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Abstract

We investigate a system of partial differential equations modeling ambipolar plasmas. The
ambipolar—or zero current—model is obtained from general plasmas equations in the limit of
vanishing debye length. In this model, the electric field is expressed as a linear combination
of macroscopic variable gradients. We establish that the governing equations can be written
into a symmetric form by using entropic variables. The corresponding dissipation matrices
satisfy the nullspace invariant property and the system of partial differential equations can be
written into a normal form, that is, in the form of a symmetric hyperbolic-parabolic composite
system. By properly modifying the chemistry source terms and/or the diffusion matrices,
asymptotic stability of equilibrium states is established and decay estimates are obtained. We
also establish the continuous dependence of global solutions with respect to vanishing electron
mass.

1 Introduction

Ionized gas mixtures—or plasmas—with chemical reactions are related to a wide range of practical
applications such as laboratory plasmas, high-speed gas flows or atmospheric phenomena. This is
a strong motivation for investigating the structure and properties of the corresponding systems of
partial differential equations.

The equations governing high density low temperature plasmas can be derived from the kinetic
theory of ionized gas mixtures. Different systems can be obtained depending on the various char-
acteristic lengths and times of the phenomena under investigation. Assuming that there is a single
temperature in the mixture—this is the case for numerous practical applications—the correspond-
ing governing equations are derived in Ferziger and Kaper[4] and Graille and Giovangigli[8] for
general reactive polyatomic gas mixtures.

The ambipolar approximation is often used in the modeling of laboratory and space plasmas
and is obtained for vanishing Debye length[2, 14]. The corresponding model is a quasi-neutral
model where the conduction current is set to zero. In this approximation, there is no magnetic
field and the (internal) electric field is eliminated through the use of the zero current constraint.
The electric field can then be expressed in terms of macroscopic variable gradients and the resulting
transport fluxes involve new effective ambipolar transport coefficients.

The governing equations for reactive ionized gas mixture in the ambipolar limit constitute
a second-order quasilinear system of conservation laws. The asymptotic stability of equilibrium
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states for this quasilinear system of partial differential equations is by itself an important question.
This system, however, also depends on numerous parameters such as thermal conductivity and
chemical reaction constants.

One of these parameters, often used in the physical modeling, is the electron mass, which is
usually let to be zero. In order to investigate this limit, the dependence of the system coefficients
on the electron mass must be clarified since electron diffusivities become infinite as the electron
mass vanishes. In order to do so, we explicit the dependence of multicomponent diffusion matrices
on binary diffusion coefficients and establish the smoothness of the system coefficients with respect
to the electron mass.

We next consider an abstract system of conservation laws depending smoothly on a parame-
ter. We investigate symmetrizability, asymptotic stability of equilibrium states, and continuous
dependence of solutions with respect to the parameter. We first establish continuous dependence
of solutions locally in time and then globally in time around equilibrium states under appropriate
norms. Decay estimates are also established globally with respect to the parameter.

We then apply these results to the system of partial differential equations modeling ambipolar
plasmas. We first establish that the system can be written into a symmetric form and admits
an entropy in the mathematical sense[12, 13]. The resulting dissipation matrices are shown to
satisfy the nullspace invariance property introduced by Kawashima[12]. The system of partial
differential equation is next written into a normal form, that is, in the form of a symmetric
hyperbolic-parabolic composite system with two hyperbolic components, with smooth dependence
of the system coefficients on the electron mass.

The structure and properties of the equations in the ambipolar limit are first insufficient to
establish asymptotic stability. This problem, however, is shown to be artificial and due to the
lack of dissipativity properties associated with the electric charge equation, which must guarantee
that the charge remains zero for physical solutions. Two modified forms are then introduced for
the system of governing equations, that is, such that regular physical solutions coincide. These
reformulations guarantee asymptotic stability and continuous dependence of global solutions with
respect to the electron mass.

One can first modify chemistry production rates in the direction of the charge vector and orthog-
onaly to chemical reaction vectors. This yields a consumption term in the charge equation ensuring
enough dissipativity. A second modification, which has interesting numerical consequences, con-
sists in modifying the diffusion coefficients in the direction of the dyadic product of the charge
vector.

Our paper is organized as follows. In Section 2, we present the governing equation for reactive
ionized gas mixtures in the ambipolar limit. In Section 3, we investigate the dependence of the
system coefficients on the electron mass. Symmetrization and local existence for an abstract
system depending on a parameter is considered in Section 4. Global existence around equilibrium
states with continuous dependence on a parameter is established in Section 5. Symmetrization for
the quasilinear system modeling ambipolar plasmas is obtained in Section 6. Finally, in Section
7, we establish asymptotic stability of equilibrium states for ambipolar plasmas with continuous
dependence on the electron mass.

2 Ambipolar reactive gas mixtures

We consider a reactive ionized gas mixture composed of ns chemical species in the presence of an
electric field. The general governing equations describe the conservation of species mass, momen-
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tum and energy, and are completed by Maxwell’s equations for the electric field[4, 8]. The full sys-
tem of partial differential equations has a complex structure and is out of the scope of the present
paper. These equations are simplified here in the ambipolar—or zero current—approximation
where the conduction current vanishes.

2.1 Conservation equations

We denote by S = {1, . . . , ns} the species indexing set, ns the number of species, ρk the mass per
unit volume of the kth species, γk the number of mole per unit volume of the kth species, κk the
molar charge of the kth species, and mk the molar mass of the kth species so that ρk = mkγk. In
contrast with previous work[10], we will use molar quantities like (γ1, . . . , γns) in order to describe
the state of the mixture. This molar formulation is, of course, strictly equivalent to a mass
formulation using mass densities like (ρ1, . . . , ρns) because the species mass mk, k ∈ S, are strictly
positive. However, we will ultimately investigate the asymptotic limit of vanishing electron mass,
and, therefore, we need to work in a molar framework.

The mole conservation equation for the kth species reads

∂tγk + ∂x·(γkv) + ∂x·Fk = ωk, k ∈ S, (2.1)

where v is the macroscopic velocity of the mixture, Fk the molar diffusion flux and ωk the molar
production rate of the kth species. Bold symbols are used for vector or tensor quantities in the
physical space R

3 so that for instance ∂x = (∂1, ∂2, ∂3)
t

.
In the absence of magnetic field, the momentum conservation equation can be written in the

form
∂t(ρv) + ∂x·(ρv⊗v + pI) + ∂x·Π = qE, (2.2)

where p is the pressure, I the unit tensor, Π the viscous stress tensor, q the total charge per unit
volume, and E the (internal) electric field.

Finally, the energy conservation equation reads

∂t(E + 1
2ρv ·v) + ∂x·

(
(E + 1

2ρv ·v + p)v
)

+ ∂x·(Q + Π·v) = (qE + j)·E, (2.3)

where E is the internal energy per unit volume, Q the heat flux, and j the conduction current
vector. In the following, the (internal) electric field is eliminated from the governing equations by
using the ambipolar constraint.

2.2 Transport fluxes

The molar diffusion flux Fk, k ∈ S, can be written in the form

Fk = γkVk, k ∈ S, (2.4)

where the diffusion velocity of the kth species Vk is given by

Vk = −
∑

l∈S

Dkl (dl + χl∂x log T ) , k ∈ S, (2.5)

and where the diffusion driving force dk reads

dk =
1

p
(∂xpk − γkκkE). (2.6)
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In these relations, Dkl, k, l ∈ S, are the multicomponent diffusion coefficients, χk, k,∈ S, the
thermal diffusion ratios, and T the absolute temperature. The expression of the heat flux is

Q = −λ∂xT +
∑

k∈S

(pχk + γkHk) Vk, (2.7)

where Hk is the enthalpy per unit mole of the kth species. Finally, the viscous stress tensor is given
by

Π = −κ(∂x·v)I − ηS, (2.8)

where S is the usual strain symmetric traceless tensor

S = ∂xv + ∂xvt − 2
3 (∂x·v)I.

2.3 Zero current constraint

In ionized mixtures, there is a Coulomb screening by mobile charges over distances of the order of
the Debye length. For small Debye length, the mixture can be considered as quasi neutral, so that
q = 0, although the electric field is non zero. In the absence of external electric field, and for small
Debye length, it is also natural to assume that positive ions and electrons diffuse as a team[1, 2, 14]
so that the conduction current j vanishes. This is the origin of the terminology ambipolar and this
approximation is consistent with the charge equation

∂tq + ∂x·(qv) + ∂x·j = 0.

In other words, the (internal) polarization electric field E insure that the conduction current j

vanish. In this situation, provided that the initial charge is zero, we recover that the charge q
remains zero at all time.

We must now eliminate the electric field E by using the zero conduction current constraint.
The conduction current j =

∑
k∈S

κkFk =
∑

k∈S
κkγkVk can conveniently be written in the

compact form
j = 〈z, V 〉,

where z = (z1, . . . , zns)
t

, zk = γkκk , k ∈ S, V = (V1, . . . , Vns)
t

, and 〈·, ·〉 denote the scalar product
between quantities in Rns

or (R3)ns

. On the other hand, thanks to isotropy of diffusive processes,
the relations expressing the diffusion velocities can be recast into the vector form

V = −D(d0 + χ∂x log T + z
E

p
),

where d0 = (d0
1, . . . , d

0
ns)

t

, d0
k = (∂xpk)/p, k ∈ S, and χ = (χ1, . . . , χns)t. Therefore, the

constraint j = 0 implies that

E

p
=

〈
z, D(d0 + χ∂x log T )

〉

〈z, Dz〉 .

Defining the square matrix D̂ = (D̂kl)k,l by

D̂ = D − Dz⊗Dz

〈z, Dz〉 , (2.9)

it is readily seen that
V = −D̂(d0 + χ ∂x log T ), (2.10)

that is, Vk = −∑l∈S
D̂kl(d

0
l + χl log T ), k ∈ S. These expressions now guarantee that the

conduction current j vanishes independently of the state variables and their gradients.
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2.4 Thermodynamics

The pressure p, the mass density ρ and the charge per unit volume q can be expressed as

p =
∑

k∈S

RTγk, ρ =
∑

k∈S

mkγk, q =
∑

k∈S

κkγk,

where mk is the mass per unit mole of the kth species, κk the charge per unit mole of the kth

species, and R the perfect gas constant. The internal energy E and the enthapy H per unit volume
can be decomposed into

E =
∑

k∈S

γkEk, H =
∑

k∈S

γkHk,

where Ek and Hk = Ek + RT are the internal energy and the internal enthalpy per unit mole of
the kth species and T the absolute temperature. The internal energy Ek can be written in the
form

Ek(T ) = Est
k +

∫ T

T st

Cv,k(τ) dτ,

where Est
k = Ek(T st) is the formation energy per unit mole of the kth species at the positive

standard temperature T st and Cv,k is the constant-volume molar specific heat of the kth species.
The entropy S and Gibbs function G per unit volume can be expressed in terms of the species

entropies per unit mole Sk, k ∈ S, and Gibbs functions per unit mole Gk, k ∈ S, from the relations

S =
∑

k∈S

γkSk, G =
∑

k∈S

γkGk,

where

Sk(T, γk) = Sst
k +

∫ T

T st

Cv,k(τ)

τ
dτ − R log

(
γk

γst

)
,

Sst
k is the formation entropy at the standard temperature T st and standard pressure pst, γst =

pst/RT st is the standard concentration, and where Gk = Hk − TSk. We also define the species
reduced chemical potential µk = Gk/RT , k ∈ S. Finally, the species Gibbs functions Gk and the
species reduced chemical potential µk, k ∈ S, are functions of γk and T , which can be written

Gk(γk, T ) = Gu
k(T ) + RT log γk, µk(γk, T ) = µu

k(T ) + log γk,

where Gu
k , k ∈ S, are the species unitary Gibbs functions per unit mole and µu

k , k ∈ S, are the
species unitary reduced chemical potentials.

2.5 Chemical source terms

We consider nr elementary reactions among the ns species which can be formally written as

∑

k∈S

νf
kr Mk �

∑

k∈S

νb
kr Mk, r ∈ R,

where Mk is the chemical symbol of the kth species, νf
kr and νb

kr are the forward and backward
stoichiometric coefficients of the kth species in the rth reaction, respectively, and R = {1, . . . , nr}
is the set of reaction indices.
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The Maxwellian production rates given by the kinetic theory can be written

ωk =
∑

r∈R

(νb
kr − νf

kr)τr, k ∈ S, (2.11)

where τr is the rate of progress of the rth reaction. The rates of progress are given by the symmetric
expression[7]

τr = K
s
r

(
exp〈νf

r, µ〉 − exp〈νb
r , µ〉

)
, (2.12)

where νf
r = (νf

1r , . . . , ν
f
nsr)

t

, νb
r = (νb

1r, . . . , ν
b
nsr)

t

, µ = (µ1, . . . , µns)
t

, and K
s
r is the symmetric

reaction constant. We define νkr = νb
kr − νf

kr, k ∈ S, r ∈ R, and the reaction vectors νr =
(ν1r, . . . , νnsr)

t

, r ∈ R, so that νr = νb
r − νf

r, and we denote by R = span{ νr, r ∈ R } the linear
space spanned by the vectors νr, r ∈ R.

2.6 Mathematical assumptions

We describe in this section the mathematical assumptions concerning thermochemistry, and, partly,
the assumptions concerning transport coefficients.

2.6.1 Assumption on thermothermochemistry

The species of the mixture are assumed to be constituted by neutral atoms and electrons. We
denote by A = {1, . . . , na} the atom indexing set, na the number of atoms in the mixture, m̃l,
l ∈ A, the atom masses and akl the number of lth atoms in the kth species. We also introduce the
atomic vectors al, l ∈ A, defined by al = (a1l, . . . , ansl)

t

, l ∈ A. We define ak0 as the number of
electrons in the kth species and for notational convenience, we define A = {0} ∪ A = {0, . . . , na}.
We also assume that the electron species is present in the mixture as well as one neutral species
and one positively charged species. For notational convenience, we assume that the last species
in the mixture is the electron species. Since we will ultimately investigate the limit of vanishing
electron mass, we will only assume that the electron mass mns is nonnegative. We define the mass
vector m and the charge vector κ by

m = (m1, . . . , mns)
t

, κ = (κ1, . . . , κns)
t

,

and the unit vector u by u = (1, . . . , 1)
t

. We also define the mole fraction of the kth species
xk by xk = γk/

∑
l∈S

γl, and the mass fractions of the kth species by yk = ρk/
∑

l∈S
ρl so that

yk = mkγk/
∑

l∈S
mlγl. We correspondingly define the mole fractions vector x = (x1, . . . , xns)t

and the mass fraction vector y = (y1, . . . , yns)
t

.

(Th1) The nonelectron species molar masses mk, k ∈ S, k 6= ns, and the gas constant R are

positive constants. The electron molar mass mns = m̃0 is nonnegative. The formation

energies Est
k , k ∈ S, and the formation entropies Sst

k , k ∈ S, are constants. The molar

specific heats Cv,k, k ∈ S, are C∞ functions of T > 0 and there exist positive constants cv

and cv with 0 < cv 6 Cv,k(T ) 6 cv, for T > 0 and k ∈ S.

(Th2) The atom molar masses m̃l, l ∈ A, are positive constants and the species molar masses

mk, k ∈ S, are given by

mk =
∑

l∈A

m̃lakl + m̃0ak0, k ∈ S.

7
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We also have the proportionality relation κk = −αak0, k ∈ S, where α is a positive

constant which represents the absolute value of electron charge per unit mole.

(Th3) The stoichiometric coefficients ν f
kr and νb

kr, k ∈ S, r ∈ R, and the atomic coefficients akl,

k ∈ S, l ∈ A, are nonnegative integers. The numbers of electrons ak0, k ∈ S, l ∈ A,

are integers. The atomic vectors al, l ∈ A, and the reaction vectors νr, r ∈ R, satisfy the

conservation relations 〈νr, al〉 = 0, r ∈ R, l ∈ A. This relation expresses atom conservation

for l ∈ A and charge conservation for l = 0.

(Th4) The rate constants K
s
r, r ∈ R, are C∞ positive functions of T > 0.

(Th5) There exists at least a positive ionized species such that κk > 0, a neutral species such that

κk = 0, and we assume that the last species is constituted by electrons so that κns < 0.

These assumption imply in particular the vector properties al ∈ R⊥, l ∈ A, and a0 ∈ R⊥, where
R = span{ νr, r ∈ R }. In addition, we have the vector relations m =

∑
l∈A

m̃lal + m̃0a0, so that

m ∈ R⊥, and κ = −αa0, so that κ ∈ R⊥. Note that with (Th5) the vectors ρy = (ρ1, . . . , ρns)
t

and
z = (z1, . . . , zns)t are linearly independent, as are the vectors m and κ. Defining m′

k =
∑

l∈A
m̃lakl

and ρ′ =
∑

16k6ns−1 m′
kγk we also have ρ = ρ′ − m̃0q/α. Finally, the presence of a neutral species

in the model is not strictly needed, but somewhat simplifies the presentation, especially for deriving
explicit normal forms.

2.6.2 Assumptions on transport coefficients

We introduce a first set of assumptions concerning the transport coefficients which is only valid for
positive electron mass. These assumptions will be generalized in order to encompass the limiting
case of zero electron mass in the next section.

(tr1) The multicomponent diffusion coefficients Dkl, k, l ∈ S, the thermal diffusion ratios χk,

k ∈ S, the volume viscosity κ, the shear viscosity η and the thermal conductivity λ are C∞

functions of (T, γ), where γ = (γ1, . . . , γns)
t

, for T > 0 and γ > 0.

(tr2) The thermal conductivity λ and the shear viscosity η are positive functions. The volume

viscosity κ is a nonnegative function.

(tr3) For γ > 0 and T > 0, the matrix D = (Dkl)k,l is real symmetric positive semidefinite and

its nullspace is spanned by the vector y = (y1, . . . , yns)t. The thermal diffusion ratios χk,

k ∈ S, verify the relation 〈χ, u〉 = 0.

These properties have important consequences for the matrix D̂ of effective diffusion coefficients
defined in (2.9).

Lemma 2.1 Under Assumptions (Th1-Th5) and (tr1-tr3) the matrix D̂ is symmetric positive

semidefinite. Its nullspace is spanned by the vectors y and z, where zk = γkκk, k ∈ S, so that

N(D̂) = Ry ⊕ Rz and R(D̂) = span(y, z)⊥.

Proof. First note that y and z are non zero since γ > 0 and are not proportional since there
exists positively as well as negatively charged species. This implies that 〈Dz, z〉 > 0 so that D̂ is
well defined. After a little algebra, we obtain that

〈D̂x, x〉 =

〈
D

(
x − 〈Dx, z〉

〈Dz, z〉z
)

, x − 〈Dx, z〉
〈Dz, z〉z

〉
.
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The properties of D̂ are then directly deduced form the properties of D. �

2.7 Quasilinear formulation

The relations (2.9) (2.10) imply that conduction current j vanishes, so that the charge q remains
zero if it is initially zero. As a consequence, the momentum and energy conservation equations can
be simplified into

∂t(ρv) + ∂x·(ρv⊗v + pI) + ∂x·Π = 0, (2.13)

∂t(E + 1
2ρv ·v) + ∂x·

(
(E + 1

2ρv ·v + p)v
)

+ ∂x·(Q + Π·v) = 0. (2.14)

Whenever neutrality holds, one could further express γns in terms of the heavy species molar
densities, and eliminate completely the electrons from the governing equations. This simplification,
however, will not be used in this paper, since it forbids symmetrization of the resulting system
of partial differential equations. Similarly, since the mass density can written ρ = ρ′ − m̃0q/α

where ρ′ =
∑ns−1

K=1 m′
kγk, one could use ρ′ instead of ρ in the governing equations, but this simpler

formulation is not needed in the following.

We introduce a compact notation that will be used in the following. We define the conservative
variable U by

U =
(
γ1, . . . , γns , ρv1, ρv2, ρv3, E + 1

2ρv ·v
)
t

, (2.15)

and the natural variable Z by

Z =
(
γ1, . . . , γns , v1, v2, v3, T

)
t

. (2.16)

The components of U naturally appear as conserved quantities in the molar formulation of the
system of partial differential equations governing ambipolar plasmas. On the other hand, the
components of the natural variable Z are more practical to use in actual calculations of differential
identities.

The conservation equations can be written in the compact form

∂tU +
∑

i∈C

∂iFi +
∑

i∈C

∂iF
diss
i = Ω, (2.17)

where C denotes the set {1, 2, 3}, Fi the convective flux in the ith direction, Fdiss
i the dissipative

flux in the ith direction, and Ω is the source term. The source term Ω given by

Ω =
(
ω1, . . . , ωns , 0, 0, 0, 0

)
t

, (2.18)

and the convective flux Fi by

Fi =
(
γ1vi, . . . , γnsvi, ρv1vi + δi1p, ρv2vi + δi2p, ρv3vi + δi3p, (E + 1

2ρv ·v + p)vi

)
t

, (2.19)

The dissipative flux Fdiss
i can de decomposed into

Fdiss
i = Fdiff

i + Fvisc
i , (2.20)

9
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where Fvisc
i , the viscous flux, and Fdiff

i , the diffusion flux, are defined by

Fvisc
i =

(
0, . . . , 0, Πi1, Πi2, Πi3,

∑

j∈C

Πijvj

)
t

Fdiff
i =

(
F1i, . . . ,Fnsi, 0, 0, 0,Qi

)
t

.

The convective and dissipative fluxes are naturally given in terms of the natural variable Z.
In order to relate the natural variable Z to the conservative variable U, we investigate the map
Z 7→ U. We introduce the open sets OZ and OU defined by

OZ = (R∗
+)

ns

×R
3×R

∗
+,

OU = {u ∈ R
ns+4 : u1, . . . , uns > 0, uns+4 > f(ui)},

where f is the map from (R∗
+)

ns

×R3 in R given by

f(u) = 1
2

u2
ns+1 + u2

ns+2 + u2
ns+3∑

i∈S
miui

+
∑

i∈S

uiE
0
i , (2.21)

and E0
i is the internal energy per unit mole at zero temperature. The following lemma is easily

established as in the neutral case[10].

Lemma 2.2 Assume that properties (Th1-Th5) hold. The map Z 7→ U is a C∞ diffeomorphism

from the open set OZ onto the open convex set OU.

As a consequence of this lemma, and from the expressions of convective and dissipative fluxes
in terms of Z, we can rewrite (2.17) as a quasilinear form in the conservative variable U

∂tU +
∑

i∈C

Ai(U)∂iU =
∑

i,j∈C

∂i

(
Bij(U)∂jU

)
+ Ω(U), (2.22)

where Ai = ∂UFi and Fdiss
i = −

∑
j∈C Bij(U)∂jU, i ∈ C.

3 Vanishing electron mass

The asymptotic stability of equilibrium states for the quasilinear system of partial differential
equations modeling ambipolar plasmas (2.22) is, in itself, an important question. We note, however,
that this system also depends on numerous parameters such as thermal conductivity and chemical
reaction rate constants. This is a strong motivation for further investigating the dependence of
solutions on the system parameters. This will be done in the next sections under the assumption
that the system coefficients depend smoothly on the parameters under consideration.

One of these parameters, often used in the physical modeling, is the electron mass mns = m̃0,
which is generally let to be zero. In order to investigate this limit, the dependence of the system
coefficients on the electron mass must be clarified. The thermodynamic assumptions (Th1-Th5)
can be used for any nonnegative electron mass and need not be modified. However, the transport
properties (th1-th3) are only valid for positive electron mass and must be replaced.

In order to do so, we need to explicit the dependence of multicomponent diffusion matrices on
binary diffusion coefficients and investigate the limit of the diffusion coefficients D̂ for vanishing
electron mass.

10
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3.1 Definition of D as a generalized inverse

We introduce the matrix ∆ defined by





∆kk =
∑

l∈S
l6=k

xkxl

Dbin
kl

, k ∈ S,

∆kl = − xkxl

Dbin
kl

, k, l ∈ S, k 6= l,

(3.1)

where Dbin
kl is the binary diffusion coefficient for the species pair (k, l) and xk the mole fraction of

the kth species given by xk = γk/
∑

l∈S
γl. These coefficients Dbin

kl are only defined for positive

species masses. In a first order theory, Dbin
kl only depends on pressure and temperature Dbin

kl =
Dbin

kl (T, p). More generally, for more accurate multicomponent diffusion coefficients, the quantities
Dbin

kl , k, l ∈ S, are Schur complements from transport linear systems of size larger than ns, and
are then functions of T , p, and γ, but have similar properties[3]. The following properties of the
matrix ∆ are easily established[6, 7].

Proposition 3.1 Assume that the coefficients Dbin
kl , k, l ∈ S, k 6= l, are positive and symmetric,

and that γ > 0. Then ∆ is symmetric positive semidefinite, N(∆) = R u where u = (1, . . . , 1)
t

,

R(∆) = u⊥, ∆ is irreducible and a singular M -matrix.

We define the mass fractions by yk = ρk/
∑

l∈S
ρl = mkγk/

∑
l∈S

mlγl and the mass fraction

vector y = (y1, . . . , yns)
t

. The multicomponent diffusion matrix D can then be defined as a proper
generalized inverse of ∆[6, 7].

Proposition 3.2 Keeping the assumptions of Proposition 3.1 there exists a unique generalized

inverse D of ∆ with prescribed range y⊥ and nullspace Ry, that is, a the unique matrix D such

that D∆D = D, ∆D∆ = ∆, R(D) = y⊥, and N(D) = Ry. This matrix D is positive semidefinite,

we have ∆D = I − y⊗ u, D∆ = I − u⊗ y, and, for a, b positive with ab = 1, we have D =
(∆ + ay⊗y)−1 − bu⊗u. The coefficients of D are smooth functions of (T, γ) for T > 0, γ > 0,
provided that the binary diffusion coefficients are smooth functions of (T, γ) so that the assumptions

concerning D in (tr1-tr3) hold.

These results can easily be extended to the case of the matrix D̂. More specifically, when
neutrality holds, that is, q = 〈z, u〉 = 0, there exists a unique w such that ∆w = z and 〈w, y〉 = 0.

Introducing the matrix ∆̂ = ∆ − z⊗z/〈w, z〉, one can establish that D̂ is the generalized inverse

of ∆̂ with prescribed nullspace Ry ⊕ Rz and range span(y, z)⊥. However, these results will not be

needed in the following where we will directly use the relation (2.9) defining D̂ from D.

On the other hand, from the kinetic theory of gases we have

Dbin
kl = O

( 1√
mkml

)
, (3.2)

and the quantity Dbin
kl

√
mkml can be assumed to be smooth. Therefore, electron diffusivities Dbin

kns ,
k ∈ S, k 6= ns, explode for vanishing electron mass mns → 0.

11
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3.2 Diffusion matrices for vanishing electron mass

In this section, we specify the assumptions concerning the asymptotic limit of vanishing electron
mass. We define the small parameter ε by

ε = (mns/m̄)1/2,

where m̄ is a characteristic mass of heavy species, that is, nonelectron species, and we investigate
the behavior of the system coefficients as ε → 0. We will denote by [0, ε̄] an interval of relevant
values for ε such that heavy species masses stay away from zero, so that (Th1-Th5) are satisfied,
where ε̄ > 0 is fixed. From relations (3.2), electron diffusivities Dbin

kns , k ∈ S, k 6= ns, goes to
infinity as ε → 0 and we set





Dbin
kl = Ďbin

kl , k 6= l, k 6= ns and l 6= ns,

Dbin
kl = 1

ε Ďbin
kl , k 6= l, k = ns or l = ns,

(3.3)

where the coeffcients Ďbin
kl are assumed to be smooth functions of the state variables T > 0, γ > 0

and of the parameter ε ∈ [0, ε̄]. The properties (tr1-tr3) only hold for positive species mass, that is

for ε > 0 and we have now to establish that D̂ depends smoothly on the reduced mass ε and to
identify its limit as ε → 0, thereby removing the sigular behavior at ε = 0.

In order to investigate the limit of D̂ as ε → 0, it is convenient to introduce a partitioning
of the species S = {1 . . . , ns} between heavy species h = {1, . . . , ns − 1} and electrons e = {ns}.
Correspondingly, there is a block decomposition of vectors x ∈ Rns

in the form x = (xh, xe)
t

and of
matrices M ∈ Rn,n such that y = Mx if and only if yh = Mhhxh+Mhexe and ye = M ehxh+M eexe.
The matrix ∆ admits in particular the block decomposition

∆ =

[
∆hh ∆he

∆eh ∆ee

]
=

[
∆̌hh ε∆̌he

ε∆̌eh ε∆̌ee

]
, (3.4)

where the coefficients of ∆̌ are smooth functions of T > 0, γ > 0 and ε ∈ [0, ε̄] and are defined as
in (3.1) with Dbin

kl replaced by Ďbin
kl . We will denote by ∆hh

0 the matrix ∆hh = ∆̌hh obtained for
ε = 0, and by yh

0 the vector yh obtained for ε = 0, keeping in mind that mk, k ∈ S, depend on ε
from (Th2).

Proposition 3.3 Assume that the coefficients Ďbin
kl , k, l ∈ S, k 6= l, are positive and symmetric,

and smooth functions of T > 0, γ > 0 and ε ∈ [0, ε̄]. There exists coefficients Ď which are smooth

functions of T > 0, γ > 0, and ε ∈ [0, ε̄] such that for any ε > 0 we have

D =




Ďhh Ďhe

Ďeh
1

ε
Ďee


 .

Moreover, the matrix Ďhh
0 obtained for ε = 0 is the diffusion matrix between heavy species in the

absence of electrons, that is, Ďhh
0 is the generalized inverse of ∆hh

0 with nullspace Ryh
0 and range

(yh
0)⊥. Finally the scalar coefficient Ďee

0 obtained for ε = 0 if a positive function of T > 0 and

γ > 0.

Proof. From (3.4) we can introduce the matrices

∆up =

[
∆̌hh ε∆̌he

∆̌eh ∆̌ee

]
, ∆lo =

[
∆̌hh ∆̌he

ε∆̌eh ∆̌ee

]
,

12
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which are smooth functions of T > 0, γ > 0 and ε ∈ [0, ε̄]. From the properties of ∆, it is easily
obtained that for ε ∈ [0, ε̄] we have N(∆up) = Ru, R(∆up) = ũ⊥, N(∆lo) = Rũ, R(∆lo) = u⊥,

where we have defined ũ = (uh, ε)
t

. From the definition of ε we also have y = (yh, ye)
t

with ye = ε2y̌e

where y̌e is independent of ε, and we define ỹ = (yh, εy̌e)
t

. We now introduce the generalized inverse
Dup of ∆up with range R(Dup) = y⊥ and nullspace N(Dup) = Rỹ, and the generalized inverse
Dlo of ∆lo with range R(Dlo) = ỹ⊥ and nullspace N(Dlo) = Ry. These matrices Dup and Dlo are
well defined for any ε ∈ [0, ε̄] since N(∆up) ⊕ y⊥ = Rns

, R(∆up) ⊕ Rỹ = Rns

, N(∆lo) ⊕ ỹ⊥ = Rns

,
R(∆lo) ⊕ Ry = Rns

, thanks to 〈y, u〉 = 〈ỹ, ũ〉 = 1. In addition, these matrices Dup and Dlo are
smooth functions of T > 0, γ > 0 and ε ∈ [0, ε̄] since for any positive α, β with αβ = 1 we have

(Dlo + αũ⊗u)(∆lo + βy⊗ỹ) = (Dup + αu⊗ũ)(∆up + βỹ⊗y) = I.

Denoting by M the diagonal matrix M = Diag(1, . . . , 1, ε), it is easily seen that for any positive ε
we have ∆ = M∆up = ∆loM and D = DupM−1 = M−1Dlo. These relations yield in particular that
Dup = (Dlo)

t

so that Dhh = (Dup)hh = (Dlo)hh, Dhe = (Dup)he/ε = (Dlo)he, Deh = (Dup)eh =
(Dlo)eh/ε, and Dee = (Dup)ee/ε = (Dlo)ee/ε. This shows in particular that Dhh, Dhe, and Deh

are smooth functions of T > 0, γ > 0 and ε ∈ [0, ε̄]. The identification of ∆hh
0 results from simple

algebraic manipulations making use of the properties of D and ∆ of thanks to mns = m̄ε2. In
addition, we have for ε = 0 that (Dup

0 )ee = (Dlo
0 )ee = 1/∆ee

0 and it is easily deduced from the
general properties of diagonal diffusion coefficients[7] that (∆up)ee is a positive function of T > 0,
γ > 0 and ε ∈ [0, ε̄]. �

We can now establish that D̂ is a smooth function of T > 0, γ > 0, and ε ∈ [0, ε̄].

Proposition 3.4 Assume that the coefficients Ďbin
kl , k, l ∈ S, k 6= l, are positive, symmetric, and

smooth functions of T > 0, γ > 0 and ε ∈ [0, ε̄]. Then the matrix D̂ is a smooth function of T > 0,
γ > 0, ε ∈ [0, ε̄]. Moreover, defining zk = zk/zns for k ∈ {1, . . . , ns − 1}, its limit as ε → 0 is given

by

lim
ε→0

D̂(ε) =

[
Ďhh

0 −Ďhh
0 zh

−(Ďhh
0 zh)

t 〈Ďhh
0 zh, zh〉

]
.

Proof. The smoothness of D̂ for positive ε is a direct consequence of the smoothness of D. The
only nontrivial part of this proposition concerns the behavior for small ε. We first note that

〈Dz, z〉 =
(ze)2

ε

(
Ďee + 2εĎehzh + ε〈Ďhhzh, zh〉

)
,

so that for the block D̂hh it is easily obtained that

D̂hh = Ďhh − ε
(Ďhhzh + Ďhe)⊗(Ďhhzh + Ďhe)

Ďee + 2εĎehzh + ε〈Ďhhzh, zh〉
.

This expression shows that D̂hh is smooth up to ε = 0 and converges to D̂hh
0 as ε → 0. For the

term D̂he we can write that

D̂he = Ďhe − (Ďhhzh + Ďhe)(Ďee + εĎehzh)

Ďee + 2εĎehzh + ε〈Ďhhzh, zh〉
,

13
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so that D̂he is smooth up to ε = 0 and converge to −D̂hh
0 zh

0 as ε → 0. Thanks to the symmetry of

D̂, the term D̂eh is similar. Finally, the last term reads

D̂ee =
1

ε

(
Ďee − (Ďee + εĎehzh)2

Ďee + 2εĎehzh + ε〈Ďhhzh, zh〉
,
)
,

and can be recast in the form

D̂ee =
Ďee〈Ďhhzh, zh〉 − ε(Ďehzh)2

Ďee + 2εĎehzh + ε〈Ďhhzh, zh〉
,

and there is a remarquable cancellation of singularity. This term is thus smooth up to ε = 0 and
converges to 〈Ďhh

0 zh, zh〉 as ε → 0. �

Remark. The limiting transport coefficients obtained with D̂hh
0 can also be obtained by letting

dns = 0, so that E = −pd0
ns/zns , and by substituting this relation in the expression of the diffusion

velocities (2.5) (2.6). This relation can also be obtained by letting the electron mass to go to zero
in an electron momentum conservation equation.

3.3 Assumptions for vanishing electron mass

As a consequence of the results obtained in the preceding sections, we can reformulate the assump-
tions on transport coefficients as follows.

(Tr1) The effective multicomponent diffusion coefficients D̂kl, k, l ∈ S, the thermal diffusion

ratios χk, k ∈ S, the volume viscosity κ, the shear viscosity η, and the conductivity λ are

C∞ functions of T > 0, γ > 0 and ε ∈ [0, ε̄].

(Tr2) The thermal conductivity λ and the shear viscosity η are positive functions. The volume

viscosity κ is a nonnegative function.

(Tr3) For γ > 0, T > 0, and ε ∈ [0, ε̄], the matrix D̂ = (D̂)k,l is real symmetric positive

semidefinite and its nullspace is spanned by the vectors y and z. The thermal diffusion

ratios χk, k ∈ S, verify the relation 〈χ, u〉 = 0.

We can finally rewrite the quasilinear system (2.22) in the form

∂tU +
∑

i∈C

Ai(U, ε)∂iU =
∑

i,j∈C

∂i

(
Bij(U, ε)∂jU

)
+ Ω(U, ε), (3.5)

where we have emphasized the dependence of the coefficients on the reduced electron mass param-
eter ε. The system coefficients of (3.5) are naturally defined in the open domain (U, ε) ∈ O(U,ε)

where

O(U,ε) = {(U, ε) ∈ R
ns+4 : U1, . . . , Uns > 0, ε > 0, Uns+4 > f(U1, . . . , Uns+3, ε)},

where f is the map introduced in (2.21) which depends on ε through the species mass mk, k ∈ S.
We have seen, in addition, that the system coefficients can be smoothly extended up to ε = 0.
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4 Local existence for an abstract system

In this section, we investigate symmetrization and local existence of solutions for hyperbolic–
parabolic systems depending on a parameter.

4.1 Conservative symmetrization

We consider an abstract second-order quasilinear system depending on a parameter in the form

∂tU
∗ +

∑

i∈C∗

A∗
i (U

∗, ε∗)∂iU
∗ =

∑

i,j∈C∗

∂i(B
∗
ij(U

∗, ε∗)∂jU
∗) + Ω∗(U∗, ε∗), (4.1)

where (U∗, ε∗) ∈ O(U∗,ε∗), O(U∗,ε∗) is an open set of Rn∗×Rm∗

, and C∗ = {1, . . . , d} denotes the

direction indices of Rd. Note that the superscript ∗ is used to distinguish between the abstract
second-order system (4.1) of size n∗ in Rd with ε∗ of size m∗ and the particular ambipolar plasmas
system (3.5) of size ns+4 in R3 with ε the reduced electron mass. All quantities associated with the
abstract system have the corresponding superscript ∗, so that, for instance, the unknown vector
is U∗. We consider open domains O(U∗,ε∗), for the sake of simplicity, and assume that the slices

Oε∗

U∗ = {U∗ ∈ Rn∗

; (U∗, ε∗) ∈ O(U∗,ε∗)} are convex for all ε∗. We assume that the following properties

hold for system (4.1).

(Edp1) The convective fluxes F∗
i , i ∈ C∗, dissipation matrices B∗

ij , i, j ∈ C∗, and source term Ω∗

are smooth functions of the variable (U∗, ε∗) ∈ O(U∗,ε∗).

The following definition of a symmetric (conservative) form for the system (4.1) is adapted
from Kawashima and Shizuta [13].

Definition 4.1 Consider a C∞ dipheomorphism (U∗, ε∗) → (V∗, ε∗) from the open domain O(U∗,ε∗)

onto an open domain O(V∗,ε∗) and consider the system in the V∗ variable

Ã∗
0(V

∗, ε∗)∂tV
∗ +

∑

i∈C∗

Ã∗
i (V

∗, ε∗)∂iV
∗ =

∑

i,j∈C∗

∂i

(
B̃∗

ij(V
∗, ε∗)∂jV

∗
)

+ Ω̃∗(V∗, ε∗), (4.2)

where {
Ã∗

0 = ∂
V∗U∗, Ã∗

i = A∗
i ∂V∗U∗ = ∂

V∗F∗
i ,

B̃∗
ij = B∗

ij∂V∗U∗, Ω̃∗ = Ω∗.
(4.3)

The system is said of the symmetric form if the matrices Ã∗
0, Ã∗

i , i ∈ C∗, and B̃∗
ij , i, j ∈ C∗,

verify the following properties (S1-S4).

(S1) The matrix Ã∗
0(V

∗, ε∗) is symmetric positive definite for (V∗, ε∗)∈O(V∗,ε∗).

(S2) The matrices Ã∗
i (V

∗, ε∗), i ∈ C∗, are symmetric for (V∗, ε∗) ∈ O(V∗,ε∗).

(S3) We have B̃∗
ij(V

∗, ε∗)
t

= B̃∗
ji(V

∗, ε∗) for i, j ∈ C∗, and (V∗, ε∗) ∈ O(V∗,ε∗).

(S4) The matrix B̃∗(V∗, ε∗, w) =
∑

i,j∈C∗ B̃∗
ij(V

∗, ε∗)wiwj is symmetric and positive semidefinite,

for (V∗, ε∗) ∈ O(V∗,ε∗), and w ∈ Σd−1, where Σd−1 is the unit sphere in d dimensions.
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The following generalized definition of an entropy function is adapted from Kawashima[12] and
Kawashima and shizuta[13].

Definition 4.2 Consider a C∞ function σ∗(U∗, ε∗) defined over the open domain O(U∗,ε∗) such that

the slices Oε∗

U∗ = {U∗ ∈ Rn∗

; (U∗, ε∗) ∈ O(U∗,ε∗)} are convex. The function σ∗ is said to be an entropy

function for the system (4.1) if the following properties hold.

(E1) The function σ∗ is a strictly convex function of U∗ ∈ Oε∗

U∗ in the sense that the Hessian

matrix is positive definite in each slice Oε∗

U∗ .

(E2) There exists real-valued C∞ functions q∗
i = q∗i (U

∗, ε∗) such that

(
∂U∗σ∗

)
A∗

i = ∂U∗q
∗
i , i ∈ C∗, (U∗, ε∗) ∈ O(U∗,ε∗).

(E3) We have the property that, for any (U∗, ε∗) ∈ O(U∗,ε∗)

(
∂2

U∗σ∗
)−1

(B∗
ij)

t

= B∗
ji

(
∂2

U∗σ∗
)−1

, i, j ∈ C∗.

(E4) The matrix B̃∗ =
∑

i,j∈C∗ B∗
ij(U

∗, ε∗)
(
∂2

U∗σ∗(U∗, ε∗)
)−1

wiwj is symmetric positive semidef-

inite for any (U∗, ε∗) ∈ O(U∗,ε∗) and w ∈ Σd−1.

Kawashima and Shizuta have established[13, 7] the equivalence between conservative sym-
metrizability and the existence of an entropy function. For systems depending on a parameter
ε∗, some limitations on the domains O(U∗,ε∗) seems necessary, like the smoothness of the slices

ε∗ → Oε∗

U∗ , using local charts. In order to avoid such technicalities, we only give a simplified
version of an equivalence theorem, sufficient for our application to ambipolar plasmas.

Theorem 4.3 Assume that the system (4.1) admits an entropy function σ∗ defined over O(U∗,ε∗).

Then, the system can be symmetrized over O(U∗,ε∗) with the symmetrizing variable V∗ = (∂
U∗σ∗)t.

Conversely, assume that the system can be symmetrized, and that, for the sake of simplicity, the

open O(V∗,ε∗) is in the form O(V∗,ε∗) = O
V∗×Oε∗ where O

V∗ ⊂ R
n∗

is independent of ε∗ and Oε∗ ⊂
R

m∗

independent of V∗. Then there exists an entropy defined on O(U∗,ε∗) such that V∗ = (∂
U∗σ∗)

t

.

4.2 Normal form

We assume that the abstract quasilinear system (4.1) satisfies

(Edp2) The system (4.1) admits an entropy function σ∗ on the open set O(U∗,ε∗) and the slices

Oε∗

U∗ = {U∗ ∈ Rn∗

; (U∗, ε∗) ∈ O(U∗,ε∗)} are convex.

Introducing the symmetrizing variable V∗ = (∂
U∗σ∗)

t

, the corresponding symmetric system (4.2)
then satisfies Properties (S1-S4). However, depending on the range of the dissipation matrices

B̃∗
ij , this system lies between the two limit cases of a hyperbolic system and a strongly parabolic

system. In order to split the variables between hyperbolic and parabolic variables, we have to put
the system into a normal form, in the form of a symmetric hyperbolic–parabolic composite system.
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Introducing a new variable W∗, associated with a diffeomorphism from O(V∗,ε∗) onto O(W∗,ε∗),

and multiplying the conservative symmetric form (4.2) on the left side by the transpose of the
matrix ∂

W∗V∗, we then get a new system in the variable W∗ and have the following definition of a
normal form[13].

Definition 4.4 Consider a system in symmetric form, as in Definition 4.1, and a diffeomorphism

(V∗, ε∗) → (W∗, ε∗) from O(V∗,ε∗) onto an open set O(W∗,ε∗). The system in the new variable W∗

A
∗

0(W
∗, ε∗)∂tW

∗ +
∑

i∈C∗

A
∗

i (W
∗, ε∗)∂iW

∗ =
∑

i,j∈C∗

∂i

(
B
∗

ij(W
∗, ε∗)∂jW

∗
)
+ T ∗

(W∗, ε∗, ∂xW∗)+ Ω
∗
(W∗, ε∗),

(4.4)
where 




A
∗

0 = (∂
W∗V∗)

t

Ã∗
0 (∂

W∗V∗), B
∗

ij = (∂
W∗V∗)

t

B̃∗
ij (∂

W∗V∗),

A
∗

i = (∂
W∗V∗)

t

Ã∗
i (∂

W∗V∗), Ω
∗

= (∂
W∗V∗)

t

Ω̃∗,

T ∗
= −

∑
i,j∈C∗

∂i(∂W∗V∗)
t

B̃∗
ij (∂

W∗V∗)∂jW
∗,

(4.5)

satisfies properties (S1-S4) rewritten in terms of overbar quantities. This system is then said to

be of the normal form if there exists a partition of {1, . . . , n∗} into I = {1, . . . , n∗
0} and II =

{n∗
0 + 1, . . . , n∗}, such that the following properties hold.

(Nor1) The matrices A
∗

0 and B
∗

ij have the block structure

A
∗

0 =

(
A
∗i,i

0 0

0 A
∗ii,ii

0

)
, B

∗

ij =

(
0 0

0 B
∗ii,ii

ij

)
.

(Nor2) The matrix B
∗ii,ii

(W ∗, ε∗, w) =
∑

i,j∈C∗ B
∗ii,ii

ij (W ∗, ε∗)wiwj is positive definite, for (W∗, ε∗) ∈
O(W∗,ε∗), and w ∈ Σd−1.

(Nor3) Denoting ∂x = (∂1, . . . , ∂d)
t

, we have

T ∗
(W∗, ε∗, ∂xW∗) =

(
T ∗

i
(W∗, ε∗, ∂xW∗

ii
) , T ∗

ii
(W∗, ε∗, ∂xW∗)

)
t

,

where we have used the vector and matrix block structure induced by the partitioning of {1, . . . , n∗}
into I = {1, . . . , n∗

0} and II = {n∗
0 + 1, . . . , n∗}, so that we have W∗ = (W∗

i
, W∗

ii
)
t

, for instance.

A sufficient condition for system (4.2) to be recast into a normal form is that, for any fixed
value of ε∗, the nullspace naturally associated with dissipation matrices is a fixed subspace of R

n∗

.
This is Condition N introduced by Kawashima and Shizuta, which is now assumed to hold. We
strenghen this condition by assuming that there exists a smooth explicit representation of this
nullspace in terms of ε∗.

(Edp3) The nullspace of the matrix

B̃∗(V ∗, ε∗, w) =
∑

i,j∈C∗

B̃∗
ij(V

∗, ε∗)wiwj ,
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does not depend on V∗ and w ∈ Σd−1, we denote by n∗
0 its dimension n∗

0 = dim
(
N(B̃∗)

)
,

and we have B̃∗
ij(V

∗, ε∗)N(B̃∗) = 0, i, j ∈ C∗. Furthermore, there exists a C∞ application

ε∗ → P(ε∗) such that the first n∗
0 columns of P(ε∗) span the nullspace N(B̃∗).

In order to characterize more easily normal forms for symmetric systems of conservation laws
satisfying (Edp

1
-Edp

3
) we introduce the auxiliary variables[10, 7] U∗′ = PtU∗ and V∗′ = P−1V.

The dissipation matrices corresponding to these auxiliary variables have nonzero coefficients only
in the lower right block of size n∗ − n∗

0, where n∗
0 = dim

(
N(B̃∗)

)
. Normal symmetric forms are

then equivalently—and more easily—obtained from the V∗′ symmetric equation[10, 7]. A carefull
examination of the proof in Giovangigli and Massot reveals that the following theorem holds.

Theorem 4.5 Consider a system of conservation laws (4.2) that is symmetric in the sense of

Definition 4.1 and assume that the nullspace invariance property (Edp3) is satisfied. Denoting by

U∗′ = PtU∗ and V∗′ = P−1V, the usual auxiliary variable, any normal form of the system (4.2) is

given by a change of variable in the form

W∗ =
(
φi(U

∗′
i , ε∗), φii(V

∗′
ii , ε∗)

)
t

,

where φi and φii are two diffeomorphisms of Rn∗

0 × Rm∗

0 and Rn∗−n∗

0 × Rm∗

0 , respectively, and we

have

T ∗
(W∗, ε∗, ∂xW∗) =

(
0, T ∗

ii(W
∗, ε∗, ∂xW∗

ii)
)t

.

4.3 Local existence

In this section we investigate local existence of solutions around equilibrium states and the contin-
uous dependence of solutions with respect to a parameter. We consider a system of conservation
laws satisfying (Edp

1
-Edp

3
) and the additional property

(Edp4) The system (4.1) admits an equilibrium point U∗e independent of ε∗.

We will denote by V∗e and W∗e the equilibrium point in the V∗ and W∗ variables respectively. We
assume for convenience that the domain O(W∗,ε∗) contains a subset in the form OW∗ × Kε∗ where

OW∗ is an open set of Rn∗

independent of ε∗, such that W∗e ∈ OW∗ , and Kε∗ is a compact set of
Rm∗

. In the following, we investigate the dependence of local solutions on the parameter ε∗. We
will denote by ‖ • ‖l the norm in the Sobolev space W l

2(R
d) and otherwise ‖ • ‖A in the functional

space A.

Theorem 4.6 Let d > 1 and l > [d/2]+2 be integers and let b > 0 be given. Let O0 be given such

that O0 ⊂ OW∗ , d1 such that 0 < d1 < d(O0, ∂OW∗), and define O1 = {W∗ ∈ OW∗ ; d(W∗,O0) <
d1 }. Then there exists τ̄ > 0 small enough, which only depend on O1, b, and Kε∗, such that for

any W∗0 with ‖W∗0 − W∗e‖l < b and W∗0 ∈ O0, and any ε∗ ∈ Kε∗, there exists a unique local

solution W∗ to the system

A
∗

0∂tW
∗ +

∑

i∈C∗

A
∗

i ∂iW
∗ =

∑

i,j∈C∗

∂i

(
B
∗

ij∂jW
∗
)

+ T ∗
+ Ω

∗
,

with initial condition

W∗(0, x) = W∗0(x),
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such that

W∗(t, x) ∈ O1,

and
W∗

i − W∗e
i ∈ C0

(
[0, τ̄ ], W l

2(R
d)
)
∩ C1

(
[0, τ̄ ], W l−1

2 (Rd)
)
,

W∗
ii
− W∗e

ii
∈ C0

(
[0, τ̄ ], W l

2(R
d)
)
∩ C1

(
[0, τ̄ ], W l−2

2 (Rd)
)
∩ L2

(
(0, τ̄ ), W l+1

2 (Rd)
)
.

In addition, there exists C > 0 which only depend on O1, b, and Kε∗, such that

sup
06τ6τ̄

‖W ∗(τ) − W∗e‖2
l +

∫ τ̄

0

‖W∗
ii
(τ) − W∗e

ii
‖2

l+1 dτ 6 C‖W∗0 − W∗e‖2

l . (4.6)

Finally, if W∗ is the solution corresponding to the initial state W∗0(x) and parameter ε∗ and Ŵ∗

is the solution corresponding to the initial state Ŵ∗0(x) and parameter ε̂∗, we have the estimate

sup
06τ6τ̄

‖W∗(τ) − Ŵ∗(τ)‖2

l−1 +

∫ τ̄

0

‖W∗
ii(τ) − Ŵ∗

ii(τ)‖
2

l dτ 6 C
(
‖W∗0 − Ŵ∗0‖2

l−1 +δ2
l−1(ε

∗, ε̂∗)
)
, (4.7)

where C > 0 only depends O1, b, and Kε∗ , and where

δl−1(ε
∗, ε̂∗) =

∣∣A∗

0(·, ε∗) − A
∗

0(·, ε̂∗)
∣∣
Cl−1(O1)

+
∑

i∈C∗

∣∣A∗

i (·, ε∗) − A
∗

i (·, ε̂∗)
∣∣
Cl−1(O1)

+
∑

i,j∈C∗

∣∣B∗

ij(·, ε∗) − B
∗

ij(·, ε̂∗)
∣∣
Cl−1(O1)

+
∣∣Ω∗

(·, ε∗) − Ω
∗
(·, ε̂∗)

∣∣
Cl−1(O1)

.

Proof. Solutions to the nonlinear system (4.4) are fixed points W̃ = W of the linear equations[12]





A
∗i,i

0 (W∗, ε)∂tW̃
∗
i +

∑
i∈C∗ A

∗i,i

i (W∗, ε∗)∂iW̃
∗
i = f∗i (W∗, ∂xW∗

ii, ε
∗),

A
∗ii,ii

0 (W∗, ε∗)∂tW̃
∗
ii
−∑i,j∈C∗ B

∗ii,ii

ij (W∗, ε∗)∂i∂jW̃
∗
ii

= f∗
ii
(W∗, ∂xW∗, ε∗),

(4.8)

with

f∗i = −
∑

i∈C∗

A
∗i,ii

i (W∗, ε∗)∂iW
∗
ii + Ω

∗

i (W
∗, ε∗),

f∗ii = −
∑

i∈C∗

A
∗ii,ii

i (W∗, ε∗)∂iW
∗
ii −

∑

i∈C∗

A
∗ii,i

i (W∗, ε∗)∂iW
∗
i

+T ∗

ii
(W∗, ε∗, ∂xW∗) + Ω

∗

i
(W∗, ε∗) +

∑

i,j∈C∗

∂i

(
B
∗ii,ii

ij

)
∂jW

∗
ii
,

and are hyperbolic in W̃∗
i and strongly parabolic in W̃∗

ii. Fixed points are investigated in the space
W∗ ∈ Xτ̄

(
O1, M, M1

)
defined by

W∗
i
− W∗e

i
∈ C0

(
[0, τ̄ ], W l

2(R
d)
)
, ∂tW

∗
i
∈ C0

(
[0, τ̄ ], W l−1

2 (Rd)
)
,

W∗
ii − W∗e

ii ∈ C0
(
[0, τ̄ ], W l

2(R
d)
)
∩ L2

(
(0, τ̄), W l+1

2 (Rd)
)
,

∂tW
∗
ii
∈ C0

(
[0, τ̄ ], W l−2

2 (Rd)
)
∩ L2

(
(0, τ̄), W l−1

2 (Rd)
)
,

W∗(t, x) ∈ O1,
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sup
06τ6τ̄

‖W∗(τ) − W∗e‖2
l +

∫ τ̄

0

‖W∗
ii
(τ) − W∗e

ii
‖2

l+1 dτ 6 M2,

and ∫ τ̄

0

‖∂tW
∗(τ)‖2

l−1 dτ 6 M2
1 .

For W∗ in Xτ̄

(
O1, M, M1

)
, and 2 6 k 6 l, we have the estimates[12]

‖W̃∗(t) − W∗e‖2

k +

∫ t

0

‖W̃∗
ii(τ) − W∗e

ii ‖
2

k+1 dτ 6 C2
1 exp

(
C2(t + M1

√
t )
)

×
(
‖W∗0 − W∗e‖2

k + C2t

∫ t

0

‖f∗i (τ)‖2
k dτ + C2

∫ t

0

‖f∗ii(τ)‖2
k−1 dτ

)
, (4.9)

where C1 = C1(O1, Kε∗) depends on O1 and Kε∗ and C2 = C2(O1, M, Kε∗) depends on O1, M , and
Kε∗ , and is an increasing function of M . From the classical estimates

‖f(φ) − f(0)‖l 6 C0‖f‖Cl(|·|6‖φ‖L∞)(1 + ‖φ‖L∞)l−1 ‖φ‖l,

where C0 is a universal constant, we also obtain upper bounds in the form

‖f∗
i
(t)‖2

l−1 + ‖f∗
ii
(t)‖2

l−1 6 C2M
2,

∫ t

0

‖f∗
i
(τ)‖2

l dτ 6 C2(1 + t)M2. (4.10)

From the governing equations, we also obtain

∫ τ̄

0

‖∂tW̃
∗(τ)‖2

l−1 dτ 6 C2
3

(
M̃2 + t(M2 + M̃2)

)
(4.11)

where M̃ is defined for W̃∗ as M for W∗ and C3 depends on O1, M , and Kε∗ , and is an increasing
function of M . We now define for any α ∈ (0, b]

Mα = 2C1(O1, Kε∗)α, M1α = 2C3(O1, Mb, Kε∗)2C1(O1, Kε∗)α.

Let then be τ̄ 6 3/2 small enough such that

exp
(
C2(O1, Mb, Kε∗)(τ̄ + M1b

√
τ̄ )
)

6 2,

C2
2 (O1, Mb, Kε∗)τ̄ (1 + τ̄ )

(
2C1(O1, Kε∗)

)2
6 1,

C0M1b

√
τ̄ < d1,

where ‖φ‖L∞ 6 C0‖φ‖l−1. Then, for any α ∈ (0, b], any W∗ ∈ Xτ̄

(
O1, Mα, M1α

)
any W∗0(x), such

that W∗0 − We ∈ W l
2(R

d), W∗0 ∈ O0, and ‖W∗0 − W∗e‖l < α, and any ε∗ ∈ Kε∗ , the solution W̃∗

to the linearized equations stays in the same space Xτ̄

(
O1, Mα, M1α

)
. More specifically, we obtain

from (4.9) and (4.10) that

M̃2
6 2C2

1α2
(
1 + 4C2

1C2
2 t(1 + 2t)

)
6 4C2

1α2 = M2
α

and from (4.11) we deduce that M̃2
1 6 C2

3 (2C1α)2(1+2t) 6 M2
1α, and finally that ‖W̃∗−W∗e‖L∞ 6

C0M1α

√
τ̄ < d1.
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In order to obtain fixed points, we establish that for τ̄ small enough, the map W∗ → W̃∗

is a contraction in all the spaces Xτ̄

(
O1, Mα, M1α

)
, α ∈ (0, b], and we establish simultaneously

inequality (4.7). Let W∗ and Ŵ∗ be in Xτ̄

(
O1, Mb, M1b

)
, let W∗0(x) and Ŵ∗0(x) such that W∗0 −

We ∈ W l
2(R

d), Ŵ∗0 − We ∈ W l
2(R

d), W∗0, Ŵ∗0 ∈ O0, ‖W∗0 − W∗e‖l < α, ‖Ŵ∗0 − W∗e‖l < α, let

ε∗, ε̂∗ ∈ Kε∗ , and define δW∗ = W∗ − Ŵ∗ and δW̃∗ = W̃∗ − ˜̂
W∗. Forming the difference between

the linearized equations, we obtain that




A
∗i,i

0 (W∗, ε)∂tδW̃
∗
i

+
∑

i∈C∗ A
∗i,i

i (W∗, ε∗)∂iδW̃
∗
i

= δ
w∗ f∗i + δε∗f

∗
i
,

A
∗ii,ii

0 (W∗, ε∗)∂tδW̃
∗
ii −

∑
i,j∈C∗ B

∗ii,ii

ij (W∗, ε∗)∂i∂jδW̃
∗
ii = δw∗ f∗ii + δε∗ f

∗
ii ,

(4.12)

where

δw∗ f
∗
i = A

i,i

0 (
�
W

∗
, ε

∗)
�
A

i,i

0 (W∗
, ε

∗) � −1

f
∗
i (W∗

, ∂xW
∗
ii, ε

∗)− f
∗
i (

�
W

∗
, ∂x �W∗

ii, ε
∗)

− �
i∈C∗

A
i,i

0 (
�
W

∗
, ε

∗)
�
A

i,i

0 (W∗
, ε

∗) � −1

A
i,i

i (W∗
, ε

∗)− A
i,i

i (
�
W

∗
, ε

∗) � ∂iW
∗
i ,

δw∗ f
∗
ii = A

i,i

0 (
�
W

∗
, ε

∗)
�
A

i,i

0 (W∗
, ε

∗) � −1

f
∗
ii (W

∗
, ∂xW

∗
, ε

∗)− f
∗
ii (

�
W

∗
, ∂x

�
W

∗
, ε

∗)

+ �
i,j∈C∗ � A

i,i

0 (
�
W

∗
, ε

∗)
�
A

i,i

0 (W∗
, ε

∗) � −1

B
ii,ii

ij (W∗
, ε

∗)− B
ii,ii

ij (
�
W

∗
, ε

∗) � ∂i∂jW
∗
ii,

δε∗ f
∗
i = � Ai,i

0 (
�
W

∗
, ε̂

∗)− A
i,i

0 (
�
W

∗
, ε

∗) � �
A

i,i

0 (W∗
, ε

∗) � −1

f
∗
i (W∗

, ∂xW
∗
ii, ε

∗)

− �
i∈C � A

i,i

0 (
�
W

∗
, ε̂

∗)− A
i,i

0 (
�
W

∗
, ε

∗) � �
A

i,i

0 (W∗
, ε

∗) � −1

A
i,i

i (
�
W

∗
, ε

∗)∂iW
∗
i

− �
i∈C � A

i,i

i (
�
W

∗
, ε̂

∗)− A
i,i

i (
�
W

∗
, ε

∗) � ∂iW
∗
i + f

∗
i (

�
W

∗
, ∂x �W∗

ii, ε̂
∗)− f

∗
i (

�
W

∗
, ∂x �W∗

ii, ε
∗)

and

δε∗ f
∗
ii = � A

ii,ii

0 (
�
W

∗
, ε̂

∗)− A
ii,ii

0 (
�
W

∗
, ε

∗) � �
A

ii,ii

0 (W∗
, ε

∗) � −1

f
∗
ii (W

∗
, ∂xW

∗
, ε

∗)

+ �
i,j∈C � A

ii,ii

0 (
�
W

∗
, ε̂

∗)− A
ii,ii

0 (
�
W

∗
, ε

∗) � �
A

ii,ii

0 (W∗
, ε

∗) � −1

B
ii,ii

ij (
�
W

∗
, ε

∗)∂i∂jW
∗
ii

+ �
i,j∈C � A

ii,ii

i (
�
W

∗
, ε̂

∗)−A
ii,ii

i (
�
W

∗
, ε

∗) � ∂i∂jW
∗
ii + f

∗
ii (

�
W

∗
, ∂x

�
W

∗
, ε̂

∗)− f
∗
ii (

�
W

∗
, ∂x

�
W

∗
, ε

∗).

These expression now imply that

‖δ
w∗ f∗i ‖2

l−1 + ‖δ
w∗ f∗ii‖2

l−2 6 C4

(
‖δW∗

i
‖2

l−1 + ‖δW∗
ii
‖2

l

)
,

‖δε∗f
∗
i ‖2

l−1 + ‖δε∗f
∗
ii‖2

l−2 6 C5δ
2
l−1(ε

∗, ε̂∗),

so that

sup
06τ6τ̄

‖δW̃∗(τ)‖2

l−1 +

∫ τ̄

0

‖δW̃∗
ii(τ)‖2

l dτ 6 C6

(
‖W∗0 − Ŵ∗0‖2

l−1 + δ2
l−1(ε

∗, ε̂∗)
)

+ C7t(1 + t)
(

sup
06τ6τ̄

‖δW∗(τ)‖2
l−1 +

∫ τ̄

0

‖δW∗
ii
(τ)‖2

l dτ
)
, (4.13)
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where all constants C4, C5, C6, C7, depend on O1, b, and Kε∗ . Now if τ̄ is small enough so that

C7τ̄(1 + τ̄) < 1/2, by letting W∗0 = Ŵ∗0 and ε∗ = ε̂∗, we obtain, that the map W∗ → W̃∗ is a
contraction in all the spaces Xτ̄

(
O1, Mα, M1α

)
, α ∈ (0, b]. Introducing the iterates W∗n starting

at the initial condition W∗0 and such that W∗(n+1) = W̃∗n, that is, W∗(n+1) is obtained as the
solution of linearized equations, then the sequence {W∗n}n>0 is easily shown to be convergent to
a local solution of the nonlinear equations satisfying the estimates (4.6) at order l − 1. Inequality

(4.7) is then obtained by letting δW̃∗ = δW∗ in (4.13). Finally, the estimates (4.6) at order l
are recovered since for any α ∈ (0, b], the space Xτ̄

(
O1, Mα, M1α

)
is invariant, and the proof is

complete. �

5 Global existence and asymptotic stability for an abstract

system

In this section we investigate asymptotic stability of equilibrium states for an abstract system
of conservation law in normal form and the continuous dependence of solutions with respect to
a parameter. We consider a system of conservation laws satisfying (Edp1-Edp4) and assume for
convenience either that the domain O(W∗,ε∗) contains a subset in the form OW∗ × Kε∗ , where OW∗

is an open set of Rn∗

independent of ε∗ and Kε∗ a compact set of Rm∗

independent of W∗, or that
there is a smooth extension of the system coefficients to such a domain.

5.1 Local dissipativity

If we linearize system (4.4) around the constant stationary state W∗e, we obtain a linear system
in the variable w∗ = W∗ − W∗e

A
∗

0(W
∗e, ε∗)∂tw

∗ +
∑

i∈C

A
∗

i (W
∗e, ε∗)∂iw

∗ =
∑

i,j∈C∗

B
∗

ij(W
∗e, ε∗)∂i∂jw

∗ − L
∗
(W∗e, ε∗)w∗,

where L
∗

is defined by L
∗

= −∂
W∗Ω

∗
. By Fourier transform, the spectral problem associated with

this linear system reads

λA
∗

0(W
∗e, ε∗)φ +

(
ζA

∗
(W∗e, w, ε∗) − ζ2B

∗
(W∗e, w, ε∗) + L

∗
(W∗e, ε∗)

)
φ = 0, (5.1)

where ζ ∈ i R, i2 = −1, w ∈ Σd−1, ε∗ ∈ Kε∗ ,

A
∗
(W∗e, w, ε∗) =

∑

i∈C∗

A
∗

i (W
∗e, ε∗)wi, and B

∗
(W∗e, w, ε∗) =

∑

i,j∈C∗

Bij(W
∗e, ε∗)wiwj .

We will denote by Λ(ζ, w, ε∗) the complex numbers λ such that there exists φ ∈ Cn∗

, φ 6= 0,
satisfying (5.1).

The results of Shizuta and Kawashima[15] can directly be generalized to parameter dependent
situations. The smoothness of compensating matrices is indeed a consequence of their explicit
representation using matrix operational calculus[15].

Theorem 5.1 The following properties are equivalent
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(Spe1) There exists a compensating matrix K defined and C∞ over Σd−1×Kε∗ . For any w ∈ Σd−1

and any ε∗ ∈ Kε∗, the matrix K(w, ε∗) is real, the product K(w, ε∗)A
∗

0(W
∗e, ε∗) is skew-

symmetric, K(−w, ε∗) = −K(w, ε∗), and the matrix

K(w, ε∗) A
∗
(W∗e, w, ε∗) + B

∗
(W∗e, w, ε∗) + L

∗
(W∗e, ε∗),

is positive definite.

(Spe2) Let ζ ∈ i R, ζ 6= 0, w ∈ Σd−1, and ε∗ ∈ Kε∗. Then all eigenvalue λ of Λ(ζ, w, ε∗) have a

negative real part.

(Spe3) Let Ψ ∈ Rn∗\{0} such that B
∗
(W∗e, w, ε∗)Ψ = L

∗
(W∗e, ε∗)Ψ = 0 for some w ∈ Σd−1,

ε∗ ∈ Kε∗. Then we have ζA
∗

0(W
∗e, ε∗)Ψ + A

∗
(W∗e, w, ε∗)Ψ 6= 0 for any ζ ∈ R.

(Spe4) There exists δ > 0 such that for any ζ ∈ i R, w ∈ Σd−1, ε∗ ∈ Kε∗, and any eigenvalue λ of

Λ(ζ, w, ε∗), we have

<(λ) 6 δ
|ζ|2

1 + |ζ|2 .

Remark. It is not known if the matrix K(w, ε∗) is the form
∑

j∈C Kj(ε∗)wj . Nevertheless, in
practical applications, it is generally possible to obtain compensating matrices in this form.

5.2 Global existence and asymptotic stability

We now investigate the existence of solutions globally in time around equilibrium states. We
assume that the system is stricly dissipative in the sense of 5.1 and the source term is dissipative
in the following sense[10].

(Dis1) The matrix A
∗

0(W
∗e, ε∗) is symmetric positive definite, the matrices A

∗

i (W
∗e, ε∗), i ∈ C, are

symmetric, we have the reciprocity relations B
∗

ij(W
∗e, ε∗)

t

= B
∗

ji(W
∗e, ε∗), i, j ∈ C, and the

matrix L
∗
(W∗e, ε∗) is symmetric positive semidefinite, for any ε∗ ∈ Kε∗.

(Dis2) The linearized system is strictly dissipative in the sense of Theorem 5.1.

(Dis3) The smallest linear subspace containing the source term vector Ω̃∗(V∗, ε∗), for all (V∗, ε∗) ∈
O(V∗,ε∗), is included in the range of L̃∗(V∗e, ε∗), with L̃∗ = (∂

V∗W∗)
t

L
∗
(V∗e, ε∗) ∂

V∗W∗.

(Dis4) For any ε∗ ∈ Kε∗ , there exists a neighborhood of (V∗e, ε∗), in O(V∗,ε∗), and a positive constant

δ > 0 such that, for any (V∗e, ε∗) in this neighborhood, we have

δ
∣∣Ω̃∗(V∗, ε∗)

∣∣2 6 −
〈
V∗ − V∗e, Ω̃∗(V∗, ε∗)

〉
.

Theorem 5.2 Let d>1 and l>[d/2]+2 be integers and consider the system(4.4). Then there exists

b>0 small enough such that if W∗0 satisfies ‖W∗0 − W∗e‖l<b, there exists a unique global solution

W∗ for any ε∗ ∈ Kε∗ to the Cauchy problem

A
∗

0∂tW
∗ +

∑

i∈C∗

A
∗

i ∂iW
∗ =

∑

i,j∈C∗

∂i(B
∗

ij∂jW
∗) + T ∗

+ Ω
∗
,
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with initial condition

W∗(0, x) = W∗0(x),

and

W∗
i
− W∗e

i
∈ C0

(
[0,∞), W l

2(R
d)
)
∩ C1

(
[0,∞), W l−1

2 (Rd)
)
∩ L2

(
(0,∞), W l

2(R
d)
)
,

W∗
ii − W∗e

ii ∈ C0
(
[0,∞), W l

2(R
d)
)
∩ C1

(
[0,∞), W l−2

2 (Rd)
)
∩ L2

(
(0,∞), W l+1

2 (Rd)
)
.

Furthermore, W∗ satisfies the estimate

‖W∗(t) − W∗e‖2
l +

∫ t

0

(
‖∂xW∗

i (τ)‖2
l−1 + ‖∂xW∗

ii(τ)‖2
l

)
dτ 6 C‖W∗0 − W∗e‖2

l ,

uniformly in ε∗ where C is a positive constant and supx∈R3 |W∗(t) − We| goes to zero as t → ∞
uniformly in ε∗. Finally, emphasizing the dependence on ε∗ by denoting W∗(t, x, ε∗) the solution

obtained for ε∗ ∈ Kε∗ we have for any α∗ ∈ Kε∗

lim
ε∗→α∗

ε∗∈Kε∗

sup
t>0

‖W∗(t, ·, ε∗) − W∗(t, ·, α∗)‖Cl−([d/2]+2) = 0.

The main idea is that all usual estimates can be made uniform with respect to the parameter ε∗

since we are considering a compact set Kε∗ . Thanks to the local existence theorem and to uniform
estimates, global solutions are obtained for all ε∗ ∈ Kε∗ . Furthermore, continuity with respect
to the parameter ε∗ is a consequence of the continuity over finite time interval and of uniform
asymptotic stability. We define for convenience Nl(t) = Nl(0, t) where

Nl(t1, t2)
2 = sup

t16τ6t2

‖W ∗(τ) − W∗e‖2
l +

∫ t2

t1

(
‖∂xW∗

i (t)‖2
l−1 + ‖∂xW∗

ii(t)‖2
l

)
dt.

Lemma 5.3 Let σ∗ denotes the modified entropy

σ∗(W∗, ε∗) = σ∗(W∗, ε∗) − σ∗(W∗e, ε∗) −
(
∂

U∗σ∗(W∗e, ε∗)
)(

W∗ − W∗e
)
.

There exists a neighborhood B of W∗e and constants c and c such that

∀W∗ ∈ B ∀ε∗ ∈ Kε∗ , c|W∗ − W∗e|2 6 σ∗(W∗, ε∗) 6 c|W∗ − W∗e|2.

Lemma 5.4 Let d > 2, l > [d/2] + 1 and B a bounded neighborhood of W∗e. There exists a

constant β0(B) independent of ε∗ such that

∀ε∗ ∈ Kε∗ , Nl(τ) 6 β0(B) ⇒ W∗ ∈ B, (t, x) ∈ [0, τ ]×R
d.

Proposition 5.5 Let d > 2, l > [d/2] + 2 and assume that W∗0(x) is such that W∗0 − W∗e ∈
W l

2(R
d). Assume that W∗ is a solution over [0, τ ] such that

W∗
i − W∗e

i ∈ C0
(
[0, τ ], W l

2(R
d)
)
∩ C1

(
[0, τ ], W l−1

2 (Rd)
)
,

W∗
ii − W∗e

ii ∈ C0
(
[0, τ ], W l

2(R
d)
)
∩ C1

(
[0, τ ], W l−2

2 (Rd)
)
∩ L2

(
(0, τ), W l+1

2 (Rd)
)
,

and that Nl(τ) 6 β0(B). There exists constants b′ 6 β0(B) and C ′ > 1 independent of ε∗ such

that

Nl(τ) 6 b′ ⇒ Nl(τ) 6 C ′‖W∗0 − W∗e‖l.
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Proof. The proofs of Lemma 5.3, Lemma 5.4, and Proposition 5.5 are similar to the situation
without parameter[12, 10] thanks to the compacity of the set Kε∗ .

We now apply the local existence Theorem 4.6 with O0 = B, any d1 > 0 such that 0 < d1 <
d(O0, ∂OW∗), and b0 = β0(B). There exists a local solution defined over [0, τ̄ ] for any ε∗ ∈ Kε∗ ,
whenever ‖W∗0 − W∗e‖l < b0, and from Theorem 4.6 we also have estimates in the form

Nl(τ̄ ) 6 C‖W∗0 − W∗e‖l,

where C > 1 depends on O1, b0 = β0(B) and Kε∗ . Let then

b̄ = inf
( b′

C
,

b′

C ′(1 + C2)1/2

)
,

where b′ and C ′ are given by Proposition 5.5 and assume that ‖W∗0 − W∗e‖l 6 b̄. For any ε∗ ∈ Kε∗ ,
we first have a solution defined on [0, τ̄ ] such that

Nl(τ̄ ) 6 C‖W∗0 − W∗e‖l 6 Cb̄ 6 b′ 6 b0 = β0(B).

Since Nl(τ̄ ) 6 b′ we also have Nl(τ̄ ) 6 C ′‖W∗0 − W∗e‖l 6 C ′b̄. We can now start again from
W∗(τ̄ ) at τ̄ since ‖W∗(τ̄ ) − W∗e‖l 6 Nl(τ̄ ) 6 b0 and we have a solution defined on [τ̄ , 2τ̄ ] with
Nl(τ̄ , 2τ̄) 6 CNl(τ̄ ). As a consequence, we obtain that

Nl(2τ̄) 6 (1 + C2)1/2Nl(τ̄ ) 6 (1 + C2)1/2C ′b̄ 6 b′ 6 b0,

so that from Proposition 5.5 with τ = 2τ̄ we obtain

Nl(2τ̄) 6 C ′b̄ 6 b′ 6 b0.

We can start again from W∗(2τ̄) at 2τ̄ and an easy induction shows that the solution is defined for
all time and that for any t > 0 we have Nl(t) 6 C ′‖W∗0 − W∗e‖l uniformly for ε∗ ∈ Kε∗ .

We emphaze now the dependence on ε∗ by denoting W∗(t, x, ε∗) the solution obtained for
ε∗ ∈ Kε∗ . We introduce Φ(t, ε∗) = ‖∂xW∗(t, ·, ε∗)‖2

l−2 and it is easily established that for any
ε∗ ∈ Kε∗ ∫ ∞

0

|Φ(t, ε∗)| dt +

∫ ∞

0

|∂tΦ(t, ε∗)| dt 6 C‖W∗0 − W∗e‖2

l ,

where C is independent ε∗ so that limt→∞ ‖∂xW∗(t, ·, ε∗)‖l−2 = 0 uniformly in ε∗ ∈ Kε∗ . Let
then α∗ ∈ Kε∗ and let a > 0 be given. From these estimates, we can find a time τa such
that ‖∂xW∗(t, ·, ε∗)‖l−2 6 a/2 for t > τa and ε∗ ∈ Kε∗ . This implies that ‖∂x

(
W∗(t, ·, ε∗) −

W∗(t, ·, α∗)
)
‖l−2 6 a for any t > τa and any ε∗, α∗ ∈ Kε∗ . On the other hand, we have (Ia − 1)τ̄ <

τa 6 Iaτ̄ for Ia large enough and we can divide the time interval [0, Iaτ̄ ] into the union of intervals
in the form [iτ̄ , (i + 1)τ̄ ], for i = 0, Ia − 1. We can now apply the estimates (4.7) to deduce that

sup
0,6τ6Iaτ̄

‖W∗(τ, ·, ε∗) − W∗(τ, ·, α∗)‖l−1 6 (1 + C)Ia δl−1(ε
∗, α∗) = 0,

so that as ε∗ → α∗ in Kε∗ , W∗(t, ·, ε∗) converges uniformly in t ∈ [0, Iaτ̄ ] to W∗(t, ·, α∗) in the W l−1
2

norm. We have thus established that

lim
ε∗→α∗

ε∗∈Kε∗

sup
t>0

‖∂x

(
W∗(t, ·, ε∗) − W∗(t, ·, α∗)

)
‖l−2 = 0,

and using the interpolation inequality ‖φ‖Cl−([d/2]+2) 6 C0 ‖∂l−1
x φ‖a

0 ‖φ‖1−a
0 , we conclude that

limε∗→α∗ supt>0 ‖W∗(t, ·, ε∗) − W∗(t, ·, α∗)‖
Cl−([d/2]+2) = 0. �
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5.3 Decay estimates

Uniform decay estimates can be obtained thanks to the compacity of Kε∗ . These estimates can
then be used to improve the the continuous dependence on the parameter by using the space W l−1

2

instead of C l−([d/2]+2).

Theorem 5.6 Let d > 2, l > [d/2] + 3 and W∗0(x) be given, such that

W∗0 − W∗e ∈ W l
2(R

d) ∩ Lp(Rd),

with p ∈ [1, 2). Then, if ‖W∗0 − W∗e‖l and ‖W∗0 − W∗e‖Lp are small enough, the unique global

solution to the Cauchy problem satisfies the decay estimate

‖W∗(t) − W∗e‖l−2 6 C(1 + t)−γ
(
‖W∗0 − W∗e‖l−2 + ‖W∗0 − W∗e‖Lp

)
, 0 6 t,

uniformly in ε∗ ∈ Kε∗, where C is a positive constant and γ = d(1/2p − 1/4). Finally, for any

α∗ ∈ Kε∗ we have

lim
ε∗→α∗

ε∗∈Kε∗

sup
t>0

‖W∗(t, ·, ε∗) − W∗(t, ·, α∗)‖l−1 = 0.

Proof. The proof of decay estimates is similar to the case without parameter[12, 10] thanks to
the compacity of the set Kε∗ . These estimates combined with those of Theorem 5.2, implies that

lim
t→∞

‖W∗(t, ·, ε∗) − W∗e‖l−1 = 0,

uniformy for ε∗ ∈ Kε∗ , and we can proceed as in the proof of Theorem 5.2. �

Remark. Decay estimates can also be obtained uniformly for d = 1 provided that estimates[12]

about the exponential of (A
∗

0)
−1/2

(
ζA

∗ − ζ2B
∗
+ L

∗)
(A

∗

0)
−1/2 at (W∗e, ε∗) can be obtained around

ζ = 0 uniformly in ε∗.

6 Symmetrization for ambipolar plasmas

We investigate in this section symmetric forms for the system of partial differential equations
modeling ambipolar plasmas (3.5).

6.1 Entropy and symmetric conservative form

We define the mathematical entropy σ by

σ = −
∑

k∈S

γkSk

R
, (6.1)

where the 1/R factor is introduced for convenience, and the corresponding entropic variables V

reads

V = (∂Uσ)
t

=
1

RT

(
G1 − 1

2m1v ·v , . . . , Gns − 1
2mnsv ·v , v1, v2, v3,−1

)
t

. (6.2)
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Theorem 6.1 The function σ is a mathematical entropy for the system (3.5). The map (U, ε) →
(V, ε) is a C∞ diffeomorphism from O(U,ε) onto O(V,ε) = O

V
×Oε where O

V
= Rns+3 × (−∞, 0) is

independent of ε and Oε = (0, ε̄) is independent of V. In addition, this diffeomorphism admits a

smooth extension up to ε = 0 and ε = ε̄. The system written in term of the entropic variable V

Ã0∂tV +
∑

i∈C

Ãi∂iV =
∑

i,j∈C

∂i(B̃ij∂jV) + Ω̃,

with

Ã0 = ∂VU, Ãi = Ai∂VU, B̃ij = Bij∂VU and Ω̃ = Ω,

is of the symmetric form, that is, the matrices Ã0, Ãi, i ∈ C, and B̃ij , i, j ∈ C, verify properties

(S1-S4). The matrix Ã0 is given by

Ã0 =




(γkδkl)k,l∈S Sym

(γlmlvi)i∈C,l∈S (ρRTδij + Σm2vivj)i∈C,j∈C

(γlE
tot
l )l∈S (ρRTvj + Σmevj)j∈C Υe


 ,

where

Σm2 =
∑

k∈S

γkm2
k, Σme =

∑

k∈S

γkmkEtot
k ,

Υe =
∑

k∈S

γk(Etot
k )2 + RT (ρv·v + CvT ).

Since this matrix is symmetric, we only give its left lower triangular part and write “Sym” in the

upper triangular part. Denoting by ξ = (ξ1, ξ2, ξ3)
t

an arbitrary vector of R3, the matrices Ãi,

i ∈ C, are given by

∑

i∈C

ξiÃi =




(γkδklv ·ξ)k,l∈S Sym

(γlmlviv ·ξ + γlRTξi)i∈C,l∈S Σγ,v

(γlH
tot
l v ·ξ)l∈S Σh,v Υhv ·ξ


 ,

with

Σmh =
∑

k∈S

γkmkHtot
k Υh =

∑

k∈S

γk(Htot
k )2 + RT (ρv·v + CpT ).

Σγ,v = Σm2v⊗v v ·ξ + ρRT (v·ξ I3,3 + v⊗ξ + ξ⊗v)

Σh,v = (Σmh + ρRT )v·ξ vt + RTHtotξt

Moreover, we have the decomposition

B̃ij = δijRT B̃D + κRT B̃κ
ij + ηRT B̃

η
ij ,

with

B̃D =
1

p




(D̂klγkγl)k,l∈S Sym

03,ns 03,3( ∑
k∈S

γlD̂kl(pχk + γkHk)
)

l∈S
01,3 ΥD


 ,
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where

ΥD = λpT +
∑

k,l∈S

D̂kl(pχk + γkHk)(pχl + γlHl),

and denoting by ξ = (ξ1, ξ2, ξ3)
t

and ζ = (ζ1, ζ2, ζ3)
t

arbitrary vectors of R3, the matrices B̃κ
ij and

B̃
η
ij , i, j ∈ C, are given by

∑

i,j∈C

ξiζjB̃
κ
ij =




0ns,ns 0ns,3 0ns,1

03,ns ξ⊗ζ v ·ξ ζ

01,ns v ·ξ ζt v ·ξ v ·ζ


 ,

and

∑

i,j∈C

ξiζj B̃
η
ij =




0ns,ns 0ns,3 0ns,1

03,ns ξ·ζI3,3 + ζ⊗ξ − 2
3ξ⊗ζ ξ·ζ v + v ·ζ ξ − 2

3v ·ξ ζ

01,ns ξ·ζ vt + v ·ζ ξt − 2
3v ·ξ ζt ξ·ζ v ·v + 1

3v ·ξ v ·ζ


 .

Proof. The matrices Ã0, Ãi, i ∈ C, and B̃ij , i, j ∈ C, are easily evaluated by using the natural

variable Z. These matrices are symmetric, and we note that Ã0 is positive definite since for any
vector x of Rns+4

〈Ã0x, x〉 = RCvT 2x2
ns+4 + ρRT

∑

µ∈C

(xns+µ + vµxns+4)
2

+
∑

k∈S

γk

(
xk + mk

∑

µ∈C

vµxns+µ + Etot
k xns+4

)2
.

Similarly B̃ is positive semidefinite since we have

〈B̃x, x〉
RT

=
1

p

∑

k,l∈S

D̂kl

(
γkxk + (γkHk + pχk)xns+4

)(
γlxl + (γlHl + pχl)xns+4

)

+λTx2
ns+4 + η

∑

ν∈C

(xns+ν + vνxns+4)
2 + (κ + 1

3η)
(∑

ν∈C

ξν(xns+ν + vνxns+4)
)2

.

From the equivalence theorem 4.3 we deduce that σ is a mathematical entropy. �

6.2 Normal Variable

In this section we investigate normal forms for system (3.5). We first establish the nullspace
invariance property.

Lemma 6.2 The nullspace of the matrix

B̃(V, ε, ξ) =
∑

i,j∈C

B̃ij(V)ξiξj

is independent of V ∈ OV and ξ ∈ Σ2, where Σ2 is the unit sphere in three dimensions. For any

ε ∈ [0, ε̄] this nullspace is given by

N(B̃) = Rm̂ ⊕ Rκ̂,

where m̂ = (m, 0, 0, 0, 0)t, κ̂ = (κ, 0, 0, 0, 0)t, and we have B̃ij(V)N(B̃) = 0, i, j ∈ C, for V ∈ O
V
,

ε ∈ [0,∞).
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Proof. The expression of 〈B̃x, x〉 in the proof of theorem 6.1 yields that 〈B̃x, x〉 = 0 if and only

if xns+1=0, xns+2=0, xns+3=0, xns+4=0, and (xk)k∈S ∈ N(D̂). By using lemma 2.1, we deduce

that N(B̃) is spanned by m̂ = (m1, . . . , mns , 0, 0, 0, 0)t and κ̂ = (κ1, . . . , κns , 0, 0, 0, 0)t. It is then

easily checked that B̃ij(V)N(B̃) = 0, i, j ∈ C, for V ∈ O
V

and ε ∈ [0,∞). �

Making use of the explicit basis of N(B̃) we define the matrix P from

P =




m1 κ1 0 . . . . . . 0 0 0 0 0
m2 κ2 0 . . . . . . 0 0 0 0 0
m3 κ3 1 0 . . . 0 0 0 0 0
...

... 0
. . .

. . .
...

...
...

...
...

...
...

...
. . .

. . . 0
...

...
...

...
mns κns 0 . . . 0 1 0 0 0 0
0 0 0 . . . . . . 0 1 0 0 0
0 0 0 . . . . . . 0 0 1 0 0
0 0 0 . . . . . . 0 0 0 1 0
0 0 0 . . . . . . 0 0 0 0 1




. (6.3)

From Lemma 6.2 and from assumptions (Th1-Th5), assuming for instance that the first species
is neutral and the second has a positive charge, it is easily checked that the matrix P is always
nonsingular, that the first two columns are spanning N(B̃), and that P is a smooth function of
ε ∈ [0, ε̄].

We may then introduce the auxiliary variable U′ = PtU and the corresponding entropic variable
V′ = P−1V given by

U′ =
(
ρ, q, γ3, . . . , γns , ρv1, ρv2, ρv3, E + 1

2ρv ·v
)
t

and

V′ =
1

RT

(
κ2G1 − κ1G2

κ2m1 − κ1m2
− 1

2v ·v ,
m2G1 + m1G2

κ2m1 − κ1m2
, V′

3, . . . , V
′
ns , v1, v2, v3,−1

)
t

,

where

V′
k = Gk − rkG1 − skG2, 3 6 k 6 ns,

and

rk =
κ2mk − κkm2

κ2m1 − κ1m2
, sk =

κkm1 − κ1mk

κ2m1 − κ1m2
, 3 6 k 6 ns.

From Theorem 4.5, normal variables are in the form W =
(
φi(U

′
i, ε), φii(V

′
ii, ε)

)
t

where U′
i is the

first two components of U′ and V′
ii the last ns + 2 components of V′. For convenience, we choose

the variable W given by

W =
(
ρ, q, log

(
γ3/γr3

1 γs3
2

)
, . . . , log

(
γns/γrns

1 γsns

2

)
, v1, v2, v3, T

)
t

. (6.4)

Theorem 6.3 The map (V, ε) → (W, ε) is a C∞ diffeomorphism from O(V,ε) onto O(W,ε) = Oρ,q ×
Rns+1 × (0,∞), where

Oρ,q = { (u1, u2) ∈ R
2; u1 > 0, min

k∈S

κk

mk
u1 < u2 < max

k∈S

κk

mk
u1 }.
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This diffeomorphism admits a smooth extension up to ε = 0 and ε = ε̄. The system written in the

W variable

A0∂tW +
∑

i∈C

Ai∂iW =
∑

i,j∈C

∂i(Bij∂jW) + T + Ω, (6.5)

where A0 = ∂WVt Ã0 ∂WV, Ai = ∂WVt Ãi ∂WV, i ∈ C, Bij = ∂WVt B̃ij ∂WV, i, j ∈ C, T =

−
∑

i,j∈C ∂i

(
∂WVt

)
B̃ij ∂WV ∂jW, and Ω = ∂WVt Ω, is in the normal form. The matrix A0 is

given by

A0 =

[
A

i,i

0 Sym

0ns+2,2 A
ii,ii

0

]
,

with

A
i,i

0 =
1

Σκ2Σm2 − Σ2
mκ

[
Σκ2 −Σmκ

−Σmκ Σm2

]
, A

ii,ii

0 =




Aii,ii
Sym

03,ns−2
ρ

RT I3,3

01,ns−2 01,3
Cv

RT 2


 ,

Σm2 =
∑

k∈S

γkm2
k, Σmκ =

∑

k∈S

γkmkκk, Σκ2 =
∑

k∈S

γkκ
2
k,

and Aii,ii
is the square matrix of dimension ns − 2 whose coefficients are

Aii,ii

k,l = γkδkl − γkγl
mkmlΣκ2 − (mkκl + mlκk)Σmκ + κkκlΣm2

Σκ2Σm2 − Σ2
mκ

, 3 6 k, l 6 ns.

Denoting by ξ = (ξ1, ξ2, ξ3)
t

an arbitrary vector of R3, the matrices Ai, i ∈ C, are given by

∑

i∈C

ξiAi = A0v ·ξ +




0ns,ns Sym

A
α

03,3

01,ns
p

RT 2 ξ
t 0


 ,

where A
α

has its columns given by

A
α

1• =
ρΣκ2 − qΣmκ

Σκ2Σm2 − Σ2
mκ

ξ, A
α

2• =
qΣm2 − ρΣmκ

Σκ2Σm2 − Σ2
mκ

ξ,

A
α

l• = γl

(
1 − ρmlΣκ2 − (ρκl + mlq)Σmκ + qκlΣm2

Σκ2Σm2 − Σ2
mκ

)
ξ, 3 6 l 6 ns.

The matrices Bij have the structure Bij = δijB
D

+ B
κ

ij + B
η

ij and denoting by ξ = (ξ1, ξ2, ξ3)
t

and ζ = (ζ1, ζ2, ζ3)
t

arbitrary vectors of R3, the matrices B
κ

ij , B
η

ij , i, j ∈ C, are given by

∑

i,j∈C

ξiζj(B
κ

ij + B
η

ij) =
p

R




0ns,ns 0ns,3 0ns,1

03,ns ηξ·ζ I3,3 + ηζ⊗ξ + (κ − 2
3η)ξ⊗ζ 03,1

01,ns 01,3 01,1


 ,

and the matrix B
D

is given by

B
D

=
1

pT




02,2 Sym

0ns−2,2 RT 2(D̂klγkγl)36k,l6ns

03,2 03,ns−2 03,3

01,2

(∑
k∈S

γlD̂kl(γkRT + χkp)
)
36l6ns 01,3 ΥD




,
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ΥD =
1

RT 2

(
λ pT +

∑

k,l∈S

D̂kl(pχk + RTγk)(pχl + RTγl)
)
,

and finally

Ω =
(
0, 0, ω3, . . . , ωns , 0, 0, 0,− 1

T 2

∑

k∈S

Ekωk

)t
.

Proof. These are consequences of lengthy calculations and of Theorem 4.5. �

7 Asymptotic stability for ambipolar plasmas

In this section, we investigate the asymptotic stability of equilibrium states for the system (6.5)
modeling ambipolar plasmas as well as the limit of vanishing electron mass.

7.1 Main result

We consider the system (6.5) written in the W =
(
Wi

t, Wii
t
)
t

variable, with the hyperbolic variable

Wi =
(
ρ, q
)
t

,

and parabolic variable

Wii =
(
log
(
γ3/γr3

1 γs3
2

)
, . . . , log

(
γns/γrns

1 γsns

2

)
, v1, v2, v3, T

)
t

.

The following result is a direct consequence of the axiomatic structure of thermochemistry[7, 10].

Proposition 7.1 Let a temperature T e > 0, a velocity ve ∈ R
3, a mole density vector γf > 0 be

given, and assume that properties (Th1-Th5) hold. Then there exists a unique constant equilibrium

state Ue such that

Ω(Ue) = 0, (7.1)

in the form Ue =
(
γe
1 , . . . , γ

e
ns , ρeve

1, ρ
eve

2, ρ
eve

3, ρ
ee(T e) + 1

2ρeve·ve
)
t

and such that γe ∈ (γf +R)∩
(0, +∞)

ns

.

Note that this equilibrium state is independent of the reduced electron mass ε. In addition,
whenever γf is such that qf = 〈γf , κ〉 = 0, we obtain qe = 〈γe, κ〉 = 0, since κ ∈ R⊥ and
γe ∈ γf + R. The equilibrium state corresponding to the various variables are also denoted with
the superscript e, so that the equilibrium states in the variables V and W, for instance, are denoted
by Ve and We, respectively.

Theorem 7.2 Let d > 1 and l > [d/2] + 2 be integers and consider the system (6.5). There exists

b > 0 small enough such that if ‖W0 − We‖l < b, there exists a unique global solution W for any

ε ∈ [0, ε̄] to the Cauchy problem

A0∂tW +
∑

i∈C

Ai∂iW =
∑

i,j∈C

∂i(Bij∂jW) + T + Ω,
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with initial condition

W(0, x) = W0(x),

such that

Wi − We
i ∈ C0

(
[0,∞), W l

2(R
d)
)
∩ C1

(
[0,∞), W l−1

2 (Rd)
)
∩ L2

(
(0,∞), W l

2(R
d)
)
,

Wii − We
ii ∈ C0

(
[0,∞), W l

2(R
d)
)
∩ C1

(
[0,∞), W l−2

2 (Rd)
)
∩ L2

(
(0,∞), W l+1

2 (Rd)
)
.

Furthermore, W satisfies the estimate

‖W(t) − We‖2
l +

∫ t

0

(
‖∂xρ(τ)‖2

l−1 + ‖∂xq(τ)‖2
l−1 + ‖∂xv(τ)‖2

l + ‖∂xT (τ)‖2
l

)
dτ

+
∑

36k6ns

∫ t

0

‖∂x log
(
γk/γrk

1 γsk
2

)
(τ)‖2

l
dτ 6 C‖W0 − We‖2

l ,

where C is a positive constant and supx∈R3 |W(t)−We| goes to zero as t → ∞. Finally, emphasizing

the dependence on ε by denoting W(t, x, ε) the solution obtained for ε ∈ [0, ε̄], we have for any

α ∈ [0, ε̄]

lim
ε→α

sup
t>0

‖W(t, ·, ε) − W(t, ·, α)‖Cl−([d/2]+2) = 0.

Physically relevant solutions correspond to initial conditions such that q0 = 0 and equilibrium
states such that qe = 0, since in this situation we easily recover that q(t, x) = 0 for any t > 0 and
x ∈ Rd.

Theorem 7.3 Let d > 2, l > [d/2] + 3 and W0(x) be given, such that

W0 − We ∈ W l
2(R

d) ∩ Lp(Rd),

with p ∈ [1, 2). Then, if ‖W0 − We‖l and ‖W0 − We‖Lp are small enough, the unique global solution

to the Cauchy problem satisfies the decay estimate

‖W(t) − We‖l−2 6 C(1 + t)−γ
(
‖W0 − We‖l−2 + ‖W0 − We‖Lp

)
, t ∈ [0, +∞),

uniformly in ε ∈ [0, ε̄] where C is a positive constant and γ = d(1/2p − 1/4). Finally, for any

α ∈ [0, ε̄] we have

lim
ε→α

sup
t>0

‖W(t, ·, ε) − W(t, ·, α)‖l−1 = 0.

7.2 Proof

The system of partial differential equations modeling ambipolar plasmas has been written into a
normal form in Theorem 6.3. The coefficients of this normal form are smooth functions of W and
of the parameter ε ∈ [0, ε̄]. Moreover, the equilibrium state is independent of ε. As a consequence,
we only have to establish that properties (Dis1-Dis4) are satisfied.

The linearized system around the constant state We reads

A0(W
e, ε)∂tw +

∑

i∈C

Ai(W
e, ε)∂iw =

∑

i,j∈C

Bij(W
e, ε)∂i∂jw − L(We, ε)w,
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where L = −∂WΩ and w = W − We. Property (Dis1) is a direct consequence of the following
expression of L(We, ε) at an equilibrium point

L(We, ε) =
∑

r∈R

K̂
s
r ν̄r⊗ν̄r,

where ν̄r = (0, 0, νr3, . . . , νrns , 0, 0, 0,−
∑

l∈S
νrlEl/RT 2) and K̂

s
r = K

s
r exp〈νf

r, µ〉, obtained di-

rectly from Ω or from the expression of L̃(We, ε) given in Giovangigli and Massot[10, 7]. Properties
(Dis3) and (Dis4) are also established in Giovangigli and Massot[10, 7]. In order to examine if
(Dis2) holds, the most convenient way is to use property (Spe

3
) of Theorem 5.1.

Proposition 7.4 For any equilibrium state We we have

N
(
B(We, ξ, ε)

)
= Re1 ⊕ Re2 ⊂ N

(
L(We, ε)

)
,

and if the equilibrium point We is such that qe = 0, there exists nonzero vectors Ψ of Re1 ⊕ Re2

such that ζA0(W
e, ε)Ψ + A(We, ξ, ε)Ψ = 0 where ζ is real.

Proof. From the normal form established in Theorem 6.3, introducing the coordinates (µ′
k)k∈S

of the vector (γkHk + pχk)k∈S with respect to the basis (m, κ, e3, . . . , ens

), we have

〈Bx, x〉
RT

=
1

p

∑

k,l>3

D̂kl

(
γkxk + µ′

kxns+4

)(
γlxl + µ′

lxns+4

)
+ λTx2

ns+4

+η
∑

ν∈C

(xns+ν + vνxns+4)
2 + (κ + 1

3η)
(∑

ν∈C

ξν(xns+ν + vνxns+4)
)2

,

and this yields N
(
B(We, ξ, ε)

)
= Re1 ⊕ Re2. From the expression of L(We, ε) it is easily checked

that Re1 ⊕ Re2 ⊂ N
(
L(We, ε)

)
. A direct calculation yields

(ζA0 + A)(α1e
1+α2e

2) =
(
(ζ + v ·ξ)

α1Σκ2 − α2Σmκ

Σκ2Σm2 − Σ2
mκ

, (ζ + v ·ξ)
α2Σm2 − α1Σmκ

Σκ2Σm2 − Σ2
mκ

,

0, . . . , 0,
ρ(α1Σκ2 − α2Σmκ) + q(α2Σm2 − α1Σmκ)

Σκ2Σm2 − Σ2
mκ

ξt, 0
)
,

and selecting ζ = −v ·ξ, α1 = Σmκ, α2 = Σκ2 , Ψ = α1e
1+α2e

2, it is easily checked that ζA0Ψ +
AΨ = 0 when q = 0. �

This problem, however, is artificial and due to the lack of dissipativity properties associated with
the electric charge equation, which must guarantee that the charge remains zero. Two equivalent
form can be introduced for the system governing ambipolar plasmas, that is, such that regular
solutions coincide, and which guarantee strict dissipativity.

One can first modify chemistry production rates Ω in the form

Ω = Ω
(1)

+ Ω
(2)

,

where Ω
(1)

is the previous source term given in Theorem 6.3 and Ω
(2)

is defined by Ω
(2)

= L
(2)

W,
with

L
(2)

=




0 0 01,ns+2

0 α 01,ns+2

0ns+2,1 0ns+2,1 0ns+2,ns+2


 ,
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where α > 0 is a positive parameter. In this situation, the nullspace of B(We, ξ, ε) is unchanged,
but e2 is not anymore in the nullspace L(We, ε) so that

N
(
B(We, ξ, ε)

)
∩ N

(
L(We, ε)

)
= Re1,

and strict dissipativity is then easily established. Note that the corresponding charge equation
reads

∂tq + ∂x·(qv) = −αq,

and contains a consumption term −αq. This equation, of course, guarantee that the charge remains
zero if q0 = qe = 0, so that physical solutions of the modified system coincide with physical solutions
of the original system.

A second modification, which has interesting numerical consequences[5], consists in modifying
the diffusion coefficients. The resulting charge equation then contains a diffusion term and only
one hyperbolic component remains. More specifically, we modify the matrices Bij , i, j ∈ C, in the
form

Bij = B
(1)

ij + δijB
(2)

, i, j ∈ C,

where B
(1)

ij is the previous matrix given in Theorem 6.3 and B
(2)

is defined by

B
(2)

=




0 0 01,ns+2

0 α 01,ns+2

0ns+2,1 0ns+2,1 0ns+2,ns+2


 ,

where α > 0 is a positive parameter. In this situation, the nullspace of B(We, ξ, ε) do not contains
e2 and the nullspace L(We, ε) is unchanged so that

N
(
B(We, ξ, ε)

)
∩ N

(
L(We, ε)

)
= Re1,

and strict dissipativity is obtained. The corresponding charge equation now reads

∂tq + ∂x·(qv) = ∂x·(α∂xq),

and the diffusion term ∂x·(α∂xq) as a stabilizing effect[5]. This equation guarantees again that the
charge remains zero if q0 = qe = 0, so that physical solutions of the modified system coincide with
physical solutions of the original system. Of course, both modifications could also be combined.
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