorithm to perform one tropical pivoting step, including
the computation of reduced costs, in O(n(m+ n)) time, where m is the number of constraints
and n is the dimension.

1. Introduction

The tropical semiring (T,⊕,�) is the set T = R ∪ {−∞} endowed with the two operations
a ⊕ b = max(a, b) and a � b = a + b. We are interested in the tropical equivalent of linear
programming. In other words, our goal is to give an algorithm for minimizing a tropical linear
form max(c1 + x1, . . . , cn + xn) over a tropical polyhedron. The latter is the set of solutions
x ∈ Tn of finitely many inequalities of the form

max(a1 + x1, . . . , an + xn, an+1) > max(b1 + x1, . . . , bn + xn, bn+1) .

All the coefficients aj , bj , cj are elements of T. An example is depicted in Figure 1 below.
Several avenues lead to this research. First, the classical simplex method belongs to the

most relevant algorithms, both for its applicability as well as its theoretical implications. So
it is natural to explore variants and derivations, including tropical ones. In the form that we
are studying this leads to a class of minmax problems which are also interesting from a purely
complexity-theoretic point of view. In [AGG12] it is shown that a tropical analog of the fea-
sibility problem in linear optimization is polynomial-time equivalent to deciding which player
has a winning strategy in a mean-payoff game. The latter decision problem is among the few
problems in NP as well as co-NP, see Zwick and Paterson [ZP96], for which no polynomial-time
algorithm is known. This game-theoretic perspective leads to a second approach to tropical lin-
ear programming. A third train of thought is more geometrical. Viro suggested to investigate
the tropical aspects of real algebraic geometry already in [Vir01]. Nonetheless, the main focus
of tropical geometry so far concerns the tropicalization of algebraic varieties which are defined
over the complex numbers (or Puiseux series with complex coefficients). More recently, how-
ever, the tropicalization of real semi-algebraic sets has been studied by Alessandrini [Ale13].
In this vein our work seeks to contribute to understanding the tropicalizations of the most
simple semi-algebraic sets: convex polyhedra. A related motivation arises from linear pro-
gramming over ordered fields, the complexity of which is a well known open question [Meg89,
Section 2]. Ordered fields arise naturally when dealing with perturbations of classical linear
programs [Jer73, FAA02].

Tropical polyhedra or tropically convex sets have appeared in different guises in the works of
several authors, including [Zim77, CG79, LMS01, CGQ04, BH04]; the present work is specially
motivated by the approach of Develin and Sturmfels [DS04], in which tropical polyhedra are
studied by combinatorial means, and by the further work of Develin and Yu [DY07], who showed
that tropical polyhedra are precisely the images by the valuation of (convex) polyhedra over
the field of Puiseux series.
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Figure 1. A tropical linear program. The feasible set is the union of the gray
shaded area with the thick black halfline. Three level sets for the objective
function max(x1, x2) are depicted in blue. The thick red segment is the set of
optima.

This in mind, the most natural approach for tropical linear programming probably is to do
linear programming over real Puiseux series and to tropicalize, i.e., to devise a method which
traces the valuation of the path followed by the simplex algorithm over real Puiseux series. This
is exactly what we do here. What makes our algorithm interesting is that the method itself
does not manipulate Puiseux series (explicit lifts to real Puiseux series are not needed). Instead
it directly processes the tropical input and “stays tropical” throughout the computations. In
this way, the arithmetical operations remain elementary.

In order to make our ideas more apparent, and to avoid technical details which are too
cumbersome to attack in a direct fashion, in the present paper we assume that our tropical
linear program is primally and dually non-degenerate. Further, we assume that each point
in the feasible region has finite coordinates only. Any tropical linear program satisfying these
properties will be called standard ; see Assumptions D, E and F below. We defer all ramifications
which come from looking at degenerate input or infinite coefficients to a subsequent second
paper. Our main result is the following theorem.

Theorem 1. Consider a standard tropical linear program with n variables and m inequalities.
Then, the tropical simplex algorithm (Algorithm 1) terminates and returns an optimal solution
for any tropical pivoting rule. Every iteration (pivoting and computing reduced costs) can be
done in time O(n(m + n)). Moreover, the algorithm traces the image by the valuation map of
the path followed by the classical simplex algorithm applied to any lift of this program to the field
of real Puiseux series, with a compatible pivoting rule.

In particular, under the assumptions of Theorem 1, linear programs over Puiseux series are
implicitly solved by the tropical simplex algorithm. By definition, a tropical pivoting rule selects
a variable of tropically negative reduced cost. A classical pivoting rule is said to be compatible
with the former tropical pivoting rule if they select the same variables. Tropical pivot rules are
the topic of Section 4.
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Algorithm 1: Phase II tropical simplex algorithm

Input: A matrix A ∈ Tm×n± , a column vector b ∈ Tm± , an unsigned row vector c ∈ Tn. A tropical basic

point xI of P(A, b), and the corresponding set I ⊂ [m].
Output: A tropical basic point of P(A, b) that is minimal with respect to c.

1 compute the tropical reduced costs y associated with I

2 while y has a tropically negative entry do
3 choose iout ∈ I such that yiout is tropically negative

4 K ← I \ {iout}
5 pivot along the tropical edge EK to the tropical basic point xI

′
for a set of the form I ′ = K ∪ {ient}

6 I ← I ′

7 compute the tropical reduced costs y associated with I

8 return xI

Our tropical simplex algorithm relies on several tools of independent interest. For instance,
Corollary 17 shows that, again under the general position assumption, the cells of an arrange-
ment of hyperplanes over the field of real Puiseux series are in one to one correspondence with
the cells of the arrangement of the associated tropical hyperplanes. This leads to the notion
of tropical basic points and tropical edges of a system of tropical affine inequalities. Unlike
the classical case, a tropical basic point may not be tropically extreme, see Proposition 22 and
Remark 23 below. This stems from the lack of a good notion for a general “face” of a trop-
ical polyhedron; see the discussions in [Jos05, DY07] This is related to competing notions of
rank [DSS05, AGG09].

A fundamental discrepancy to the classical simplex algorithm is that a tropical edge in Tn
may have a more complex geometrical structure as, indeed, it consists of up to n ordinary
segments. These segments can be determined from tangent digraphs, which encode a local
description of a tropical polyhedron; tangent digraphs were initially introduced in the form
of directed hypergraphs in [AGG13]. The cornerstone of the tropical simplex algorithm is a
new combinatorial characterization of the tangent digraph (Proposition 26) at a point inside a
tropical edge. In particular, this entails an incremental computation of tangent digraphs from
one ordinary segment to another (Proposition 32), leading to an O(n(m + n)) time method
for one full pivoting step, see Theorem 36. Finally, we define the tropical reduced cost vector,
which allows one to certify the optimality of a given basic point. We show that the vector of
reduced costs can be computed by solving a system of signed tropical linear equations, and that
the running time of this step is also bounded by O(n(m+ n)), see Theorem 43.

Let us finally point out some related work. The study of the analogs of linear programs
over ordered semirings was undertaken in the book [Zim81], in particular, a duality theorem
for a special class of linear programs can be found there. The idea of looking for analogs of
convex programming results over “extremal” (a variant of tropical) structures is also apparent
in [Zim76]. Several recent works have proposed algorithms to solve various tropical programming
problems. In [BA08], a dichotomy algorithm is developed, allowing one to solve tropical linear
programming problems by a reduction to linear feasibility problems. In [GKS12], more general
linear-fractional programming problems are studied, in which one maximizes the difference of
two tropical linear forms. A policy iteration algorithm based on a parametric mean payoff
game is given there. These policies seem to have interesting connections with basic points.
However, our present approach leads to a fundamentally different method: we move along
edges in the graph of the tropical polytope, whereas policy iteration type algorithms often
take “great leaps” in the same graph; also, one iteration of the present algorithm takes only
O(n(m + n)) time whereas every iteration in [GKS12] requires to solve a mean payoff game.
Yet another different class of algorithms for solving tropical linear feasibility problems relies
on cyclic projection [CGB03, GS07, AGNS11]. Recall also that the tropical linear feasibility
problem is equivalent to mean payoff games, for which a number of algorithms are available,
like pumping [GKK88], value iteration [ZP96, AGG12], or policy iteration [GG98, DG06, BV07,
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Cha09]. A reduction of mean payoff games to classical linear programs with exponentially large
coefficients is established in [Sch09]. The asymptotic simplex method developed in [FAA02]
solves arbitrary linear programs on Laurent series (which is sufficient for tropical linear programs
with rational coefficients). Each iteration of their method requires O(s(m + n)2) operations,
where s 6 (m+n) is the maximum taken over the valuations of all Puiseux series arising during
the computation. Our tropical simplex algorithm shows a better complexity per iteration since
the factor of s is dispensed with, but the approach of [FAA02] does not require any genericity
assumptions.

This paper is organized as follows. Section 2 describes our notations and collects the relevant
known facts about convex polyhedra over real Puiseux series. For the reader’s convenience
we introduce a running example which we refer to throughout this paper. In Section 3 we
characterize the key players in our algorithms: tropical basic points and tropical edges. The
core of our paper is Section 4, where we describe the tropical pivot. Section 5 discusses tropical
reduced costs. Finally, Theorem 1 is proved in Section 6.

Our algorithm for solving tropical linear programs is outlined in Algorithm 1. It directly
corresponds to Phase II of the classical simplex method over real Puiseux series. Phase II
starts from a given tropical basic point and proceeds along improving edges towards an optimal
tropical basic point. The Phase I problem, to find a first tropical basic point will be addressed
in a sequel to this work. While classically Phase I can be reduced to Phase II, in general, this
requires to solve a degenerate linear program. As explained above, this is out of the scope of
the present paper.

2. Preliminaries

2.1. Tropical arithmetic. The domain for our computations is the set T = R ∪ {−∞}. The
neutral elements for the tropical “addition” and “multiplication” are 0 := −∞ and 1 := 0,
respectively. The usual definition of matrix operations carries over to tropical matrices. Given
two matrices A = (aij) and B = (bij), we denote by A⊕B and A�B the matrices with entries

aij⊕bij and
⊕

k aik�bkj , respectively. We also denote by A> the transpose of the matrix A, by
Ai the ith row of A, and by AI the submatrix of A formed from the rows i ∈ I. For the sake of
simplicity, we identify vectors of size n with n×1-matrices. Given a = (a1j) ∈ T1×n and x ∈ Tn,
we denote by arg max(a� x) the set of indices i ∈ [n] = {1, . . . , n} attaining the maximum in

a� x = max
j∈[n]

(a1j + xj) .

The usual total order 6 on R extends to T. This induces a partial ordering of tropical vectors
by entry-wise comparisons. The topology induced by the order makes (T,⊕,�) a topological
semiring.

In the following, we will think of the n-fold product space Tn as a semimodule over T, where
scalars act tropically on vectors by (λ, x) 7→ λ�x := (λ+x1, . . . , λ+xn) and the tropical vector
addition is (x, y) 7→ x⊕ y := (max(x1, y1), . . . ,max(xn, yn)).

2.1.1. Signed tropical numbers. It will be convenient to use the set of signed tropical num-
bers [Plu90], denoted here by T±. The latter set consists of two copies of T, called the set of
positive tropical numbers and the set of negative tropical numbers, respectively. These two copies
are glued by identifying the element 0. Positive and negative tropical numbers are written as a
and 	a, respectively, for some a ∈ T. By definition, the numbers a and 	a are different, unless
a = 0. Their sign is sign(a) = 1 and sign(	a) = −1 when a is not 0 and sign(0) = 0. The
modulus of x ∈ {a,	a} is defined as |x| := a. The multiplication x�y of two elements x, y ∈ T±
yields the element whose modulus is |x|+ |y| and whose sign is the product sign(x) sign(y). The
positive part and the negative part of an element x ∈ T± are the tropical numbers x+ and x−

defined by:

x+ =

{
|x| if x is positive
0 otherwise

x− =

{
0 if x is positive
|x| otherwise
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Modulus, positive part and negative part extend to matrices entry-wise. It was shown in [Plu90]
that signed tropical numbers can be embedded in a semiring, called the symmetrized tropical
semiring. Indeed, the sum of two signed tropical numbers with opposite signs but identical
modulus cannot be defined as a signed tropical number, one needs to enlarge T± with a third
type of elements, called balanced elements, to represent such sums. We will defer the discussion
of the symmetrized tropical semiring until Section 5.1, since the additional technicalities can
be spared in the first three quarters of this paper. In particular, the addition of signed tropical
numbers will not be used before Section 5.1.

2.1.2. General position. The permanent of the square matrix M = (mij) ∈ Tn×n is given by

tper(M) :=
⊕

σ∈Sym(n)

m1σ(1) � · · · �mnσ(n) = max
σ∈Sym(n)

m1σ(1) + · · ·+mnσ(n) , (1)

where Sym(n) is the set of all permutations of [n]. Computing the tropical permanent amounts
to finding a permutation which attains the maximum in (1). Such a permutation is a solution
of the assignment problem with costs (mij). It can found in time O(n3) using the Hungarian
method; see [Sch03, §17.3]. A square matrix is said to be tropically singular if tper(M) = 0 or
if the maximum is attained at least twice in (1).

A slightly more restrictive notion of singularity arises when signs are taken into account. A
signed matrix M ∈ Tn×n± is tropically sign singular if tper(|M |) = 0 or if the maximum in
tper(|M |) is attained on two distinct permutations σ and π such that the terms tsign(σ) �
m1σ(1) � · · · �mnσ(n) and tsign(π)�m1π(1) � · · · �mnπ(n) have opposite tropical signs, where
tsign(σ) = 1 if σ is an even permutation and tsign(σ) = 	1 otherwise. The notion of tropical
sign singularity of a matrix appeared in different forms in [GM84], [Plu90], and [Jos05, §4].

We call a rectangular matrix W ∈ Tm×n± tropically generic if for every square submatrix U
of W either tper(|U |) = 0 or |U | is not tropically singular. Similarly, the matrix W is tropically
sign generic if tper(|U |) = 0 or U is not tropically sign singular, again for all square submatrices
U .

Example 2. Consider the following matrix with signed tropical entries.

W =


−5 −3 	0
	(−7) −5 0
−7 −2 	0
−2 	(−6) 	0


The matrix W is not tropically generic. Indeed, consider its submatrix W ′ formed from the first
two rows and the first two columns. We have tper(|W ′|) = ((−5)� (−5))⊕ (|	 (−7)|� (−3)) =
(−10)⊕ (−10), thus |W ′| is tropically singular. However, W ′ is not tropically sign singular, as
the terms 1�(−5)�(−5) = −10 and 	1�	(−7)�(−3) = −10 associated with the maximizing
permutations in tper(|W ′|) have the same tropical sign.

Now consider the submatrixW ′′ =
(
	(−7) 0
−7 	0

)
formed from the second and third rows and the

first and last columns of W . We have tper(|W ′′|) =
(
|	(−7)|�|	0|

)
⊕
(
(−7)�0

)
= (−7)⊕(−7)

and the two terms 1 � 	(−7) � 	0 = −7 and 	1 � (−7) � 0 = 	(−7) have opposite tropical
signs. Thus W ′′ is not tropically sign singular, and therefore W is not tropically sign generic.

2.2. Tropically convex sets and tropical polyhedra. A set S ⊂ Tn is said to be a tropically
convex if λ� x⊕ µ� y ∈ S for all x, y ∈ S and λ, µ ∈ T such that λ⊕ µ = 1. The set S is said
to be a tropical cone when the same conclusion holds even if the requirement that λ⊕ µ = 1 is
omitted. A tropical cone is polyhedral if it is finitely generated. These notions are analogous to
the classical ones, since the condition λ, µ > 0 is trivially satisfied. Given V ⊂ Tn, we denote by
tconv(V ) the smallest (inclusion-wise) tropically convex subset of Tn containing V . Similarly,
tpos(V ) denote the smallest tropical cone of Tn containing V .
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2.2.1. Tropical half-spaces and s-hyperplanes. An (affine) tropical half-space is a subset of Tn
of the form:

max(α1 + x1, . . . , αn + xn, αn+1) > max(β1 + x1 . . . , βn + xn, βn+1) , (2)

where α, β ∈ Tn+1 . When αn+1 = βn+1 = 0, it is said to be a linear tropical half-space.
Throughout this paper, we assume that half-spaces are defined by non-trivial inequalities:

Assumption A. There is at least one non-null coefficient in the inequality (2), i.e.,

max

(
max
j∈[n+1]

αj , max
j∈[n+1]

βj

)
> 0 .

Without loss of generality (see [GK11, Lemma 1]), we also always assume that half-spaces
are induced by an inequality satisfying the following condition:

Assumption B. Each variable appears on at most one side of the inequality (2), i.e.,

min(αj , βj) = 0 for all j ∈ [n+ 1] .

Then, we can concisely describe a tropical half-space with a signed row vector a = (a1j) ∈
T1×n
± and a signed scalar b ∈ T± as:

H>(a, b) : = {x ∈ Tn | a+11 � x1 ⊕ · · · ⊕ a
+
1n � xn ⊕ b

+ > a−11 � x1 ⊕ · · · ⊕ a
−
1n � xn ⊕ b

−}
= {x ∈ Tn | a+ � x⊕ b+ > a− � x⊕ b−} .

A signed tropical hyperplane, or s-hyperplane, is defined as the set of the solutions x ∈ Tn of
an equality of the form:

H(a, b) = {x ∈ Tn | a+ � x⊕ b+ = a− � x⊕ b−} , (3)

where a ∈ T1×n
± and b ∈ T±. When H>(a, b) is a non-empty proper subset of Tn, its boundary

is H(a, b).

Remark 3. The setH(a, b) is said to be signed because it corresponds to the tropicalization of the
intersection of a usual hyperplane with the non-negative orthant over Puiseux series; see Section
2.3. A tropical (unsigned) hyperplane is defined by an unsigned row vector a = (a1j) ∈ T1×n

and an unsigned scalar b ∈ T as the set of all points x ∈ Tn such that the maximum is attained
at least twice in a� x⊕ b = max(a11 + x1, . . . , a1n + xn, b); see [RGST05]. This corresponds to
the tropicalization of an entire ordinary hyperplane.

2.2.2. Tropical polyhedra. A tropical polyhedron is the intersection of finitely many tropical
affine half-spaces. It will be denoted by a signed matrix A ∈ Tm×n± and a signed vector b ∈ Tm±
as:

P(A, b) := {x ∈ Tn | A+ � x⊕ b+ > A− � x⊕ b−} =
⋂
i∈[m]

H>(Ai, bi) .

If all those tropical halfspaces are linear, i.e., if b is identically 0, that intersection is a tropical
polyhedral cone.

Example 4. The tropical polyhedron depicted in Figure 1 is defined by the following matrix and
vector.

A =


−5 −3
	(−7) −5
−7 −2
−2 	(−6)

 and b =


	0
0
	0
	0


The half-space depicted in orange in Figure 1 is H>(A1, b1) = {x ∈ T2 | max(x1−5, x2−3) > 0}.
Its boundary is the signed hyperplane H(A1, b1) = {x ∈ T2 | max(x1− 5, x2− 3) = 0}. The last
three rows yield the inequalities:

max(x2, 0) > x1 − 7 ,

max(x1 − 7, x2 − 2) > 0 ,

x1 > max(x2 − 6, 0) ,
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which define the half-spaces respectively depicted in purple, green and khaki in Figure 1.

A point x in a tropical polyhedron P(A, b) clearly satisfies the inequalities xj > 0 for all
j ∈ [n]. Although redundant, including these inequalities in the representation of a tropical
polyhedron is occasionally useful.

Assumption C. For all j ∈ [n], all points x ∈ P(A, b) satisfy xj > 0 or the non-negativity
constraint xj > 0 appears in the external representation of P(A, b), i.e., there exists a row index
i ∈ [m] such that (Ai bi) is the row vector whose jth entry is 1 while all other entries are 0.

The Minkowski–Weyl theorem holds in the tropical case: a tropical polyhedron can be defined
either externally (i.e., by means of half-spaces), or internally as the convex hull of finitely many
points and rays.

Theorem 5 ([GK11, Theorem 2]). A subset P ⊂ Tn is a tropical polyhedron if, and only if,
there exist two finite sets V,R ⊂ Tn such that

P = {x⊕ y | x ∈ tconv(V ) and y ∈ tpos(R)} .

It will be convenient to homogenize a tropical polyhedron P(A, b) into the tropical polyhedral
cone C := {x ∈ Tn+1 | W+ � x > W− � x}, where W := (A b). As a tropical cone, C is closed
under tropical scalar multiplication. For this reason, we identify C with its image in the tropical
projective space

TPn :=
{
R� x | x ∈ Tn+1 \ {(0, . . . ,0)}

}
.

The points of the tropical polyhedron P(A, b) are associated with elements of the tropical
polyhedral cone C by the following bijection:

P(A, b) −→ {y ∈ C | yn+1 = 1}
x 7−→ (x,1)

(4)

The points of the form (x,0) in C correspond to the rays in the recession cone of P(A, b),
see [GK11].

Remark 6. Let R ∈ Tm×n be a matrix with finite coefficients only. Then P = tpos(R) is a
tropical polyhedral cone in Tn such that the image of P ∩ Rn under the canonical projection
from Rn to the tropical torus {R� x | x ∈ Rn} is a “tropical polytope” in the sense of Develin
and Sturmfels [DS04]. Via this identification, the tropical linear halfspaces which are non-empty
proper subsets of Tn correspond to the “tropical halfspaces” studied in [Jos05]. The tropical
projective space defined above compactifies the tropical torus (with boundary).

2.3. Puiseux series. The set R{{t}} of (generalized) Puiseux series with real coefficients is the
set of formal power series

x =
∑
α∈R

xαt
α

with xα ∈ R such that the support {xα | xα 6= 0} is either a finite set or the set of valuations of
a increasing unbounded sequence. By definition of its support, every non-null Puiseux series x
admits a smallest exponent αmin ∈ R. The real number −αmin is called the valuation of x and
is denoted val(x). By convention, we set val(0) = −∞. The leading coefficient, denoted lc(x),
is the coefficient xαmin of the smallest exponent αmin = − val(x) when x 6= 0, and 0 otherwise.
Throughout the paper, we write K instead of R{{t}}.

The set of generalized Puiseux series, equipped with the sum and product of formal power
series, constitutes a field. It can be identified with a subfield of the field of Hahn series,
i.e., formal power series with arbitrary well-ordered support. A variant of this field was also
considered by Hardy under the name of “generalized Dirichlet series”. Our approach follows
Markwig [Mar10].

The n-fold Cartesian product Kn is a K-vector space when equipped with the scalar mul-
tiplication (λ,x) 7→ λx := (λx1, . . . ,λxn) and the vector addition (x,y) 7→ x + y := (x1 +
y1, . . . ,xn + yn).
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A Puiseux series x is said to be positive if lc(x) > 0, and we write x > 0 in this case.
Similarly, we write x > y if x − y > 0. This definition turns K into an ordered field. The
topology induced by this order makes K a topological field.

The valuation is a map from K to T which satisfies

val(xy) = val(x)� val(y)

val(x+ y) 6 val(x)⊕ val(y).

Equality occurs in the last inequality if and only if the leading terms of x and y do not cancel.
In particular, cancellation never occurs whenever x and y share the same sign. This property
is the main reason for using Puiseux series to study the tropical semiring. Indeed, the map val
defines a homomorphism from the semiring K+ of non-negative Puiseux series to the tropical
semiring. This homomorphism is order preserving, that is,

if x > y > 0 then val(x) > val(y) .

It is convenient to equip the valuation with a sign information. We define the signed valuation
map by:

sval : K −→ T±

x 7−→

{
val(x) if x > 0 ,

	 val(x) otherwise.

A lift of a signed tropical number x ∈ T± is a Puiseux series x such that sval(x) = x. Clearly,
such a lift is by no means unique. The set of all lifts will be denoted sval−1(x). The signed
valuation map is extended to vectors and matrices by component-wise application. In the
following, any Puiseux series will be written in bold and its signed valuation with a standard
font, e.g., x = sval(x).

2.4. Puiseux linear programming solves tropical linear programming. Hyperplanes,
half-spaces and convex polyhedra can be defined over an arbitrary ordered field. The most basic
results used in linear programming (Farkas’ lemma, Minkowski–Weyl, Strong Duality, etc) are
of algebraic nature. Their proofs only rely on the axioms of ordered fields, and consequently
are also valid in this setting, see for instance [Jer73, Meg87, FAA02]. Actually, in the present
paper, we deal with the field K of Puiseux series with real coefficients, which is known to be
real closed [Mar10], i.e., each non-negative element is a square, and every polynomial with odd
degree has at least one root. For such a field, stronger results follow from Tarski’s principle:
any first-order sentence that is valid over the reals is also valid over an arbitrary real closed
field, and thus valid over K. We refer to [Tar51, Sei54] for further details; see also [BPCR06]
for a recent overview. In order to have a concise name we call ordinary polyhedra defined over
K Puiseux polyhedra.

In this section, we examine how tropical polyhedra are related with Puiseux polyhedra in
Kn

+ via the valuation map. In [DY07, Proposition 2.1], Develin and Yu prove that a tropical
polyhedral cone tpos(R) can be lifted to a Puiseux polyhedral cone in Kn

+ by lifting the set R of
generators. This result can be trivially extended to arbitrary tropical polyhedra, thanks to the
tropical Minkowski–Weyl Theorem (Theorem 5), by lifting the whole internal representation.
Alternatively, we shall see that a tropical polyhedron can also be lifted to a Puiseux polyhedron
in Kn

+ by lifting its external representation by half-spaces. As a consequence, an optimal solution
to a tropical linear program can be found by solving a linear program over Puiseux series.

We denote by H(a, b) the hyperplane over Kn defined by the equality ax + b = 0, where
a ∈ K1×n and b ∈ K. The hyperplane H(a, b) induces the half-space H>(a, b) by replacing
the equality constraint by the inequality >. We will denote Puiseux polyhedra as follows:

P(A, b) := {x ∈ Kn | Ax+ b > 0} ,

where A ∈ Km×n and b ∈ Km.
8



We now consider a tropical linear program:

minimize c� x
subject to x ∈ P(A, b)

(5)

where A ∈ Tm×n± , b ∈ Tm± are signed matrices and c ∈ T1×n is an unsigned row vector.

Proposition 7. There is a way to associate to every tropical linear program of the form (5)
satisfying Assumption C a Puiseux linear program

minimize cx
subject to x ∈ P(A, b)

(6)

satisfying A ∈ sval−1(A), b ∈ sval−1(b) and c ∈ sval−1(c), so that:

(i) the image by the valuation of the feasible set of the linear program (6) is precisely the
feasible set of the tropical linear program (5); in particular, (6) is feasible if and only if
(5) is feasible;

(ii) the valuation of any optimal solution of (6) (if any) is an optimal solution of (5).

Notice that the converse of (ii) does not necessarily hold. That is, there are tropical linear
programs with optimal solutions which do not arise as projections from any lift; see Example 9
below.

Proof. To begin with, we will exhibit lifts A ∈ sval−1(A) and b ∈ sval−1(b) of the external
representation such that val(P(A, b)) = P(A, b). The inclusion val(P(A, b)) ⊂ P(A, b) is
satisfied for any lifts A, b. Indeed, consider a point x ∈ P(A, b). Then, by Assumption C, the
polyhedron P(A, b) is included in the non-negative orthant Kn

+. Let (A b) = (A+ b+)−(A− b−)
where the entries of (A+ b+) and (A− b−) are non-negative. Every point x ∈ P(A, b) satisfies
A+x + b+ > A−x + b−. Since the Puiseux series on each side of these inequalities are non-
negative, the valuation preserves their ordering and A+ � x⊕ b+ > A− � x⊕ b−.

We claim that the reverse inclusion holds for any lift of the form (A b) = (A+ b+)− (A− b−)
defined, for i ∈ [m] and j ∈ [n] by:

A+ = (αt−a
+
ij ) and A− = (t−a

−
ij )

b+ = (αt−b
+
i ) and b− = (t−b

−
i )

(7)

where α is a real number strictly greater than n + 1, and A = (aij). To see this, observe that
for any x ∈ P(A, b) the lift x = (t−x1 , . . . , t−xn) belongs to the Puiseux polyhedron P(A, b).
Indeed, for any i ∈ [m] we have

A−i x+ b−i =
n∑
j=1

t−a
−
ij−xj + t−b

−
i 6 (n+ 1)t−(a

−
i �x⊕b

−
i ) < αt−(a

−
i �x⊕b

−
i )

and

A+
i x+ b+i = α

( n∑
j=1

t−a
+
ij−xj + t−b

+
i

)
> αt−(a

+
i �x⊕b

+
i ) > αt−(a

−
i �x⊕b

−
i ) ,

thus Aix+ bi > 0. This shows that a lift to real Puiseux series does exist.
We need to prove the claimed properties of such a lift. Let A and b as above. Since

val(P(A, b)) = P(A, b), the Puiseux linear program (6) is feasible if, and only if, the tropical
one (5) is feasible. Now take any c ∈ sval−1(c), e.g., cj = t−cj for j ∈ [n]. If (6) admits
an optimal solution x∗, then cx > cx∗ > 0 for all x ∈ P(A, b). Since c is non-negative,
c� x > c� val(x∗) for all x ∈ val(P(A, b)) = P(A, b). This concludes the proof. �

Remark 8. Observe that in Proposition 7, the Puiseux linear program (6) cannot be unbounded.
Indeed, for all lifts (A b) ∈ sval−1(A b), we have P(A, b) ⊂ Kn

+ thanks to Assumption C. Since
c has tropically positive entries, its lift c also have positive entries. Then the inequality cx > 0
holds for all x ∈ P(A, b), and thus provides a lower bound for the minimization problem (6).

9



(0, 0, 0)

(0, 0, 4)

(4, 0, 0)

(4, 4, 0)

(4, 4, 4)

Figure 2. The tropical polyhedron defined by the inequalities (8) and its ex-
ternal representation.

(t0, t0, t0)

(t0, t0, t−4)

(t−4, t0, t0)

(t−4, t−4, t0)

(t−4, t−4, t−4)

Figure 3. A lift of the tropical polyhedron defined by the inequalities (8) and
its external representation.

We offer a visualization for Proposition 7 in Figure 3. As model theory explains, polyhedra
over real Puiseux series, for most purposes, pretty much are the same as classical polyhedra over
the reals. Therefore, we can also visualize the lift in Proposition 7 as a classical polyhedron.
More precisely, the constraints of the lift are provided by (7), and we can choose the lifted
objective vector to be cj = t−cj for j ∈ [n]. Now, replacing the parameter t by a real number
provides a real linear program. If that real number is sufficiently small, the classical linear
program over the reals is combinatorially equivalent to the Puiseux one, i.e., that is they share
the same vertex–facet incidences and hence they share the same vertex–edge graph; the optimal
vertices are in bijection.
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Example 9. Throughout the rest of this paper, we will illustrate our results on the following
tropical linear program.

minimize max(x1 − 2, x2, x3 − 1)

subject to max(0, x2 − 1) > max(x1 − 1, x3 − 1) H1

x3 > max(0, x2 − 2) H2

x2 > 0 H3

x1 > max(0, x2 − 3) H4

0 > x2 − 4 . H5

These constraints define the tropical polyhedron represented in Figure 2. A lift of this tropical
polyhedron is depicted in Figure 3. The optimal valuation of this tropical linear program is 0
and the set of optimal solutions is the ordinary square:

{(x1, x2, x3) ∈ T3 | 0 6 x1 6 1 and x2 = 0 and 0 6 x3 6 1}.
However, over Puiseux series, there is a unique optimum. It is the point located in the intersec-
tion of three hyperplanes obtained by lifting the inequalities (H2), (H3) and (H4). This point
has valuation (0, 0, 0), which is an optimum for the tropical linear program. Corollary 17 and
Proposition 41 below assert this does not depend on the choice of the lift. The reason is that
our example satisfies the standard conditions mentioned in Theorem 1.

We will also present several results in the homogeneous setting. They will be illustrated on
the tropical cone defined by the following inequalities:

max(x4, x2 − 1) > max(x1 − 1, x3 − 1)

x3 > max(x4, x2 − 2)

x2 > x4

x1 > max(x4, x2 − 3)

x4 > x2 − 4

(9)

This cone corresponds to the previous polyhedron by the correspondence given in (4), i.e., the
coordinate x4 plays the role of the affine component. For the sake of simplicity, the linear
half-spaces in (9) are still referred to as (H1)–(H5).

2.5. The simplex method. A Puiseux linear program can be solved using the classical simplex
method. We briefly recall the basic facts. Let I ⊂ [m] be a subset of cardinality n such that
the submatrix AI , formed from the rows with indices in I, is non-singular. The intersection⋂
i∈I H(Ai, bi) contains a unique point, which we denote as xI . When xI belongs to the

polyhedron P(A, b), it is called a (feasible) basic point.

Remark 10. A basis is usually defined by a partition of the (explicitly bounded) variables
(s1, . . . , sm) in “basic” and “non-basic” variables, where s = Ax+b. Observe that I correspond
to the “non-basic” variables as it indexes the zero coordinates of s. The set I can also be
interpreted as the set of “basic” variables in the dual program.

For any set I ⊂ [m] we let

PI(A, b) :=
⋂
i∈I

H(Ai, bi) ∩P(A, b) .

A subset K ⊂ [m] of cardinality n − 1 defines the (feasible) edge EK := PK(A, b) when⋂
i∈K H(Ai, bi) is an affine line that intersects P(A, b). Notice that an edge defined in this

way may have “length zero”, i.e., as a set it only consists of a single point. A basic point xI is
contained in the n edges defined by the sets I \ {k} for k ∈ I. The edge I \ {k} belongs to the
line directed by the vector dk with coordinates

dkj = (−1)k+j
detMkj

detAI
, (10)

11



where Mkj is the matrix obtained from AI by deleting its kth row and jth column.

As we are minimizing, moving along the edge I \ {k} from the basic point xI improves
the objective function if the reduced cost yk = cdk is negative. The vector of reduced costs
y = (yk)k∈I forms a solution of the following linear system of equations:

−A>I y + c = 0 . (11)

Each iteration of the simplex method starts on some basic point xI . An edge I \ {k} with a
negative reduced cost is selected. If no such edge exists, then the basic point is optimal by the
Strong Duality Theorem of Linear Programming [Sch03, §5.5] (which holds in any ordered field
such as real Puiseux series). Otherwise, the algorithm pivots, i.e., moves to the other end of
the selected edge. Pivoting amounts to finding the length µ ∈ K of the edge, which is given by:

µ = inf

{
Aix

I + bi
−Aidk

| i ∈ [m] \ I and Aid
k < 0

}
. (12)

If the edge is bounded, i.e., if there exists an i ∈ [m]\ I such that Aid
k < 0, then the algorithm

reaches a new basic point. Otherwise, the linear program is unbounded, and the valuation µ is
∞.

Remark 11. Basic points and directions are provided by determinants. If (A b) = val(A b) is
tropically generic, this amounts to computing tropical permanents. However, the length µ of
the edge cannot be computed only with valuations. This difficulty can be observed already in
dimension one. Consider the Puiseux polyhedron defined by the inequalities:

x 6 1 and x > t2 and x > t3 .

Minimizing c = 1 and starting from the basic point x = 1, the direction of the single pivot is
d = −1. The pivoting step must decide where the edge ends; and in this case the edge length
is given by µ = min(1− t2, 1− t3) = 1− t2. Yet, the valuation of 1− t2 and 1− t3 yields zero
in both cases. This shows that, in order to find the correct minimum t2, it does not suffice to
look at the valuations of the optimal solutions of the Puiseux lift.

3. Tropical basic points and tropical edges

Geometrically speaking, the classical simplex method traces the vertex-edge graph of an ordinary
polyhedron from one basic point along a directed path to an optimal solution, which again is
basic. Basic points and edges over Puiseux series are cells of the arrangement of hyperplanes
{H(Ai, bi)}i∈[m]. It turns out that, under some genericity assumptions, the valuation of these

cells can be described by intersecting tropical half-spaces in {H>(Ai, bi)}i∈[m] and s-hyperplanes
in {H(Ai, bi)}i∈[m]. This result will be proved in Corollary 17 below.

3.1. The tangent digraph. Consider a matrix W = (wij) ∈ Tm×(n+1)
± . For every point

x ∈ Tn+1 with no 0 entries, we define the tangent graph Gx(W ) at the point x with respect to
W as a bipartite graph over the following two disjoint sets of nodes: the “coordinate nodes”
[n + 1] and the “hyperplane nodes” {i ∈ [m] | W+

i � x = W−i � x > 0}. There is an edge
between the hyperplane node i and the coordinate node j when j ∈ arg max(|Wi| � x).

The tangent digraph ~Gx(W ) is an oriented version of Gx(W ), where the edge between the
hyperplane node i and the coordinate node j is oriented from j to i when wij is tropically
positive, and from i to j when wij is tropically negative (if a tangent digraph contains an edge
between i and j then wij 6= 0).

Examples of tangent digraphs are given in Figure 4 below (there, hyperplane nodes are

denoted Hi). The term “tangent” comes from the fact that ~Gx(W ) is a combinatorial encoding
of the tangent cone at x in the tropical cone C = P(W, 0), see [AGG13]. The tangent digraph is
the same for any two points in the same cell of the arrangement of tropical hyperplanes given
by the inequalities. The tangent graph Gx(W ) corresponds to the “types” introduced in [DS04]
but relative only to the hyperplanes given by the tight inequalities at x.
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At (1, 0, 0)

3 2

14 H1

H2 H3

In the open segment

](1, 0, 0), (1, 1, 0)[

3 2

14 H1

H2

At (1, 1, 0)

3 2

14

H1H2

In the open segment

](1, 1, 0), (2, 2, 0)[

3 2

14

H1H2

At (2, 2, 0)

3 2

14

H1H2

In the open segment

](2, 2, 0), (4, 4, 2)[

3 2

14

H1

H2

At (4, 4, 2)

3 2

14

H5 H1

H2

Figure 4. Tangent digraphs at various points of the tropical cone obtained
by homogenization of the tropical polyhedron defined by the inequalities (8).
Hyperplane nodes are rectangles and coordinate nodes are circles.

When there is no risk of confusion, we will denote by Gx and ~Gx the tangent graph and
digraph, respectively.

Example 12. Let W be the matrix formed by the coefficients of the system (9), and consider
the point x = (1, 0, 0, 0) (corresponding to (1, 0, 0) via the bijection (4)). The inequalities (H1),
(H2) and (H3) are tight at x. They read

max(x4, x2 − 1) > max(x1 − 1, x3 − 1)

x3 > max(x4, x2 − 2)

x2 > x4

where we marked the positions where the maxima are attained. The tangent digraph ~Gx(W )
is depicted in the top left of Figure 4. For instance, the first inequality provides the arcs from
coordinate node 4 to hyperplane node H1, and from H1 to coordinate node 1.

If I and J are respectively subsets of the hyperplane and coordinate nodes of Gx, a matching
between I and J is a subgraph of Gx with node set I ∪ J in which every node is incident to
exactly one edge.

Lemma 13. Let W ∈ Tm×(n+1)
± and x ∈ Tn+1 be a point with no 0 entries. Suppose the

tangent graph Gx contains a matching between the hyperplane nodes I and the coordinate nodes
J . Then the submatrix W ′ of W formed from rows I and columns J is such that |W ′| has a
finite tropical permanent. Moreover, the matching yields a maximizing permutation in the latter
tropical permanent.

Proof. Let {(i1, j1), . . . , (iq, jq)} be a matching between the hyperplanes nodes I = {i1, . . . , iq}
and the coordinate nodes J = {j1, . . . , jq}. By definition of the tangent graph, for all p ∈ [q],
we have:

|wipjp |+ xjp > |wipl|+ xl for all l ∈ [n+ 1] .
13



Since x has no 0 entries, this implies
∑q

p=1 |wipjp | >
∑q

p=1 |wipσ(ip)| for any bijection σ : I → J .

Thus the tropical permanent of |W ′| is
∑q

p=1 |wipjp |, which is obtained with the bijection ip 7→ jp.

Consider a p ∈ [q]. By definition of the tangent graph |Wip | � x > 0. Moreover, we suppose
that x has finite entries. Thus |wipjp | > 0. As a consequence,

∑q
p=1 |wipjp | is finite. �

Lemma 14. Let W ∈ Tm×(n+1)
± and x ∈ Tn+1 be a point with no 0 entries. If the tangent

graph Gx contains an undirected cycle, then the matrix W contains a square submatrix W ′ such
that |W ′| is tropically singular and tper(|W ′|) > 0 . Moreover, if the cycle is directed in the

tangent digraph ~Gx, then W ′ is tropically sign singular.

Proof. To prove the first statement, let j1, i1, j2, . . . , iq, jq+1 = j1 be an undirected cycle in Gx.
By Assumption B we have q > 2. Up to restricting to a subcycle, we may assume that the cycle
is simple, i.e., the indices i1, . . . , iq and j1, . . . , jq are pair-wise distinct. As a consequence, the
maps σ : ip 7→ jp and τ : ip 7→ jp+1 for p ∈ [q] are bijections. The sets of edges {(ip, jp) | p ∈ [q]}
and {(ip, jp+1) | p ∈ [q]} are two distinct matchings between the hyperplane nodes i1, . . . , ip and
the coordinate nodes j1, . . . , jp. Let W ′ be the submatrix of W formed from rows i1, . . . , iq and
columns j1, . . . , jq. By Lemma 13, the bijections σ and τ are both maximizing in tper(|W ′|).
Lemma 13 also shows that tper(|W ′|) > 0.

Now suppose that the cycle is directed. Then, wipjp is tropically positive and wipjp+1 is
tropically negative for all p ∈ [q]. Consequently, the tropical signs of wi1j1 � · · · � wiqjq and
wi1j2 � · · · �wiqjq+1 differ by (−1)q. Moreover, τ is obtained from σ by a cyclic permutation of

order q, so their signs differs by (−1)q+1. As a result, the terms tsign(σ) � wi1j1 � · · · � wiqjq
and tsign(τ)� wi1j2 � · · · � wiqjq+1 have opposite tropical signs. This completes the proof. �

3.2. Cells of an arrangement of signed tropical hyperplanes. Our next result shows
how the tangent digraph can be used to get sufficient control on the lift of the points in a
tropical polyhedron to points in some Puiseux polyhedron, while dealing mostly with inequality
descriptions. Throughout this section we assume that the extended matrix (A b) is tropically
sign generic.

A tropical polyhedron P(A, b) is always the image under the valuation map of a polyhedron
over Puiseux series. Indeed, consider an internal representation tconv(V )⊕ tpos(R) of P(A, b)
(which exists by Theorem 5). The result of Develin & Yu, [DY07, Proposition 2.1], implies that
any lift V ,R of the sets V,R provides a Puiseux polyhedron P = conv(V ) + pos(R) such that
val(P) = P(A, b).

One can also lift a tropical polyhedron through its inequality representation. For example for
any A ∈ Tm×n± and b ∈ Tm± satisfying Assumption C, Proposition 7 provides Puiseux matrices

A ∈ sval−1(A) and b ∈ sval−1(b) such that val(P(A, b)) = P(A, b). However, the latter equality
may fail for arbitrary lifts A ∈ sval−1(A) and b ∈ sval−1(b).

Example 15. Consider the tropical polyhedron

P = {x ∈ T2 | max(0, x2) > x1, max(0, x1) > x2, x1 > 0, x2 > 0} . (13)

One possible lift of this representation in terms of inequalities is the Puiseux polyhedron

P = {x ∈ K2 | 2 + x2 > 2x1, 2 + x1 > 2x2, x1 > 0, x2 > 0} . (14)

Since P is contained in the non-negative orthant, we have val(P) ⊆ P. Here this inclusion is
strict. The set val(P) consists of all the non-positive points in x ∈ T2 with x1 6 0 and x2 6 0,
while P additionally contains the half-line {(λ, λ) | λ > 0}. To show this, suppose that there
exists (x1,x2) ∈ P such that val(x1) = val(x2) = λ > 0. Let u1t

λ and u2t
λ be the leading

terms of x1 and x2 respectively. Then the inequality 2 +x1 > 2x2 implies that u1 > 2u2, while
2 +x2 > 2x1 imposes that u2 > 2u1, and we obtain a contradiction as u1, u2 > 0. See Figure 5.

Theorem 16. Suppose that (A b) is tropically sign generic. Then the identity

val
(
P(A, b) ∩Kn

+

)
= P(A, b)
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0 x1

0

x2

t0
x1

t0

x2

0 x1

0

x2

Figure 5. Left: the tropical polyhedron P described in (13); middle: the
Puiseux polyhedron P obtained by lifting the inequality representation of P
as in (14); right: the set val(P), which is stricly contained in P.

holds for any A ∈ sval−1(A) and b ∈ sval−1(b).

Proof. Let W = (A b). For any A ∈ sval−1(A) and b ∈ sval−1(b), let W = (A b). We first
prove the result for the cones C = P(W, 0) and C = P(W , 0). The inclusion val(C ∩Kn+1

+ ) ⊂ C
is trivial. Conversely, let x ∈ C. Up to removing the columns j of W with xj = 0, we can

assume that x has no 0 entries. We construct a lift x of x in the Puiseux cone C ∩Kn+1
+ using

the tangent digraph ~Gx with hyperplane node set I. We claim that it is sufficient to find a
vector v ∈ Rn+1 satisfying the following conditions:∑

j∈argmax(|Wi|�x)

lc(wij)vj > 0 for all i ∈ I , (15)

vj > 0 for all j ∈ [n+ 1] , (16)

where W = (wij).

Indeed, given such a vector v, consider the lift x = (vjt
−xj )j of x. Clearly x ∈ Kn+1

+ . If i ∈ I,
then (15) ensures that the leading coefficient of Wix is positive. If i 6∈ I, two cases can occur.
Either W+

i �x = W−i �x = 0 and thus Wix = 0. Otherwise, W+
i �x > W−i �x, so the leading

term of Wix is positive. We conclude that Wix > 0 for all i ∈ [m]. This proves the claim.

Let F = (fij) ∈ RI×(n+1) be the real matrix defined by fij = lc(wij) when j ∈ arg max(|Wi|�
x) and fij = 0 otherwise. We claim that there exists v ∈ Rn+1 such that Fv > 0 and v > 0, or,
equivalently, that the following polyhedron is not empty:

{v ∈ Rn+1 | Fv > 1, v > 1} .
By contradiction, suppose that the latter polyhedron is empty. Then, by Farkas’ lemma [Sch03,
§5.4], there exists α ∈ RI+ and λ ∈ Rn+1

+ such that:

F>α+ λ 6 0 (17)∑
i∈I

αi +
∑

j∈[n+1]

λj > 0 (18)

Note that if α is the 0 vector, then by (18), there exists a λj > 0 for some j ∈ [n + 1], which
contradicts (17). Thus, the set K = {i ∈ I | αi > 0} is not empty. Let J ⊂ [n + 1] be defined
by:

J :=
⋃
i∈K

arg max(W+
i � x) =

⋃
i∈K
{j | fij > 0} .

By definition of the tangent digraph, every hyperplane node in K has an incoming arc from a
coordinate node in J . Moreover, for every j ∈ J , the inequality (17) yields:∑

i∈I
fijαi 6 0 .

This sum contains a positive term fijαi (by definition of J). Consequently, it must also contain
a negative term fkjαk. Equivalently, k ∈ K and fkj < 0, which means that the coordinate
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node j has an incoming arc from the hyperplane node k. It follows that the tangent digraph ~Gx
contains a directed cycle (through nodes K ∪ J). Then, by Lemma 14, the matrix W contains
a tropically sign singular submatrix with tper(|W |) > 0. This proves the claim.

Now we consider the polyhedron P(A, b). The inclusion val(P(A, b) ∩Kn
+) ⊂ P(A, b) is still

valid. Conversely, given x ∈ P(A, b), the point x′ = (x,1) ∈ Tn+1 belongs to the cone C. By
the previous proof, there exists a lift x′ of x′ in C ∩ Kn+1

+ . Since val(x′n+1) = 1, the point
x = (x′1/x

′
n+1, . . . ,x

′
n/x

′
n+1) is well-defined. Furthermore, x clearly satisfies val(x) = x and it

belongs to P(A, b) ∩Kn
+. �

Theorem 16 shows that valuation commutes with intersection for half-spaces in general posi-
tion. This is still true for mixed intersection of half-spaces and (s-)hyperplanes. Similar to our
notation for Puiseux polyhedra, we let

PI(A, b) :=
⋂
i∈I
H(Ai, bi) ∩ P(A, b) .

Corollary 17. Suppose that (A b) is tropically sign generic. Then, for all A ∈ sval−1(A),
b ∈ sval−1(b) and I ⊂ [m],

val
(
PI(A, b) ∩Kn

+

)
= PI(A, b) . (19)

Proof. We first prove the result when I = [m]. In this case, the claim is about the intersec-
tion of all (Puiseux or signed tropical) hyperplanes in the arrangement. The first inclusion
val
(⋂m

i=1H(Ai, bi) ∩ Kn
+

)
⊂
⋂m
i=1H(Ai, bi) is trivial. Conversely, let x ∈

⋂m
i=1H(Ai, bi). Note

that there is nothing to prove if that intersection is empty. The point x belongs to the tropical
polyhedron P(A, b). By Theorem 16, x admits a lift in the Puiseux polyhedron P(A, b) ∩Kn

+.
But observe that the choice of tropical signs for the rows of (A b) is arbitrary. Indeed, if
(A′ b′) is obtained by multiplying some rows of (A b) by 	1, then (A′ b′) satisfies the condi-
tions of Theorem 16 and x belongs to P(A′, b′). Thus, for any sign pattern s ∈ {−1,+1}m,
there exists a lift xs of x which belongs to the Puiseux polyhedron P(As, bs) ∩ Kn

+, where

(As bs) =
( s1 . . .

sm

)
(A b).

Since the Puiseux points xs are non-negative with valuation x, any point in their convex hull
is also non-negative with valuation x. We claim that the convex hull conv{xs | s ∈ {−1,+1}m}
contains a point in the intersection

⋂m
i=1H(Ai, bi). We prove the claim by induction on the

number m of hyperplanes.
If m = 1, we obtain two points x+ and x− on each side of the hyperplane H(A1, b1), and

it is easy to see that their convex hull intersects the hyperplane. Now, suppose we have m > 2
hyperplanes. Let S+ (resp. S−) be the set of all signs patterns s ∈ {−1,+1}m with sm = +1
(resp. sm = −1). By induction, the convex hull conv{xs | s ∈ S+} contains a point x+ in

the intersection of the first m − 1 hyperplanes
⋂m−1
i=1 H(Ai, bi). Similarly, conv{xs | s ∈ S−}

contains a point x− in
⋂m−1
i=1 H(Ai, bi). The points x+ and x− are on opposite sides of the last

hyperplane H(Am, bm), thus their convex hull intersects H(Am, bm).
When I ( [m], the previous proof can be generalized by considering only the sign patterns

s ∈ {−1,+1}m such that si = +1 for all i 6∈ I. �

By Corollary 17, the intersection of the non-negative orthant Kn
+ with the cells of the ar-

rangement of Puiseux hyperplanes {H(Ai, bi)}i∈[m] induces a cellular decomposition of Tn into
tropical polyhedra. We call this collection of tropical polyhedra the signed cells of the arrange-
ment of tropical s-hyperplanes {H(Ai, bi)}i∈[m]. Notice that the signed cells form an intersection
poset thanks to Corollary 17.

The signed cell decomposition coarsens the cell decomposition introduced in [DS04], which
partitions Tn into ordinary polyhedra. Here we call the latter cells unsigned. In particular, the
one dimensional signed cells are unions of (closed) one-dimensional unsigned cells. However,
some one-dimensional unsigned cells may not belong to any one dimensional signed cell. In the
example depicted in Figure 2, this is the case for the ordinary line segment [(1, 0, 1), (1, 1, 1)].
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Figure 6. Unsigned (left) and signed (right) cell decompositions induced by
the three tropical s-hyperplanes in Example 18.

Example 18. Consider the tropical polyhedral cone C in T3 given by the three homogenous
constraints

x2 > max(x1, x3) (20)

x1 > max(x2 − 2, x3 − 1) (21)

max(x1, x3 + 1) > x2 − 1 . (22)

This gives rise to an arrangement of three tropical s-hyperplanes in which C forms one signed
cell; see Figure 6 (right) for a visualization in the x1 = 0 plane. Each tropical s-hyperplane
yields a unique unsigned tropical hyperplane. An open sector is one connected component of
the complement of an unsigned tropical hyperplane. The ordinary polyhedral complex arising
from intersecting the open sectors of an arrangement of unsigned tropical hyperplanes is the
type decomposition of Develin and Sturmfels [DS04]. In our example the type decomposition
has ten unsigned maximal cells; in Figure 6 (left), we marked them with labels as in [DS04].

The apices of the unsigned tropical hyperplanes arising from the three constraints above are
p1 = (0, 0, 0), p2 = (0, 2, 1) and p3 = (0, 1,−1). The tropical convex hull of p1, p2 and p3, with
respect to min as the tropical addition, is the topological closure of the unsigend bounded cell
[2, 1, 3].

The signed cell C is precisely the union of the two maximal unsigned cells [2, 1, 3] and [23, 1,−]
together with the (relatively open) bounded edge of type [23, 1, 3] sitting in-between. The other
signed cells come about by replacing “>” by “6” in some subset of the constraints above. For
instance, exchanging “>” by “6” in (20) and keeping the other two yields the signed cell which
is the union of the three unsigned cells [2,−, 13], [12,−, 3], [123,−,−] and two (relatively open)
edges in-between. Altogether there are six maximal signed cells in this case.

The proper notion of a “face” of a tropical polyhedron is a subject of active research, see
[Jos05] and [DY07]. Notice that, like the tangent digraphs, the signed and unsigned cells depend
on the arrangement of s-hyperplanes, while several different arrangements may describe the same
tropical polyhedron. For example,

{x ∈ T2 | x1 ⊕ x2 6 1} = {x ∈ T2 | x1 6 1 and x2 6 1} . (23)
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Even if a canonical external representation exists, see [AK13], it may not satisfy the genericity
conditions of Corollary 17. Thus this approach does not easily lead to a meaningful notion of
faces for tropical polyhedra.

Lacking a good notion of a “face”, the following two results introduce suitable concepts which
are good enough for our algorithms.

Proposition-Definition 19 (Tropical basic points). Suppose that (A b) is tropically sign
generic and that Assumption C holds. Let I be a subset of [m] of cardinality n such that
tper(|AI |) > 0. If the set PI(A, b) is not empty, it contains a unique point, called a (feasible)
tropical basic point of P(A, b).

The tropical basic points of P(A, b) are exactly the valuations of the basic points of P(A, b)
for any lift (A b) ∈ sval−1(A b).

Proof. This is a straightforward consequence of Corollary 17 and the definition of basic points.
Assumption C ensures that the sets of the form PI(A, b), for any I ⊂ [m], are contained
in Kn

+. �

Remark 20. Alternatively, the fact that PI(A, b), if it is not empty, contains a unique element,
follows from the Cramer theorem in the symmetrized tropical semiring [Plu90], see Theorem 37
below. This also implies that the technical condition that xj > 0 in Assumption C is not needed
to derive the uniqueness of this element.

Proposition-Definition 21 (Tropical edges). Suppose that (A b) is tropically sign generic and
that Assumption C holds. Let K be a subset of [m] of cardinality n − 1 such that AK has a
tropically sign non-singular maximal minor. If the set PK(A, b) is not empty then it is called a
(feasible) tropical edge.

The tropical edges of P(A, b) are exactly the valuation of the edges of P(A, b) for any lift
(A b) ∈ sval−1(A b).

Proof. The arguments are the same as in the proof of Proposition-Definition 19. �

The correspondence between basic points and edges with their tropical counterparts is il-
lustrated in Figures 2 and 3 where basic points are depicted by red dots and edges by black
lines. These definitions are meaningful only if (A b) is tropically sign generic. Otherwise,
P(A, b) may have no basic points in the sense of Proposition-Definition 19. For instance the set
{x ∈ T2 | x1 > x2 ⊕ 0 and x2 > x1 ⊕ 0} does not contain such point. Notice that our genericity
assumptions imply that the tropical edges arise as complete intersections of tropical halfspaces.
In this sense Corollary 17 is a signed version of [SS04, Prop. 6.3].

A point x in a tropically convex set S is called an extreme point of S if, for any y, z ∈ S,
x ∈ tconv({y, z}) implies x = y or x = z.

Proposition 22. Suppose that (A b) is tropically sign generic and that Assumption C holds.
Then the extreme points of P(A, b) are tropical basic points.

Proof. Consider any lift (A b) ∈ sval−1(A b). Then P(A, b) ⊂ Kn
+ by Assumption C, and

val(P(A, b)) = P(A, b) by Corollary 17. The basic points of P(A, b) are precisely its extreme
points. As a result, we have P(A, b) = conv(P ) + pos(R), where P is the set of basic points,
conv(P ) its convex hull, and pos(R) is a pointed polyhedral cone generated by a finite set
R ⊂ Kn. Note that R ⊂ Kn

+ as P(A, b) ⊂ Kn
+. Thus, by [DY07, Proposition 2.1], we know

that P(A, b) = tconv(val(P ))⊕ tpos(val(R)). By Proposition 19, val(P ) is precisely the set of
tropical basic points of P(A, b). The tropical analog of Milman’s converse of the Krein-Milman
theorem, which is proved for instance in Theorem 2 of [GK11] in the case of polyhedra, implies
that the set of extreme points of P(A, b) is included in val(P ). It follows that every extreme
point is basic. �

Remark 23. While extreme points are basic points, the converse does not hold. For example,
(1, 1) is a basic point of the tropical polyhedron {x ∈ T2 | x1 6 1 and x2 6 1}, but it is not
extreme.
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The polars of sign cyclic polyhedral cones studied in [AGK11] are also examples in which not
every basic point is extreme. Actually, Theorems 2 and 6 in that reference provide combinatorial
characterizations of extreme and basic points in terms of lattice paths. A comparison of both
characterizations shows that the lattice paths are more constrained in the case of extreme points.

4. Pivoting between two tropical basic points

In this section, we show how to pivot from a tropical basic point to another, i.e., to move along
a tropical edge between the two points, in a tropical polyhedron P(A, b), where A ∈ Tm×n±
and b ∈ Tm± . Under some genericity conditions, by Corollary 17 this is equivalent to the same
pivoting operation in an arbitrary lift P(A, b) over Puiseux series of the considered tropical
polyhedron, where A ∈ sval−1(A) and b ∈ sval−1(b). However, our method only relies on the
tropical matrix A and the tropical vector b. The complexity of this tropical pivot operation will
be shown to be O(n(m+ n)), which is analogous to the classical pivot operation.

Pivoting is more easily described in homogeneous terms. For W = (A b) we consider the
tropical cone C = P(W, 0), seen as a subset of the tropical projective space TPn. This cone is

defined as the intersection of the half-spaces H>i := {x ∈ TPn |W+
i � x >W

−
i � x} for i ∈ [m].

Similarly, we denote by Hi the s-hyperplane {x ∈ TPn | W+
i � x = W−i � x}. We also let

CI := PI(W, 0) for any subset I ⊂ [m].
Throughout this section, we make the following assumptions.

Assumption D. The matrix W is tropically generic.

Assumption E. Every point in C \ {(0, . . . ,0)} has finite coordinates.

Assumption D is a tropical version of primal non-degeneracy. It is strictly stronger than the
condition that W = (A b) is tropically sign generic used in the previous section, and hence, in
particular, we can make use of Corollary 17. Under Assumption E, which is strictly stronger
than Assumption C, the tropical polyhedron P(A, b) is a bounded subset of Rn: To see this,
consider C as a subset of Tn+1. As C is a closed set, Assumption E implies that there exists
a vector ` ∈ Rn+1 such that x > ` for all x ∈ C. Let tconv(P ) ⊕ tpos(R) be the internal
description of P(A, b) provided by Theorem 5. If R contains a point r, then it is easy to verify
that (r, 0) lies in C, which contradicts Assumption E. Since every p ∈ P belongs to P(A, b), the
point (p,1) belongs to C, and thus pj > lj for all j ∈ [n]. It follows that P(A, b) = tconv(P ) is
a bounded subset of Rn.

The Assumptions D and E are two out of three conditions required for a tropical linear
program to be standard in the sense of Theorem 1.

As a consequence, the Puiseux polyhedron P(A, b) is also bounded and contained in the
interior of Kn

+.
Through the bijection given in (4), the tropical basic point associated with a suitable subset

I ⊂ [m] is identified with the unique projective point xI ∈ TPn in the intersection CI . Besides,
when pivoting from the basic point xI , we move along a tropical edge EK := CK defined by a
set K = I \ {iout} for some iout ∈ I.

By Propositions 19 and 21, a tropical edge EK is a tropical line segment tconv(xI , xI
′
). The

other endpoint xI
′ ∈ TPn is a basic point for I ′ = K ∪ {ient}, where ient ∈ [m] \ I. So, the

notation iout and ient refers to the indices leaving and entering the set of active constraints I
which is maintained by the algorithm. Notice that the latter set corresponds to the non-basic
indices in the classical primal simplex method, so that the indices entering/leaving I correspond
to the indices leaving/entering the usual basis, respectively.

As a tropical line segment, EK is known to be the concatenation of at most n ordinary line
segments.

Proposition 24 ([DS04, Proposition 3]). Let EK = tconv(xI , xI
′
) be a tropical edge. Then

there exists an integer q ∈ [n] and q + 1 points ξ1, . . . , ξq+1 ∈ EK such that

EK = [ξ1, ξ2] ∪ · · · ∪ [ξq, ξq+1] where ξ1 = xI and ξq+1 = xI
′
.
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Every ordinary segment is of the form:

[ξp, ξp+1] = {xp + λeJp | 0 6 λ 6 µp} , (24)

where the length of the segment µp is a positive real number, Jp ⊂ [n+1], and the jth coordinate
of the vector eJp is equal to 1 if j ∈ Jp, and to 0 otherwise. Moreover, the sequence of subsets
J1, . . . , Jq satisfies:

∅ ( J1 ( · · · ( Jq ( [n+ 1] .

The vector eJp is called the direction of the segment [ξp, ξp+1]. The intermediate points
ξ2, . . . , ξq are called breakpoints. In the tropical polyhedron depicted in Figure 2, breakpoints
are represented by white dots.

Note that, in the tropical projective space TPn, the directions eJ and −e[n+1]\J coincide.
Both correspond to the direction of Tn obtained by removing the (n+ 1)th coordinate of either

−e[n+1]\J if (n+ 1) ∈ J , or eJ otherwise.

4.1. Overview of the pivoting algorithm. We now provide a sketch of the pivoting oper-
ation along a tropical edge EK . Geometrically, the idea is to traverse the ordinary segments
[ξ1, ξ2], . . . , [ξq, ξq+1] of EK . At each point ξp, for p ∈ [q], we first determine the direction vector
eJq , then move along this direction until the point ξp+1 is reached. As the tangent digraph at
a point x ∈ C encodes the local geometry of the tropical cone C around x, the directions vec-
tors can be read from the tangent digraphs. Moreover, the tangent digraphs are acyclic under
Assumption D. This imposes strong combinatorial conditions on the tangent digraph, which, in
turn, allows to easily determine the feasible directions.

For the sake of simplicity, let us suppose that the tropical edge consists of two consecutive
segments [ξ, ξ′] and [ξ′, ξ′′], with direction vectors eJ and eJ

′
respectively.

Starting at the basic point ξ = xK∪{iout}, we shall prove below that, at every basic point,
the tangent digraph is spanning tree where every hyperplane node has exactly one incoming
arc and one outgoing arc. In other words, for every i ∈ K ∪ {iout}, the sets arg max(W+

i � ξ)
and arg max(W−i � ξ) are both reduced to a singleton, say {j+i } and {j−i }. We want to “get

away” from the s-hyperplane Hiout . Since the direction vector eJ is a 0/1 vector, the only way
to do so is to increase the variable indexed by j+iout while not increasing the component indexed

by j−iout . Hence, we must have j+iout ∈ J and j−iout 6∈ J . While moving along eJ , we also want

to stay inside the s-hyperplane Hi for i ∈ K. Hence, if j+i ∈ J for some i ∈ K, we must also

have j−i ∈ J . Similarly, if j+i 6∈ J , then we must also have j−i 6∈ J . Removing the hyperplane

node iout from the tangent digraph ~Gξ provides two connected components, the first one, C+,

contains j+iout , and the second one, C− contains j−iout . From the discussion above, it follows that

the set J consists of the coordinate nodes in C+.
When moving along eJ from ξ, we leave the s-hyperplane Hiout . Consequently, the hyperplane

node iout “disappears” from the tangent digraph. It turns out that this is the only modification
that happens to the tangent digraph. More precisely, at every point in the open segment ]ξ, ξ′[,

the tangent digraph is the graph obtained from ~Gξ by removing the hyperplane node iout and

its two incident arcs. We shall denote this digraph by ~G]ξ,ξ′[. By construction, ~G]ξ,ξ′[ is acyclic,
consists of two connected components, and every hyperplane node has one incoming and one
outgoing arc.

We shall move from ξ along eJ until “something” happens to the tangent digraph. In fact
only two things can happens, depending whether ξ′ is a breakpoint or a basic point. As we
supposed ξ′ to be a breakpoint, a new arc anew will “appear” in the tangent digraph, i.e.,
~Gξ′ = ~G]ξ,ξ′[ ∪ {anew}. Let us sketch how the arc anew can be found. We denote anew = (jnew, k),
where jnew is a coordinate node and k ∈ K is a hyperplane node. We shall see that jnew must
belongs to J (i.e., the component C+), while k must belongs to the component C−.

Hence, the arc anew “reconnects” the two components C+ and C− (see Figure 8). Since k

had one incoming and one outgoing arc in ~G]ξ,ξ′[, it has exactly three incident arcs in ~Gξ′ . One
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of them is anew = (jnew, k); a second one, aold = (jold, k), has the same orientation as anew; and
the third one, a′ = (k, l), has an orientation opposite to anew and aold.

Let us now find the direction vector eJ
′
of the second segment [ξ′, ξ′′]. Consider the hyperplane

node k with the three incidents arcs anew, aold and a′. By Proposition 24, we know that J ⊂ J ′,
hence we must increase the variable jnew. Since we want to stay inside the hyperplane Hk, it
follows that we must also increase the variable indexed by `. On the other hand, we do not
increase the variable jold. As before, all hyperplane nodes i ∈ K \{k} have exactly one incoming
and one outgoing arc. Removing the arc aold from the graph provides two connected component,
the first one C ′+ contains the coordinate nodes jnew and ` as well as the hyperplane node k,
while the second one C ′− contains jold. The new direction set J ′ is given by the coordinate nodes
in C ′+.

The tangent digraph in the open segment ]ξ′, ξ′′[ is again constant, and defined by ~G]ξ′,ξ′′[ =
~Gξ′ \ {aold}. Hence, ~G]ξ′,ξ′′[ is an acyclic graph, with two connected components C ′+ and C ′−,
where every hyperplane node has one incoming and one outgoing arc.

The basic point ξ′′ is reached when a new s-hyperplane ient 6∈ K is hit. This happens when
the hyperplane node ient “appears” in the tangent digraph, along with one incoming (j+, ient)
and one outgoing arc (ient, j

−). Observe that we must have j− ∈ J and j+ 6∈ J . It follows that
the two components C ′+ and C ′− are reconnected by adding ient and its two incident arcs.

In Section 4.2, we prove that the tangent digraph satisfy the above-mentioned characteriza-
tion, and that they provides the feasible directions. In Section 4.3, we characterize the lengths
of the ordinary segments, that is we deduce when an arc or an hyperplane node “appears” in
the tangent digraphs. In Section 4.4, we prove that the tangent digraphs evolves as described
above. It allows us to incrementally update the information needed to find the directions and
lengths of the segments. This will finally provide an efficient implementation of the pivoting
operation.

4.2. Directions of ordinary segments. Given a point x in a tropical cone D, we say that
the direction eJ , with ∅ ( J ( [n+ 1], is feasible from x in D if there exists µ > 0 such that the
ordinary segment {x+ λeJ | 0 6 λ 6 µ} is included in D. The following lemma will be helpful
to prove the feasibility of a direction.

Lemma 25. Let x ∈ Rn+1. Then, the following properties hold:

(i) if x belongs to H>i \ Hi, every direction is feasible from x in H>i .

(ii) if x belongs to Hi, the direction eJ is feasible from x in the half-space H>i if, and only if,

arg max(W+
i � x) ∩ J 6= ∅ or arg max(W−i � x) ∩ J = ∅.

(iii) if x belongs to Hi, the direction eJ is feasible from x in the s-hyperplane Hi if, and only if,
the sets arg max(W+

i �x)∩J and arg max(W−i �x)∩J are both empty or both non-empty.

Proof. The first point is immediate. To prove the last two points, observe that if x ∈ Hi, then
W+
i � x = W−i � x > 0, thanks to x ∈ Rn+1 and Assumption A. Then, for λ > 0 sufficiently

small, we have:

W+
i � (x+ λeJ) =

{
(W+

i � x) + λ if arg max(W+
i � x) ∩ J 6= ∅ ,

W+
i � x otherwise ,

and the same property holds for W−i � x. �

We propose to determine feasible directions with tangent graphs. It turns out that tangent
graphs in a tropical edge have a very special structure. Indeed, under Assumption D, these
graphs do not contain any cycle by Lemma 14. In other words, they are forests: each connected
component is a tree. Hence we have the equality

number of nodes = number of edges + number of connected components . (25)

Note that [DS04, Proposition 17] determines that number of connected components.
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We introduce some additional basic notions and notations on directed graphs. Two nodes of
a digraph are said to be weakly connected if they are connected in the underlying undirected

graph. Given a directed graph ~G and a set A of arcs between some nodes of ~G, we denote by
~G ∪A the digraph obtained by adding the arcs of A. Similarly, if A is a subset of arcs of ~G, we

denote by ~G \ A the digraph where the arcs of A have been removed. By extension, if N is a

subset of nodes of ~G, then ~G \ N is defined as the digraph obtained by removing the nodes in

N and their incident arcs. The degree of a node of ~G is defined as the pair (p1, p2), where p1
and p2 are the numbers of incoming and outgoing arcs incident to the node.

Proposition 26. Let x be a point in a tropical edge EK . Then, exactly one of the following
cases arises:

(C1) x is a basic point for the basis K ∪ {iout}, where iout ∈ [m] \K. The tangent graph Gx
at x is a spanning tree, and the set of hyperplane nodes is K∪{iout}. In the tangent digraph ~Gx,
every hyperplane node has degree (1, 1). Let J be the set of coordinate nodes weakly connected

to the unique node in arg max(W+
iout
� x) in the digraph ~Gx \ {iout}. The only feasible direction

from x in EK is eJ .
(C2) x is in the relative interior of an ordinary segment. The tangent graph Gx is a forest

with two connected components, and the set of hyperplane nodes is K. In the tangent digraph
~Gx, every hyperplane node has degree (1, 1). Let J be the set of coordinate nodes in one of the

components. The two feasible directions from x in EK are eJ and −eJ = e[n+1]\J .
(C3) x is a breakpoint. The tangent graph Gx is a spanning tree, and the set of hyperplane

nodes is K. In the tangent digraph ~Gx, there is exactly one hyperplane node k with degree (2, 1)
or (1, 2), while all other hyperplane nodes have degree (1, 1).

Let a and a′ be the two arcs incident to k with same orientation. Let J and J ′ be the set of

coordinate nodes weakly connected to k in ~Gx \ {a} and ~Gx \ {a′}, respectively. The two feasible

directions from x in EK are eJ and eJ
′
.

Proof. Since x has finite entries, the graph Gx contains exactly n+ 1 coordinate nodes. Let n′

be the number of hyperplane nodes in Gx. Consider any i ∈ K. Since x is contained in the
s-hyperplane Hi and x ∈ Rn+1, we have W+

i �x = W−i �x > 0. Thus K is contained in the set
of hyperplane nodes. Therefore n′ > n−1. As there is at least one connected component, there
is at most n+n′ edges by (25). Besides, each hyperplane node is incident to at least two edges,
so that there is at least 2n′ edges in Gx. We deduce that n′ 6 n. As a result, by using (25), we
can distinguish three cases:

(i) n′ = n, in which case there is only one connected component in Gx, and exactly 2n edges.

Besides, all the hyperplane nodes have degree (1, 1) in ~Gx.
(ii) n′ = n− 1, the graph Gx contains precisely two connected components and 2n′ − 2 edges.

As in the previous case, every hyperplane node has degree (1, 1) in ~Gx.
(iii) n′ = n − 1 and Gx has one connected component. In this case, there are 2n′ − 1 edges.

In ~Gx, there is exactly one hyperplane node with degree (2, 1) or (1, 2), and all the other
hyperplane nodes have degree (1, 1).

We next show that these cases correspond to the ones in our claim.
Case (i): Since n′ = n, the set of hyperplanes nodes is of the form K ∪ {iout} for some

iout 6∈ K. Moreover, Gx is a spanning tree. As a consequence, it contains a matching between the
coordinate nodes [n] and the hyperplanes nodes K∪{iout}. Such a matching can be constructed

as follows. Let ~G′ be the digraph obtained by directing the edges of Gx towards the coordinate
node n + 1. In this digraph, every coordinate node j ∈ [n] has exactly one outgoing arc to a
hyperplane node σ(j), as there is exactly one path from j to n + 1 in the spanning tree Gx.

Moreover, every hyperplane node i has exactly one incoming arc and one outgoing arc in ~G′.
Indeed, i is incident to two arcs in ~G′, and exactly one of them leads to the path to coordinate
node n+1. We conclude that σ(j) 6= σ(j′) when j 6= j′. Thus the set of edges {(j, σ(j)) | j ∈ [n]}
forms the desired matching. Then, by Lemma 13, the submatrix W ′ of W formed from the
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columns in [n] and the rows in K ∪ {iout} satisfy tper(|W ′|) > 0. Furthermore, W ′ = AK∪{iout}.
As a consequence, x is a basic point for the set K ∪ {iout}.

Since the graph Gx is a spanning tree where the hyperplane node iout is not a leaf, removing
iout from Gx provides two connected components C+ and C−, containing the coordinate nodes
in arg max(W+

iout
�x) and in arg max(W−iout �x), respectively. Let J be the set of the coordinate

nodes in C+.
We claim that the direction eJ is feasible from x in EK . Indeed, if the hyperplane node i ∈ K

belongs to C+, then arg max(W+
i � x) ⊂ J and arg max(W−i � x) ⊂ J . In contrast, if the

node i ∈ K belongs to C−, we have arg max(W+
i � x) ∩ J = arg max(W−i � x) ∩ J = ∅. By

Lemma 25, this shows that the direction eJ is feasible in all s-hyperplanes Hi with i ∈ K. It is
also feasible in the half-space H>iout , since x ∈ Hiout and arg max(W+

iout
� x) ⊂ J . Finally, for all

i 6∈ K ∪ {iout}, the point x belongs H>i \ Hi. Indeed, if x ∈ Hi, then i would be a hyperplane

node. Thus, by Lemma 25, the direction eJ is feasible in H>i . As EK = (∩i∈KHi) ∩ (∩i 6∈KH>i ),
this proves the claim.

Since x is a basic point it admits exactly one feasible direction in EK . Thus eJ is the only
feasible direction from x in EK .

Case (ii): In this case, Gx is a forest with two components C1 and C2, and K is precisely
the set of hyperplane nodes. Let J be the set of coordinate nodes in C1. Then Lemma 25
shows that the direction eJ is feasible from x in EK . Indeed, the point x belongs to H>i \Hi for

i 6∈ K. Besides, for all i ∈ K, the sets arg max(W+
i �x)∩ J and arg max(W−i �x)∩ J are both

non-empty if i belongs to C1, and both empty otherwise.
Symmetrically, the direction e[n+1]\J = −eJ is also feasible in EK , as [n+ 1] \ J is the set of

coordinate nodes in the component C2. It follows that x is in the relative interior of an ordinary
segment.

Case (iii): The graph Gx is a spanning tree. Let k be the unique half-space node of degree

(2, 1) or (1, 2) in ~Gx and a, a′ the two arcs incident to k with the same orientation.

Then ~Gx \ {a} consists of two weakly connected components C1 and C2. Without loss of
generality, we assume that k belongs to C1. Let J be the set of coordinate nodes in C1. We now
prove that eJ is feasible from x in EK , thanks to Lemma 25. Indeed, x ∈ H>i \ Hi for i 6∈ K.

Besides, if i ∈ K, the sets arg max(W+
i � x)∩ J and arg max(W−i � x)∩ J are both non-empty

if i ∈ C1, and both empty if i ∈ C2. Thus, eJ is feasible in the s-hyperplane Hi.
Similarly, let J ′ be the set of coordinate nodes weakly connected to k in ~Gx \ {a′}. Then the

direction eJ
′

is also feasible. Note that J and J ′ are neither equal nor complementary. Thus,
there are two distinct and non-opposite directions which are feasible from x in EK , which implies
than x is a breakpoint. �

Example 27. Figure 4 depicts the tangent digraphs at every point of the tropical edge EK for
K = {H1,H2}, and this illustrates Proposition 26. The set I = {H1,H2,H3} of constraints
determines the basic point xI = (1, 0, 0). From its tangent digraph, we deduce that the initial

ordinary segment of the edge EK is directed by e{2}.
The tangent digraph at a point in ](1, 1, 0), (1, 0, 0)[ has exactly two weakly connected com-

ponents. They yield the feasible directions e{2} and e{1,3,4}, which correspond to the vectors
(0, 1, 0) and (0,−1, 0) of T3.

At the breakpoint (1, 1, 0), the tangent digraph is weakly connected, and the hyperplane
node H1 has degree (2, 1). Removing the arc from coordinate node 4 to H1 provides two weakly
connected components, respectively {1, 2} ∪ {H1} and {3, 4} ∪ {H2}. The coordinate nodes of

the component containing H1 yields the feasible direction e{1,2}. Similarly, it can be verified
that the other feasible direction, obtained by removing the arc from coordinate node 2, is the
vector e{1,3,4}.

4.3. Moving along an ordinary segment. In this section we provide the exact details on
how to obtain the next point ξ′ from a given point ξ and a direction given in terms of the set
J . We determine whether ξ′ is a basic point or a break point, and we determine the length µ
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of the resulting segment [ξ, ξ′] = {ξ + λeJ | 0 6 λ 6 µ} of the tropical edge EK . The metric
results from this section will interpreted in terms of tangent digraph in the next section.

For all i ∈ [m], we define:

λ+i (ξ, J) := (W+
i � ξ)−max

j∈J
(w+

ij + ξj) ,

λ−i (ξ, J) := (W+
i � ξ)−max

j∈J
(w−ij + ξj) ,

where W = (wij). When it is clear from the context, λ+i (ξ, J) and λ−i (ξ, J) will be sim-

ply denoted by λ+i and λ−i . By Assumptions A and E, we have W+
i � ξ > 0. In contrast,

maxj∈J(w+
ij + ξj) and maxj∈J(w−ij + ξj) may be equal to −∞, in which case we use the conven-

tion −(−∞) = +∞, and so λ+i = +∞ and λ−i = +∞, respectively. When maxj∈J(w+
ij + ξj)

and maxj∈J(w−ij + ξj) are finite, the scalars λ+i and λ−i are non-negative real numbers.

Let xλ := ξ + λeJ . Observe that λ+i is the smallest λ > 0 such that W+
i � ξ = w+

ij + xλj for

some j ∈ J . Similarly, λ− is the smallest λ > 0 such that W+
i � ξ = w−ij + xλj for some j ∈ J .

More precisely, we have

W+
i � x

λ =

{
W+
i � ξ if 0 6 λ 6 λ+i

(W+
i � ξ) + λ− λ+i if λ > λ+i

W−i � x
λ =

{
W−i � ξ if 0 6 λ 6 β−i
(W+

i � ξ) + λ− λ−i if λ > β−i ,

where β−i = λ−i + (W−i � ξ)− (W+
i � ξ). In particular β−i 6 λ

−
i and equality holds when i ∈ K.

The evolution of W+
i � (ξ + λeJ) versus W−i � (ξ + λeJ) is visualized in Figure 7.

The endpoint ξ′ is either a breakpoint or a basic point. We will prove that it is a basic point
if a new hyperplane node ient 6∈ K “appears” in the tangent digraph. In that case the index ient
must belong to the following set:

Ent(ξ, J) := {i ∈ [m] \K | arg max(W+
i � ξ) ∩ J = ∅} .

We shall see that ξ′ is a breakpoint if a hyperplane node k ∈ K “acquires” a new arc, and thus
become of degree (2, 1) or (1, 2). Such a node k must be an element of the following set:

Br(ξ, J) := {i ∈ K | arg max(W+
i � ξ) ∩ J = ∅ and arg max(W−i � ξ) ∩ J = ∅} .

We already mentioned that the notation ient (and so, Ent(ξ, J)) and iout is chosen by analogy
with the entering or leaving indices in the classical simplex method. Note that the set Br(ξ, J)
does not have any classical analog. It represents intermediate indices which shall be examined
before a leaving index is found.

When this does not bear the risk of confusion, we simply use the notations Br and Ent.

Proposition 28. Let {ξ+λeJ | 0 6 λ 6 µ} be an ordinary segment of a tropical edge EK . The
following properties hold:

(i) the length µ of the segment is the greatest scalar λ > 0 satisfying the following conditions:

λ 6 min(λ+i , λ
−
i ) for all i ∈ Br ,

λ 6 λ−i for all i ∈ Ent such that λ−i 6 λ
+
i .

(26)

(ii) if µ = λ−ient for ient ∈ Ent, then ξ + µeJ is a basic point for the basis K ∪ {ient}.
(iii) if µ = min(λ+k , λ

−
k ) for k ∈ Br, then ξ + µeJ is a breakpoint.

Proof. Let xλ := ξ + λeJ for all λ > 0.
We claim that xλ belongs to EK if λ satisfies (26). To that end, we first show that xλ ∈ Hi

for i ∈ K. Consider an i ∈ Br. Then β−i = λ−i . Therefore, for all 0 6 λ 6 min(λ+i , λ
−
i ) we have

xλ ∈ Hi since:

W+
i � x

λ = W+
i � ξ = W−i � ξ = W−i � x

λ .
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0 λ+i λβ−i
0 λ−i λ

W+
i � ξ

W−i � ξ

0 λ+i λβ−i
0 λ−i λ

W+
i � ξ

W−i � ξ

Figure 7. Evolution of W+
i � (ξ+λeJ) (in red) and W−i � (ξ+λeJ) (in black)

with λ > 0 for i ∈ Ent and λ−i < λ+i (left) or λ−i > λ+i (right).

Let i ∈ K \ Br. Then by Lemma 25, arg max(W+
i � ξ) ∩ J and arg max(W−i � ξ) ∩ J are both

non-empty. Thus λ+i = λ−i = β−i = 0. Therefore, xλ ∈ Hi for all λ > 0 since in this case:

W+
i � x

λ = (W+
i � ξ) + λ = W−i � x

λ .

We now examine the half-spaces H>i where i ∈ [m]\K. If i 6∈ Ent then arg max(W+
i �ξ)∩J 6=

∅. Consequently, λ+i = 0. Thus xλ ∈ H>i for all λ > 0 as we have:

W+
i � x

λ = (W+
i � ξ) + λ > max(W−i � ξ, (W

+
i � ξ) + λ− λ−i ) = W−i � x

λ .

If i ∈ Ent and 0 6 λ 6 min(λ+i , λ
−
i ), then xλ ∈ H>i . Indeed :

W+
i � x

λ = W+
i � ξ > max(W−i � ξ, (W

+
i � ξ) + λ− λ−i ) = W−i � x

λ .

Now if further λ+i < λ−i , then, for λ > λ+i , we have

W+
i � x

λ = (W+
i � ξ) + λ− λ+i > max(W−i � ξ, (W

+
i � ξ) + λ− λ−i ) = W−i � x

λ .

We conclude that if i ∈ Ent and λ+i < λ−i then xλ ∈ H>i for all λ > 0.
Second, we claim that the solution set of the inequalities (26) admits a greatest element

λ∗ ∈ R. By contradiction, suppose that xλ ∈ EK for all λ > 0. Recall that eJ and −e[n+1]\J

coincide as elements of TPn. Consequently the half-ray {ξ − λe[n+1]\J | λ > 0} is contained in
EK , and thus in C. Since C is closed, it contains the point y ∈ Tn+1 defined by yj = ξj if j ∈ J
and yj = 0 otherwise. As J ( [n+ 1], this contradicts Assumption E.

Third, we claim that λ∗ = µ. To prove the claim is sufficient to show that xλ
∗

is either a
breakpoint or a basic point of EK . We distinguish three cases:

(a) λ∗ = λ−i for some i ∈ Ent. Then W−i � xλ
∗

= W+
i � ξ. Moreover λ∗ 6 λ+i and thus

W+
i � xλ

∗
= W+

i � ξ. This implies that W+
i � xλ

∗
= W−i � xλ

∗
> 0. As a consequence,

i 6∈ K is a hyperplane node in the tangent graph Gxλ∗ . By Proposition 26, we conclude that
xλ
∗

is a basic point for the set K ∪ {i}.
(b) λ∗ = λ+i 6 λ

−
i for some i ∈ Br. Then, observe that:

arg max(W+
i � x

λ∗) = arg max(W+
i � ξ) ∪ arg max

j∈J
(w+

ij + ξj) . (27)

The two sets on the right-hand side of (27) are non-empty and disjoint, since i ∈ Br. Thus
arg max(W+

i � xλ
∗
) contains at least two distinct elements . Moreover, xλ

∗ ∈ EK by the

discussion above, thus i ∈ K appears as an hyperplane node in ~Gxλ∗ . Consequently, the

hyperplane node i has at least 2 incoming arcs in ~Gxλ∗ . We deduce by Proposition 26 that

the degree of the hyperplane node i in ~Gxλ∗ is (2, 1), and that xλ
∗

is a breakpoint.
(c) λ∗ = λ−i 6 λ+i for some i ∈ Br. By the same argument as above, arg max(W−i � xλ

∗
)

contains at least two distinct elements. This implies that xλ
∗

is a breakpoint and that the
hyperplane node i has degree (1, 2).
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Note that the arguments above also prove (ii) and (iii). �

Remark 29. When ξ + µeJ is a breakpoint, the proof of Proposition 28 ensures that the hy-

perplane node k in the tangent digraph ~Gξ+µeJ has degree (2, 1) if µ = λ+k or (1, 2) if µ = λ−k .

In particular, this proves that µ is equal to only one scalar among the λ−i , λ+k and λ−k , where
i ∈ Ent and k ∈ Br.

Example 30. We now have all the ingredients required to perform a tropical pivot. Feasible
directions are given by Proposition 26, while Proposition 28 provides the lengths of ordinary
segments and the stopping criterion.

Let us illustrate this on our running example. We start from the basic point (4, 4, 2) (i.e.,
the point (4, 4, 2, 0) in TP3) given by I = {H1,H2,H5}, and we move along the edge EK , where
K = {H1,H2}. The tangent digraph at (4, 4, 2) is depicted in the bottom right of Figure 4.

By Proposition 26 (C1), the initial direction is −e{1,2,3}, i.e., J = {4}. By definition, Br is
formed by the hyperplane nodes which are not adjacent to the coordinate node 4 in the tangent
digraph. Hence, Br = {H1,H2}. Moreover, in the homogeneous setting, the inequalities H3

and H4 read

x2 > x4

x1 > max(x4, x2 − 3)

In both of them, the maximum in the left-hand side is reduced to one term, and it does not
involve x4. Thus, Ent = {H3,H4}. The reader can verify that:

λ+H1
= 3− 0 = 3 λ−H1

= 3− (−∞) = +∞
λ+H2

= 2− (−∞) = +∞ λ−H2
= 2− 0 = 2

λ+H3
= 4− (−∞) = +∞ λ−H3

= 4− 0 = 4

λ+H4
= 4− (−∞) = +∞ λ−H4

= 4− 0 = 4

As a result, the length of the initial ordinary segment is µ = 2, given by µ = λ−H2
6 λ+H2

. As

H2 ∈ Br, the point (4, 4, 2)− 2e{1,2,3} = (2, 2, 0) is a breakpoint.

The next feasible direction is −e{1,2} as J = {3, 4}. We still have Ent = {H3,H4} but now
Br = {H1}. The length of this ordinary segment is µ = 1 = λ+H1

. Consequently, we reach the

breakpoint (1, 1, 0) = (2, 2, 0) − 1e{1,2}, where the next feasible direction, −e{2}, is given by
J = {1, 3, 4}. The set Br is now empty and Ent = {H4}. Clearly, µ = 1 = λ−H4

. As H4 ∈ Ent,

the next endpoint (1, 0, 0) = (1, 1, 0)− 1e{2} is a basic point.

4.4. Efficient implementation of the pivoting operation. Our implementation of the piv-
oting operation relies on the incremental update of the tangent digraph along the tropical edge.
This avoids computing from scratch the tangent digraph at each breakpoint, in which case the
time complexity of the pivoting operation would be naively in O(n2m).

In the previous section we described the “travel” from a given point ξ into the direction given
by J to the next point, called ξ′. Our key observation is that the tangent digraph is constant
in the open segment ]ξ, ξ′[ and that it “acquires” a new arc or a new hyperplane node when the
endpoint ξ′ is reached. This is made precise in the lemma below and the subsequent proposition.

Lemma 31. Let [ξ, ξ′] = {ξ + λeJ | 0 6 λ 6 µ} be an ordinary segment of EK . Every point in

]ξ, ξ′[ has the same tangent digraph ~G]ξ,ξ′[, which is equal to the intersection of ~Gξ and ~Gξ′.

Proof. Let xλ := ξ+λeJ . By Proposition 26, the hyperplane node set of ~Gxλ for λ ∈ ]0, µ[ is equal
to K. If ξ and ξ′ are both basic points, the sets of hyperplane nodes in their tangent digraphs
are respectively of the form K ∪{iout} and K ∪{ient}, where iout, ient 6∈ K and iout 6= ient. If one
of the two endpoints, say ξ, is a breakpoint, the hyperplane node set of its tangent digraph is K,

while the hyperplane node set of ~Gξ′ contains K. In all cases, the intersection of the hyperplane
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k

aold anew

~Gξ′

k

aold

~G]ξ,ξ′[

J
k

anew

~G]ξ′,ξ′′[

J ′

Figure 8. Illustration of Proposition 32 (ii) and Remark 33, with a sequence
of tangent digraphs around a breakpoint ξ′ between two consecutive segments
[ξ, ξ′]∪[ξ′, ξ′′]. The direction of [ξ, ξ′], from ξ to ξ′, is given by the set of coordinate
nodes J , indicated in green. The direction of the second segment, from ξ′ to ξ′′,
is governed by J ′ depicted in orange.

node sets of ~Gξ and ~Gξ′ is equal to K. Moreover, the coordinate node set of ~Gx is equal to [n+1]
for all x ∈ [ξ, ξ′].

Let i ∈ Br. If 0 < λ < µ, then in particular λ < min(λ+i , λ
−
i ) by Proposition 28. Hence,

arg max(W±i � x
λ) = arg max(W±i � ξ) . (28)

Besides, arg max(W±i � ξ′) = arg max(W±i � xµ) is a superset of arg max(W±i � ξ), and the

inclusion is strict when µ is equal to the corresponding scalar λ+i or λ−i .

Similarly, let i ∈ K \Br. By Lemma 25, arg max(W+
i � ξ)∩ J and arg max(W−i � ξ)∩ J are

both non-empty. Moreover, for all λ > 0, we have:

arg max(W±i � x
λ) = arg max(W±i � ξ) ∩ J . (29)

In particular, arg max(W±i � ξ′) = arg max(W±i � ξ) ∩ J .

Equations (28) and (29) ensure that arg max(W±i �xλ) = arg max(W±i �ξ)∩arg max(W±i �ξ′)
for all i ∈ K and λ ∈ ]0, µ[. This shows that the arc set of ~Gxλ is precisely the intersection of

the arc sets of ~Gξ and ~Gξ′ . �

Proposition 32. Let [ξ, ξ′] = {ξ + λeJ | 0 6 λ 6 µ} be an ordinary segment of EK .

(i) if ξ is a basic point, i.e., ξ = xK∪{iout} for a given iout 6∈ K, then

~G]ξ,ξ′[ = ~Gξ \ {iout} .

(ii) if ξ′ is a breakpoint and k the hyperplane node of ~Gξ′ with degree (2, 1) or (1, 2), then

~Gξ′ = ~G]ξ,ξ′[ ∪ {anew} ,
where anew is an arc between k and the unique element of arg maxj∈J(|wkj |+ ξj).

Moreover, if [ξ′, ξ′′] is the next ordinary segment in EK , then

~G]ξ′,ξ′′[ = ~Gξ′ \ {aold} .

where aold is the unique arc incident to k with the same orientation as anew in ~Gξ′.

An illustration of (ii) is given in Figure 8.

Proof. Let xλ := ξ + λeJ .
27



(i) By Proposition 26 (C2), the tangent digraph ~G]ξ,ξ′[ does not contain the hyperplane node

iout. As ~G]ξ,ξ′[ is a subdigraph of ~Gξ by Lemma 31, we deduce that it is also a subdigraph of
~Gξ\{iout}. Since ~G]ξ,ξ′[ and ~Gξ\{iout} have the same number of nodes and arcs by Proposition 26,
we conclude that they are equal.

(ii) We assume that k has degree (2, 1) in ~Gξ′ , the proof being similar when k has degree (1, 2).

To begin with, we know that µ = λ+k (ξ, J) thanks to Remark 29. Let l ∈ arg maxj∈J(w+
kj + ξj).

Then for all 0 < λ < λ+k (ξ, J), we have w+
kl + xλl < W+

k � x
λ, while w+

kl + xµl = W+
k � x

µ. It

follows that the arc (l, k) does not belong to ~G]ξ,ξ′[, whereas it appears in ~Gξ′ . We deduce that
~G]ξ,ξ′[ ∪ {(l, k)} is a subgraph of ~Gξ′ thanks to Lemma 31. Both are equal by Proposition 26.

Note that arg maxj∈J(w+
kj + ξj) is reduced to {l} as k has two incoming arcs in ~Gξ′ . Due to

Remark 29 we have λ+k (ξ, J) < λ−k (ξ, J). It follows that

arg max
j∈J

(|wkj |+ ξj) = arg max
j∈J

(w+
kj + ξj) = {l} .

In the second place, by applying Lemma 31 to the segment [ξ′, ξ′′], we know that ~G]ξ′,ξ′′[ is a

subdigraph of ~Gξ′ . By Proposition 26, the hyperplane node k has degree (1, 1) in ~G]ξ′,ξ′′[. Thus,

the digraph ~G]ξ′,ξ′′[ is either equal to ~Gξ′ \ {anew} or ~Gξ′ \ {aold}. As the former corresponds to

the tangent digraph ~G]ξ,ξ′[, we deduce that ~G]ξ′,ξ′′[ = ~Gξ′ \ {aold}. �

Remark 33. We point out that in Proposition 32 (ii), the set J ′ corresponding to the direction
of the next segment [ξ′, ξ′′] is precisely given by the set of coordinate nodes weakly connected

to k in the digraph ~G]ξ′,ξ′′[ = ~Gξ′ \ {aold}; see Figure 8 for an illustration.

Indeed, according to Proposition 26 (C2), the digraph ~G]ξ′,ξ′′[ consists of two weakly connected
components. Let J be the set of coordinate nodes of the component containing the hyperplane
node k. From any point in ]ξ′, ξ′′[, the two feasible directions are ±eJ. As a result, J ′ = J or
J ′ = [n+1]\J. Let l be the coordinate node incident to anew. Then l ∈ J by Proposition 32 (ii),

and so l ∈ J ′ as J ⊂ J ′. Besides, since anew still appears in ~G]ξ′,ξ′′[, the coordinate node l is
weakly connected to k. Therefore, l ∈ J. We conclude that J ′ = J, as expected.

The following proposition allows to incrementally maintain the sets Ent, Br and the associated
scalars λ±i along the tropical edge EK .

Proposition 34. Let [ξ, ξ′]∪ [ξ′, ξ′′] be two consecutive ordinary segments of EK , where [ξ, ξ′] =

{ξ + λeJ | 0 6 λ 6 µ} and [ξ′, ξ′′] = {ξ′ + λeJ
′ | 0 6 λ 6 µ′}. Then,

(i) Br(ξ′, J ′) ⊂ Br(ξ, J).
(ii) arg max(W+

i � ξ′) = arg max(W+
i � ξ) for all i ∈ Ent(ξ′, J ′).

(iii) Ent(ξ′, J ′) = {i ∈ Ent(ξ, J) | µ < λ+i (ξ, J) and arg max(W+
i � ξ) ∩ (J ′ \ J) = ∅}.

(iv) for all i ∈ Ent(ξ′, J ′) ∪ Br(ξ′, J ′), we have:

W+
i � ξ

′ = W+
i � ξ

λ+i (ξ′, J ′) = min

(
λ+i (ξ, J)− µ , (W+

i � ξ)− max
j∈J ′\J

(w+
ij + ξj)

)
,

λ−i (ξ′, J ′) = min

(
λ−i (ξ, J)− µ , (W+

i � ξ)− max
j∈J ′\J

(w−ij + ξj)

)
.

Proof. (i) Suppose by contradiction that i 6∈ Br(ξ, J). Then, by Lemma 25 the intersec-
tions arg max(W+

i � ξ) ∩ J and arg max(W−i � ξ) ∩ J are both non-empty. As a consequence,

arg max(W+
i � ξ′) and arg max(W−i � ξ′) are included in J . Since J ⊂ J ′ by Proposition 24, we

conclude that i 6∈ Br(ξ′, J ′).
(ii) First observe that Ent(ξ′, J ′) ⊂ Ent(ξ, J). Indeed, consider an i ∈ K \ Ent(ξ, J). Then

arg max(W+
i � ξ) ∩ J 6= ∅, which implies arg max(W+

i � ξ′) ⊂ J . Using the inclusion J ⊂ J ′,

we obtain that arg max(W+
i � ξ′) ∩ J ′ 6= ∅, and therefore i 6∈ Ent(ξ′, J ′).
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Second if i ∈ Ent(ξ, J) satisfies µ > λ+i (ξ, J) then arg max(W+
i � ξ′) intersects J ⊂ J ′, thus

i 6∈ Ent(ξ′, J ′). As a consequence:

Ent(ξ′, J ′) ⊂ {i ∈ Ent(ξ, J) | µ < λ+i (ξ, J)} . (30)

Finally for any i ∈ Ent(ξ′, J ′), we have µ < λ+i (ξ, J) and therefore arg max(W+
i � ξ′) =

arg max(W+
i � ξ).

(iii) Using (30) let us consider an i ∈ Ent(ξ, J) such that µ < λ+i (ξ, J). Then, as above,

arg max(W+
i �ξ′) = arg max(W+

i �ξ). Moreover, i ∈ Ent(ξ, J) implies arg max(W+
i �ξ)∩J = ∅.

Thus arg max(W+
i � ξ′) ∩ J ′ = ∅ if and only if arg max(W+

i � ξ) ∩ (J ′ \ J) = ∅.
(iv) Consider i ∈ Ent(ξ′, J ′) ∪ Br(ξ′, J ′). If i ∈ Ent(ξ′, J ′) then µ < λ+i (ξ, J) by (30). Other-

wise, if i ∈ Br(ξ′, J ′), then i ∈ Br(ξ, J) by (i) and thus µ 6 λ+i (ξ, J) by (26). In both cases, we

obtain W+
i � ξ′ = W+

i � ξ.
Let us rewrite λ+i (ξ′, J ′) as follows:

λ+i (ξ′, J ′) = min

(
(W+

i � ξ
′)−max

j∈J
(w+

ij + ξ′j) , (W+
i � ξ

′)− max
j∈J ′\J

(w+
ij + ξ′j)

)
.

We saw that W+
i � ξ′ = W+

i � ξ. Furthermore, ξ′j = ξj +µ if j ∈ J and ξ′j = ξj otherwise. Thus
the first term of the minimum above is equal to:

(W+
i � ξ)−max

j∈J
(w+

ij + ξ + µ) = λ+i (ξ, J)− µ.

The second term satisfies:

(W+
i � ξ

′)− max
j∈J ′\J

(w+
ij + ξ′j) = (W+

i � ξ)− max
j∈J ′\J

(w+
ij + ξj) .

The same argument holds for λ−i (ξ′, J ′). �

We now present an algorithm (Algorithm 2) allowing to move along an ordinary segment
[ξ, ξ′] = {ξ+λeJ | 0 6 λ 6 µ} of the tropical edge EK . This algorithm takes as input the initial
endpoint ξ, together with some auxiliary data, including the set J encoding the direction of the
segment [ξ, ξ′], the tangent digraph in ]ξ, ξ′[, the sets Ent(ξ, J) and Br(ξ, J), etc. It also uses an
auxiliary function Ω, which is defined for the pairs (i, j) ∈ Ent(ξ, J)× [n+1], and which returns
in time O(1) whether j ∈ arg max(W+

i � ξ). We shall see in the main pivoting algorithm that
this function is defined once for all when pivoting over the whole tropical edge.

Algorithm 2 returns the other endpoint ξ′. On top of that, if ξ′ is a breakpoint of EK , it
provides the set J ′ corresponding to the direction of the next ordinary segment [ξ′, ξ′′] of EK ,
some additional data corresponding to ξ′, J ′ (for instance the sets Ent(ξ′, J ′) and Br(ξ′, J ′)),

and the digraph ~G]ξ′,ξ′′[.
Several kinds of data structures are manipulated in Algorithm 2, and we need to specify

the complexity of the underlying operations. Arithmetic operations over T are supposed to
be done in time O(1). Tangent digraphs are represented by adjacency lists. They are of size
O(n), and so they can be visited in time O(n). Matrices are stored as two dimensional arrays,
so an arbitrary entry can be accessed in O(1). Vectors and the values W+

i � ξ, λ
+
i (ξ, J) and

λ−i (ξ, J) for i ∈ [m] are stored as arrays of scalars. Apart from ∆ = J ′ \ J , sets are represented
as Boolean arrays, so that testing membership takes O(1). The set ∆ is stored as a list, thus
iterating over its elements can be done in O(|∆|).
Proposition 35. Algorithm 2 is correct, and its time complexity is bounded by O(n+m|J ′\J |).
Proof. Correctness: The correctness of the highlighted parts of the algorithm straightfor-
wardly follows from the corresponding results given as annotations.

At Line 9, the set Br(ξ′, J ′) is built by iterating over the nodes of ~Gξ′ , and collecting the
hyperplane nodes i with no neighbor in J ′. This is correct since the set of hyperplane nodes is
precisely K (by Proposition 26 and the fact that ξ′ is a breakpoint), and because the adjacent
nodes of each i ∈ K are precisely the elements of arg max(W+

i � ξ′) ∪ arg max(W−i � ξ′) by

construction of ~Gξ′ .
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Algorithm 2: Traversal of an ordinary segment of an tropical edge

Input: An endpoint ξ of an ordinary segment [ξ, ξ′] of a tropical edge EK and:
• the set J encoding the direction eJ of [ξ, ξ′] = {ξ + λeJ | 0 6 λ 6 µ}
• the tangent digraph ~G]ξ,ξ′[ in the relative interior of [ξ, ξ′]
• the sets Ent(ξ, J) and Br(ξ, J)
• the scalars W+

i � ξ, λ
+
i (ξ, J) and λ−i (ξ, J) for i ∈ Br(ξ, J) ∪ Ent(ξ, J)

• an auxiliary function Ω determining in time O(1) if j ∈ arg max(W+
i � ξ) for all i ∈ Ent(ξ, J) and j ∈ [n+ 1]

Output: The other endpoint ξ′ and,
if ξ′ is a basic point, the integer ient 6∈ K such that ξ′ = xK∪{ient};
if ξ′ is a breakpoint:

• the set J ′ encoding the direction eJ
′

of the next ordinary segment [ξ′, ξ′′] = {ξ′ + λeJ
′
| 0 6 λ 6 µ′}

• the tangent digraph ~G]ξ′,ξ′′[
• the sets Ent(ξ′, J ′) and Br(ξ′, J ′)
• the scalars W+

i � ξ
′, λ+

i (ξ′, J ′) and λ−i (ξ′, J ′) for i ∈ Br(ξ′, J ′) ∪ Ent(ξ′, J ′)

1 µ← min{min(λ+
i (ξ, J), λ−i (ξ, J)) | i ∈ Br(ξ, J) or (i ∈ Ent(ξ, J) and λ−i (ξ, J) 6 λ+

i (ξ, J))} O(m)

2 ξ′ ← ξ + µeJ O(n)

3 if µ = λ−ient(ξ, J) for some ient ∈ Ent(ξ, J) then
4 return (ξ′, ient) (ξ′ is a basic point)

5 k ← the unique element of Br(ξ, J) such that µ = min(λ+
k (ξ, J), λ−k (ξ, J)) (ξ′ is a breakpoint)

6 `← the unique element in arg maxj∈J |wkj |+ ξj O(n)

7 anew ← the arc from ` to k if λ+
k (ξ, J) < λ−k (ξ, J), the arc from k to ` otherwise O(1)

8 ~Gξ′ ← ~G]ξ,ξ′[ ∪ {anew} O(n)

9 compute Br(ξ′, J ′) by visiting ~Gξ′ O(n)

10 aold ← the only arc incident to k in ~Gξ′ with the same orientation as anew O(1)

11 ~G]ξ′,ξ′′[ ← ~Gξ′ \ {aold} O(n)

12 J ′ ← coordinate nodes of ~G]ξ′,ξ′′[ weakly connected to k O(n)

13 ∆← the list of elements of J ′ \ J O(n)

14 Ent(ξ′, J ′)← {i ∈ Ent(ξ, J) | µ < λ+
i (ξ, J) and arg max(W+

i � ξ) ∩∆ = ∅} O(m|J ′ \ J |) using the function

Ω

15 for i ∈ Ent(ξ′, J ′) ∪ Br(ξ′, J ′) do O(m) iterations
16 W+

i � ξ
′ := W+

i � ξ O(1)

17 λ+
i (ξ′, J ′) := min

(
λ+
i (ξ, J)− µ , (W+

i � ξ)−max
j∈∆

(w+
ij + ξj)

)
O(|J ′ \ J |)

18 λ−i (ξ′, J ′) := min
(
λ+
i (ξ, J)− µ , (W+

i � ξ)−max
j∈∆

(w−ij + ξj)
)

O(|J ′ \ J |)

19 return (ξ′, J ′, ~G]ξ′,ξ′′[,Ent(ξ′, J ′),Br(ξ′, J ′), (W+
i � ξ

′)i, (λ
+
i (ξ′, J ′))i, (λ

−
i (ξ′, J ′))i)

Proposition 28 (i)–(ii)

Proposition 32 (ii), Remark 29

Remark 33

Proposition 34 (iii)–(iv)

Complexity : At Lines 8 and 11, the operations of removing or adding an arc can be performed
in O(n) by visiting the digraphs. Identifying the arc aold at Line 11 amounts to iterate over the
arcs incident to k, and there is exactly 3 such arcs by Proposition 26.

Testing whether a hyperplane node i of ~Gξ′ satisfies arg max(W+
i � ξ′)∩ J ′ = arg max(W−i �

ξ′) ∩ J ′ = ∅ can be done in O(1), by determining whether the adjacent coordinate nodes (at

most 3) in ~Gξ′ belong to J ′. Thus the set Br(ξ′, J ′) can be built in time O(n) by iterating over

the hyperplane nodes of ~Gξ′ .
Given i ∈ Ent(ξ, J), determining whether arg max(W+

i � ξ) ∩ ∆ = ∅ can be performed by
calling the auxiliary function Ω for every element j ∈ ∆. It follows that Ent(ξ′, J ′) can be
computed at Line 14 in time O(m|J ′ \ J |).

Computations at Lines 17 and 18 are done by iterating over elements j ∈ ∆ and then
retrieving the values of W+

i � ξ, w
+
ij , w

−
ij and ξj . Since these values are stored in arrays, they

can be accessed to in constant time. Therefore, λ+i (ξ′, J ′) and λ−i (ξ′, J ′) are computed in time
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O(|∆|) = O(|J ′ \ J |). The complexity of other operations is easily obtained. In total, the
complexity of the algorithm is O(n+m|J ′ \ J |). �

Algorithm 3: Linear-time pivoting algorithm

Input: A basic point xI of P(A, b), the associated set I, and an integer iout ∈ I
Output: The other basic point xI

′
of the edge EI\{iout}, and the integer ient ∈ I \ {iout} such that

I ′ = (I \ {iout}) ∪ {ient}
1 compute ~GxI O(mn)

2 ~G]ξ1,ξ2[ ← ~GxI \ {iout} O(n)

3 J ← coordinate nodes weakly connected to the element of arg max(W+
iout
� xI) in ~G]ξ,ξ′[ O(n)

4 compute E ← Ent(xI , J) and B ← Br(xI , J) O(mn)

5 compute W+
i � x

I , λ+
i (xI , J) and λ−i (xI , J) for all i ∈ E ∪B O(mn)

6 Ω ← function defined on the set E × [n+ 1] by Ω(i, j) =

{
true if j ∈ arg max(W+

i � x
I)

false otherwise
O(mn)

7 input ← xI , J, ~G]ξ1,ξ2[, E,B, (W+
i � x)i∈E∪B , (λ

+
i (xI , J))i∈E∪B , (λ

−
i (xI , J))i∈E∪B

8 while true do at most n iterations
9 call Algorithm 2 on (input , Ω) and stores the result in output

10 if output is of the form (ξ′, ient) then return (ξ′, ient)

11 else input ← output

Theorem 36. Algorithm 3 allows to pivot from a basic point along a tropical edge in time
O(n(m+ n)) and space O(nm).

Proof. First observe that the function Ω initially defined at Line 6 does not need to be updated
during the iterations of the loop from Lines 8 to 11. Indeed, let [ξ, ξ′] and [ξ′, ξ′′] be two

consecutive ordinary segments of direction eJ and eJ
′

respectively. By Proposition 34, we have
the inclusion Ent(ξ′, J ′) ⊂ Ent(ξ, J) and the equality arg max(W+

i � ξ′) = arg max(W+
i � ξ) for

all i ∈ Ent(ξ′, J ′) . It follows that if Ω is a function determining whether j ∈ arg max(W+
i � ξ)

for all i ∈ Ent(ξ, J), it can be used as well to determine whether j ∈ arg max(W+
i � ξ′) for all

i ∈ Ent(ξ′, J ′).
Then, the correctness of the algorithm straightforwardly follows from Proposition 32 (i) (for

the computation of ~G]ξ1,ξ2[ at Line 2), Proposition 26 (for the computation of J at Line 3) and
Proposition 35.

The complexity of the operations from Lines 1 to 7 can easily be verified to be in O(mn).
Let q 6 n be the number of iterations of the loop from Lines 8 and 11, and let eJ1 , eJ2 , . . . , eJq

be the directions of the ordinary segments followed during the successive calls to Algorithm 2.
By Proposition 35, the total complexity of the loop is

O(nq +m|J2 \ J1|+m|J3 \ J2|+ · · ·+m|Jq \ Jq−1|) ,

which can be bounded by O(n(m+ n)). Finally, the space complexity is obviously bounded by
O(nm). �

5. Reduced costs

In this section, we introduce the concept of tropical reduced costs, which are merely the signed
valuations of the reduced costs over Puiseux series. Then, pivots improving the objective func-
tion and optimality over Puiseux series can be determined only by the signs of the tropical
reduced costs. We show that, under some genericity assumptions, the tropical reduced costs
can be computed using only the tropical entries A and c in time O(n(m+n)). This complexity
is similar to classical simplex algorithm, as this operation corresponds to the update of the
inverse of the basic matrix AI .
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5.1. Symmetrized tropical semiring. Until now our coordinate domain was the set of signed
tropical numbers T±. As noted in Section 2.1.1, this has the drawback of not being a semiring
since, in general, a ⊕ (	a) is not defined. This can be remedied by extending T± to the
symmetrized tropical semiring from [Plu90], which we denote here as S. We shall see in particular
that the computation of tropical reduced costs reduces to the resolution of the analogue of a
Cramer system over the symmetrized tropical semiring.

As a set S is the union of T± and a third copy of T, denoted T•. The members of the latter,
written as a• for a ∈ T, are the balanced tropical numbers. The numbers a, 	a and a• are
pairwise distinct unless a = 0. Sign and modulus are extended to S by setting sign(a•) = 0 and
|a•| = a.

The addition of two elements x, y ∈ S, denoted by x ⊕ y, is defined to be max(|x|, |y|) if
the maximum is attained only by elements of positive sign, 	max(|x|, |y|) if it is attained only
by elements of negative sign, and max(|x|, |y|)• otherwise. For instance, (	1) ⊕ 1 ⊕ (	3) =
1• ⊕ (	3) = 	3. The multiplication x � y of two elements x, y ∈ S yields the element with
modulus |x|+|y| and with sign sign(x) sign(y). For example, (	1)�2 = 	3 and (	1)�(	2) = 3
but 1•� (	2) = 3•. An element x ∈ T± not equal to 0 has a multiplicative inverse x−1 which is
the element of modulus −|x| and with the same sign as x. The addition A⊕B and multiplication
A � B of two matrices A = (aij) and B = (bij) are the matrices with entries aij ⊕ bij and⊕

k aik � bkj , respectively.
The set S also comes with the reflection map x 7→ 	x which sends a balanced number to

itself, a positive number a to 	a and a negative number 	a to a. We will write x 	 y for
x ⊕ (	y). Two numbers x, y ∈ S satisfy the balance relation x ∇ y when x 	 y is a balanced
number. Note that

x ∇ y =⇒ x = y for all x, y ∈ T± . (31)

The balance relation is extended entry-wise to vectors in Sn. In the semiring S, the relation
∇ plays the role of the equality relation; in particular the next result shows that a version of
Cramer’s Theorem is valid in the tropical setting, up to replacing equalities by balances.

The tropical determinant of the square matrix M = (mij) ∈ Sn×n is given by

tdet(M) =
⊕

σ∈Sym(n)

tsign(σ)�m1σ(1) � · · · �mnσ(n) (32)

Also observe that a square matrix of Tn×n± is tropically sign singular if and only if its tropical
determinant is a balanced number.

Theorem 37 (Signed tropical Cramer Theorem [Plu90]). Let M ∈ Sn×n and d ∈ Sn. Every
solution y ∈ Tn± of the system of balances

M � y ∇ d (33)

satisfies

tdet(M)� yj ∇ tdet(Mj←d), for all j ∈ [n], (34)

where Mj←d is the matrix obtained by replacing the jth column of M by d.
Conversely, if the tropical determinants tdet(M) and tdet(Mj←d) for j ∈ [n] are not balanced

elements, then the vector with entries yj = tdet(M)−1 � tdet(Mj←d) is the unique solution of
(33) in Tn±.

This result was proved in [Plu90]; see also [AGG09, AGG14] for more recent discussions. A
different tropical Cramer theorem (without signs) was proved by Richter-Gebert, Sturmfels and
Theobald [RGST05]; their proof relies on the notion of a coherent matching field introduced by
Sturmfels and Zelevinsky [SZ93].

Remark 38. The quintuple (T±,max,+,	0,T•) is an example of a “fuzzy ring” in the sense of
[Dre86, Definition 1.1]. In the notation of that reference, T± is “the group of units” and T• is
the set denoted “K0”.
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Figure 9. The Cramer digraph for the system of balances in (35). Column
nodes are squares and row nodes are circles. Arcs with weight −∞ are omitted.
The maximizing permutation σ is given by the red arcs. The coordinate yj of the
signed solution y of (35) is obtained by the multiplication (in S) of the weight
on the longest path from y4 to yj .

5.2. Computing solutions of tropical Cramer systems. The Jacobi iterative algorithm
of [Plu90] allows one to compute a signed solution y of the system M �y ∇ d; see also [AGG14]
for more information. We next present a combinatorial version of this algorithm, for the special
case where the entries of M and d are in T±.

Suppose that tdet(M) 6= 0, and let σ be a maximizing permutation in tdet(M) (or equiv-
alently, in tper(|M |)). The Cramer digraph of the system associated with σ is the weighted
bipartite directed graph over the “column nodes” {1, . . . , n+ 1} (the index n+ 1 represents the
affine component) and “row nodes” {1, . . . , n} defined as follows: every row node i ∈ [n] has
an outgoing arc to the column node σ(i) with weight m−1iσ(i), and an incoming arc from every

column node j 6= σ(i) with weight 	mij when j ∈ [n], and weight di when j = n+ 1.

Example 39. The maximizing permutation for the system of balances (35) below is σ(1) =
1, σ(2) = 3 and σ(3) = 2. The Cramer digraph is represented in Figure 9.	(−1) −∞ −∞

−1 	(−2) 0
	(−1) 0 −∞

�
y1y2
y3

 ∇
−2

0
−1

 (35)

Note that all the coefficients miσ(i) are different from 0. In the sequel, it will be convenient to
consider the longest path problem in the weighted digraph obtained from the Cramer digraph
associated with σ by forgetting the tropical signs, i.e., by taking the modulus of each weight.
Note in particular that there is no directed cycle the weight of which has a positive modulus
(otherwise σ would not be a maximizing permutation in the tropical determinant of M). Con-
sequently, the latter longest path problem is well-defined (longest weights being either finite or
−∞, but not +∞).

The digraph of longest paths from a node v refers to the subgraph of the Cramer digraph
formed by the arcs belonging to a longest path from node v. This digraph is acyclic and each
of its nodes is reachable from the node v (possibly with a path of length 0). As a result, it
always contains a directed tree rooted at v. Such a directed tree can be described by a map
which sends every node (except the root) to its parent node. Note that by construction of the
Cramer digraph, a column node j has only one possible parent node σ−1(j). Consequently, we
will describe a directed tree of longest paths by a map γ that sends every row node to its parent
column node.

Proposition 40. Let M ∈ Tn×n± such that tdet(M) 6= 0 and d ∈ Tn±. Let σ be a maximizing
permutation in the tropical determinant of M . In the Cramer digraph of the system M � y ∇ d
associated with σ, consider the digraph of longest paths from the column node n + 1. In this
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digraph of longest paths, choose any directed subtree γ rooted at the column node n+ 1. Then,
the following recursive relations

yσ(i) =

{
di �m−1iσ(i) when γ(i) = n+ 1 ,

	miγ(i) �m−1iσ(i) � yγ(i) otherwise
(36)

provide a solution in Tn± of the system M � y ∇ d.

Proof. Since the column node n+ 1 reaches all column nodes in the directed tree defined by γ,
Equation (36) defines a point y in Tn±. The modulus |yj | is the weight of a longest path from
the column node n+ 1 to the column node j. By the optimality conditions of the longest paths
problem, for any i ∈ [n], we have:

|miσ(i)|+ |yσ(i)| > |di| ,
|miσ(i)|+ |yσ(i)| > |mij |+ |yj | for all j ∈ [n] .

Furthermore, we have |miσ(i)|+|yσ(i)| = |miγ(i)|+|yγ(i)| when γ(i) 6= n+1 and |miσ(i)|+|yσ(i)| =
|di| otherwise.

Thus, if γ(i) 6= n + 1, the terms miσ(i) � yσ(i) and miγ(i) � yγ(i) have maximal modulus
among the terms of the sum mi1 � y1 ⊕ · · · ⊕ min � yn 	 di. Moreover, (36) ensures that
miσ(i) � yσ(i) ⊕miγ(i) � yγ(i) is balanced. Similarly, if γ(i) = n + 1, then miσ(i) � yσ(i) 	 di is
balanced and the terms miσ(i)�yσ(i) and di have maximal modulus in mi1�y1⊕· · ·⊕min�yn	di.
In both cases, we conclude that Mi � y ∇ di. �

A digraph of longest paths for Example 39 is shown in Figure 9. From the relations (36), we
obtain the signed solution y = (	(−1),−1, 0).

5.2.1. Complexity analysis. We now discuss the complexity of the method provided by Propo-
sition 40. First, a maximizing permutation σ can be found in time O(n3) by the Hungarian
method; see [Sch03, §17.2]. Second, the digraph of longest paths, as well as a directed tree of
longest paths, can be determined in time O(n3) using the Bellman–Ford algorithm; see [Sch03,
§8.3]. Last, the solution x can be computed in time O(n).

However, we claim that the complexity of the second step can be decreased to O(n2). The
idea is to consider a variant of the Cramer digraph with non-positive weights, and then to apply
Dijkstra’s algorithm to solve the longest paths problem. We exploit the fact that the Hungarian
method is a primal-dual algorithm, which returns, along with a maximizing permutation σ, an
optimal solution (u, v) to the dual assignment problem:

min
u,v∈Rn

n∑
i=1

ui +
n∑
j=1

vj

|mij | − ui − vj 6 0 for all i, j ∈ [n] .

(37)

By complementary slackness, we have:

|miσ(i)| = ui + vσ(i) for all i ∈ [n] . (38)

Since tdet(M) 6= 0, the assignment problem has a solution with a finite cost. Therefore, the
dual problem (37) is feasible and bounded. Thus it admits a solution u, v ∈ Rn.

We make the diagonal change of variables yj = vj � zj , for all j ∈ [n], where the zj are the
new variables. We consider the matrix M ′ = (m′ij) obtained from M by the following diagonal

scaling, m′ij = µ−1� u−1i �mij � v−1j , where µ is a real number to be fixed soon, together with

the vector d′ with entries d′i = µ−1 � u−1i � di for all i ∈ [n]. Then, dividing (tropically) every
row i of the system M � y ∇ d by µ and by ui, and performing the above change of variables,
we arrive at the equivalent system M ′ � z ∇ d′. By choosing µ := max(maxi(|di| − ui), 0), we
get that |d′i| 6 0, and |m′ij | 6 0 for all i, j ∈ [n]. The longest path problem to be solved in

order to apply the construction of Proposition 40 to M ′ � z ∇ d′ now involves a digraph with
non-positive weights.
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Algorithm 4: Computing tropical reduced costs

Input: A basic point xI of P(A, b), the associated set I, the objective function c
Output: The tropical reduced costs yI

1 GxI ← tangent graph at xI O(mn)

2 σ ← maximizing permutation in tdet(AI) obtained by a traversal of GxI O(n)

3 u← −xI O(n)

4 v ← A+
I � x

I O(mn)

5 µ← max(maxj∈[n](cj − uj), 0) O(n)

6 M ′ ← tropically signed matrix with entries m′ij = µ−1 � u−1
i � aji � v

−1
j O(n2)

7 d′ ← tropically signed vector with entries di = µ−1 � u−1
i � ci O(n)

8 ~C ← Cramer digraph of the system M ′ � y ∇ d′ for the permutation σ O(n2)

9 apply Dijkstra’s algorithm to ~C from column node n+ 1 O(n2 + n log(n))

10 γ ← the tree of longest paths returned by Dijkstra’s algorithm

11 z ← signed vector obtained by applying (36) to the tree γ O(n)

12 return yI the signed vector with entries yIj = vj � zj O(n)

It follows that the latter problem can be solved by applying Dijkstra’s algorithm to the
digraph with modified costs. Moreover, the directed tree provided by Dijkstra’s algorithm is
also valid in the original problem.

5.3. Tropical reduced costs as a solution of a tropical Cramer system. In the rest of
this section, we suppose that Assumption E holds, so we only consider basic points xI with
finite entries. We also make the following assumption, which is a tropical version of dual non-
degeneracy.

Assumption F. The matrix (AT cT ) is tropically sign generic.

We can now define the vector of tropical reduced costs of a set I ⊂ [m] of cardinality n such
that tdet(AI) 6= 0 to be the unique solution yI ∈ Tm± of the system of m balances{

A> � y ∇ c>

yi ∇ 0 for all i ∈ [m] \ I .
(39)

Proposition 41. Let xI be a tropical basic point of P(A, b) for a suitable I ⊂ [m]. Then there
is a unique solution yI ∈ Tm± of the system of balances (39).

Let (A b) be any lift of (A b). Pivoting from the basic point xI of the Puiseux polyhedron
P(A, b) along the edge EI\{k} (for k ∈ I) improves the objective function if, and only if, the

tropical reduced cost yIk is tropically negative. The basic point xI is an optimum of the Puiseux

linear program if and only if the tropical reduced costs yI are tropically non-negative.

Proof. First, the signed valuation of the Puiseux reduced costs yI yields a signed solution
of (39). Let us show that this solution is unique. We apply Theorem 37 with M = A>I and

d = c>. Since I yields a basic point, the matrix AI is not singular, thus tdet(M) 6= 0. By
Assumption F, the tropical determinants of the matrices M and Mj←d for j ∈ [n] belong to T±.

Then by (34), the vector yI with entries yIj = tdet(M)−1 � tdet(Mj←d) is the unique solution

of (39).
We have shown that the tropical signs of the tropical reduced costs are exactly the signs of

the Puiseux reduced costs, which proves the second part of proposition. �

Example 42. In Example 9, the tropical reduced costs associated with I = {H1,H2,H3} are
given by yI = (	(−1),−1, 0), which is the signed solution of (35). It follows that the only edge
with negative reduced cost is E{H2,H3}.

Theorem 43. Algorithm 4 computes the tropical reduced costs. Its time complexity is bounded
by O(n(m+ n)).
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Proof. The maximizing permutation σ is computed from GxI in Line 2 as follows. We first
determine a matching between the coordinate nodes 1, . . . , n and the set I of hyperplane nodes
using the technique described in the proof of Proposition 26, Case (i). By Lemma 13, this
matching provides a maximizing permutation in tdet(|AI |). It can be obviously computed by a
traversal of GxI starting from coordinate node n + 1. Since GxI contains 2n + 1 nodes and 2n
edges (see the proof of Proposition 26), this traversal requires O(n) operations. The complexity
of the other operations of this algorithm are straightforward and are given in annotations. We
conclude that the overall time complexity is O(m(n+ n)).

Let v = A+
I �xI . For any hyperplane node j ∈ I and any i ∈ [n], we have vj > |aji|+xIi , where

A = (aij). Moreover, equality holds for every edge (j, i) in the tangent graph. In particular
with the permutation σ, we have vσ(i) = |aσ(i)i|+xIi . By Assumptions A and E, we have v ∈ Rn

and xI ∈ Rn. Thus u = −xI and v form an optimal solution to the dual assignment problem
(37) for the matrix M = A>I . It follows from the discussion in Section 5.2 that the operations
between Line 3 and 12 compute the tropical reduced costs. �

We conclude this section by applying Algorithm 1 to the running example 9.

Example 44. We start from the tropical basic point (4, 4, 2) associated with I = {H1,H2,H5}.
For this set, tropical reduced costs are yH1 = 	(−1), yH2 = −1 and yH5 = 	4. We choose
iout = H5 and pivot along the tropical edge E{H1,H2}.

We arrive at the basic point (1, 0, 0), associated with I = {H1,H2,H3}. The reduced costs
are yH1 = 	(−1), yH2 = −1 and yH3 = 0. The only tropically negative reduced cost is yH1 ,
thus we pivot along E{H2,H3}.

The new basic point is (0, 0, 0), corresponding to the set {H2,H3,H4}. The reduced costs
are tropically positive: yH2 = −1, yH3 = 0 and yH4 = −2. Thus (0, 0, 0) is optimal.

6. Proof of the main theorem and generalization to Hahn series

We now have all the tools needed to prove Theorem 1 under the assumptions of primal non-
degeneracy (Assumption D), finiteness (Assumption E) and dual non-degeneracy (Assump-
tion F). If a tropical linear program satisfies all three conditions we call it standard.

Proof of Theorem 1. The time complexity of one iteration of the tropical simplex algorithm
follows from the complexity of the tropical pivoting operation (Theorem 36) and of the compu-
tation of tropical reduced costs (Theorem 43).

Propositions 19 and 21 ensure that the tropical pivoting operation traces the image by the
valuation map of the pivoting operation over Puiseux series. By Proposition 41, choosing the
pivot according to the signs of the tropical reduced costs amounts to choosing a pivot according
the signs of the Puiseux reduced costs.

We claim that under our assumptions, the edges of the Puiseux polyhedron have a positive
length (i.e., as a set, they are not reduced to a point). By contradiction, suppose that an edge

EK between the basic points xK∪{k} and xK∪{k
′} have zero length, where k 6= k′ and k, k′ 6∈ K.

Then xK∪{k} = xK∪{k
′}. Thus the tropical basic point x = val(xK∪{k}) = val(xK∪{k

′}) is
contained in the n + 1 tropical s-hyperplanes H(Ai, bi) for i ∈ K ∪ {k, k′}. Since x has finite
entries by Assumption E, the n+ 1 elements of K ∪ {k, k′} appears as hyperplane nodes in the
tangent graph at x. This contradicts Proposition 26 and proves the claim.

The basic points xK∪{k} and xK∪{k
′} of an edge EK are related by xK∪{k

′} = xK∪{k}+µdk,
where µ > 0 is the length of EK and dk its direction defined in (10). When pivoting from

xK∪{k} to xK∪{k
′}, the objective value increases by µ(cdk). Furthermore, yk = cdk is the

reduced cost of the pivot along EK from the basic point xK∪{k}. As a consequence, as long as
a pivot with a negative reduced cost is chosen, each iteration improves the objective function
over Puiseux series. By Assumption E, the Puiseux polyhedron is bounded, thus the value of
the Puiseux linear program is finite. Therefore, Algorithm 1 does terminate.

Finally, the output of Algorithm 1 is a tropical basic point with tropically non-negative
reduced costs. By Proposition 41, the corresponding Puiseux basic point is an optimum of the
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Puiseux linear program. Then by Proposition 7, the tropical basic point is an optimum of the
tropical linear program. �

We described tropical linear programming in the max-plus version of the tropical semiring.
However, the proofs of our results also hold in any semiring (TG,max,+) which arises from an
abelian totally ordered group (G,+,>) i.e., the semiring is defined on the set TG = G ∪ {0},
the order on G is extended to TG by setting 0 6 x for any x ∈ G, and the maximum is defined
with respect to the order on G. In this setting, the notion of “tropical general position” still
makes sense. Puiseux series are then replaced by the ordered field R[[tG]] of (formal) Hahn series
with real coefficients and with value group (G,+); recall that Hahn series are required to have
a well ordered support. The analysis of Section 3 relies only on the fact that the coefficients
of the series are real numbers (Theorem 16). In Section 4 the description of a tropical edge as
the concatenation of ordinary segments still holds. Finally in Section 5, the Tropical Cramer
Theorem (Theorem 37) is still valid in this generalized setting.

Theorem 45. The assertions of Theorem 1 remain valid if the tropical semiring is replaced by
TG and if the field of real Puiseux series is replaced by the field of real Hahn series R[[tG]], the
execution time being now evaluated in a model in which every arithmetic operation in the group
G takes a time O(1). �

We end this paper by mentioning some simple extensions of the present results. Our version
of the tropical simplex algorithm can readily be adapted to the maximization of a tropical linear
form over a tropical polyhedron, instead of the minimization. Indeed, the former problem can
be handled by taking as a cost vector a vector of negative tropical numbers, and lifting it to a
cost vector of real Puiseux series with negative leading coefficients.

More generally, one may consider a tropical cost vector with both negative and positive co-
ordinates. The present tropical simplex algorithm can still be defined in this setting, however,
its interpretation in terms of tropical optimization problem turns out to be less satisfactory.
Indeed, the cost function c� x may be a balanced tropical number for some feasible vectors x,
whereas there is no total order on the symmetrized tropical semiring with a natural interpreta-
tion in terms of lift to real Puiseux series. Hence, the tropical minimization problem appears to
be somehow ill defined. However, for an input in general position, the cost function evaluated
at any tropical basic point will always be unbalanced. Then, the tropical simplex algorithm,
with some straightforward modifications, can be used to return a tropical basic point whose
cost is minimal among all tropical basic points, but which may be incomparable with respect
to some non-basic feasible points.

We did not study the overall complexity of the tropical simplex algorithm. But we expect,
as in the classical case, an exponential behavior on some particular examples (such as the
Klee-Minty cubes [KM72]).

The results of this paper should allow the construction of more general tropical pivoting
algorithms. In particular, the criss-cross method [FT97], which pivots between unfeasible basic
points of the arrangement of s-hyperplanes, should also tropicalize. Pivots can be handled with
Algorithm 3. The selection of pivots would involve the tropical signs of the basic point and of
the reduced costs.

Finally, we briefly comment on the complexity of deciding if the tropical linear program 5
given by A ∈ Tm×n± , b ∈ Tm± and c ∈ T1×n satisfies our standard conditions. It is always safe
to assume that the Assumptions A and B are satisfied, for it takes at most O(mn) time to
simplify the input if this is not the case [GK11, Lemma 1]. Verifying the finiteness condition
E requires to solve n tropical linear feasibility problems to check for a non-trivial intersection
with the boundary of the tropical projective space, which amounts to solving mean-payoff games
[AGG12]. So it is unclear whether or not this can be done in polynomial time. Checking for
non-degeneracity takes exponential time in the classical case [Eri96]; and hence this should also
hold for the tropical analog, Assumption D.
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