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Abstract

We investigate higher order entropies for compressible fluid models and related a priori esti-
mates. Higher order entropies are kinetic entropy estimators suggested by Enskog expansion of
Boltzmann entropy. These quantities are quadratic in the density p, velocity v, and temperature
T renormalized derivatives. We investigate governing equations of higher order entropy correc-
tors and related differential inequalities in the natural situation where the volume viscosity, the
shear viscosity, and the thermal conductivity depend on temperature, essentially in the form 7.
Entropic inequalities are established when | log p||samo, ||[v/VT L=, ||logT| Brmo, ||hd=p/pllL=,
|ROxv/VT| | zoe, ||hOT/T ||z, and ||R202T/T||zec are small enough, where h = l/pTéf” is a
weight associated with the dependence of the local mean free path on density and temperature.
As an example of application, we investigate global existence of solutions when the initial val-
ues log(po/poo), vo/v/To, and log(Ty/Ts,) are small enough in appropriate spaces. AMS Subject
Classification : 35Q30, T6N10, 82B40.

1 Introduction

The notion of entropy has been shown to be of fundamental importance in fluid modeling from both
a physical and mathematical point of view[4, 5, 6, 9, 10, 11, 13, 20, 25, 27, 32, 40, 44]. We have
introduced in previous work[14, 15, 16] a notion of kinetic entropy estimators for fluid models, suggested
by Enskog expansion of Boltzmann kinetic entropy. Conditional higher order entropic inequalities have
been established in the situation of incompressible flows spanning the whole space[14, 15, 16].

In this paper, we investigate higher order entropies for compressible fluid models and related a priori
estimates. Higher order entropies are quadratic with respect to the density, velocity, and temperature
renormalized derivatives. They are investigated in the situation of compressible flows spanning the
whole space with temperature dependent thermal conductivity, shear viscosity and volume viscosity.

We first summarize the mathematical and physical motivations for higher order entropies. Higher
order entropy correctors are first suggested by Enskog expansion of Boltzmann kinetic entropy. The
corresponding balance equations may be seen as a generalization of Bernstein equations to systems of
partial differential equations but expressed with renormalized variables. Higher order kinetic entropy
estimators are then obtained upon summing a zeroth order fluid entropy with higher order entropy
correctors. These kinetic entropy estimators may also be interpreted as kinetic Fisher information
estimators[15].

We derive balance equations of higher order entropy correctors for compressible fluid models with
temperature dependent viscosities and thermal conductivity. These transport coefficients essentially
behave—away from small temperatures—Ilike a power of temperature T* with a common exponent s, as
given by the kinetic theory of gases. The hyperbolic-parabolic nature of the system of partial differential
equations governing compressible fluids further imposes to consider extra correctors associated with
density which is a hyperbolic variable.

We establish weighted inequalities in Sobolev and Lebesgue spaces. These inequalities are required
in order to establish a priori estimates since we are using renormalized variables with powers of tem-
perature and density as weights and since we also consider flows with temperature dependent thermal
conductivity and viscosities. These inequalities assume that a weighted L* norm of the gradients is
finite in addition to the L°° or BMO norm of the functions. They differ from previous inequalities



established for incompressible flows[15] where only the L> or BMO norm of the functions were as-
sumed to be finite. A weighted L norm of the gradients is required in order to decrease the number
of derivation of hyperbolic variables in a priori estimates.

We next investigate entropic estimates by combining higher order entropy correctors balance equa-
tions with weighted inequalities. We obtain differential inequalities for higher order entropy correctors
when the quantities || log p[| grs0, [0/ VT e | log T'l| grsos 1h0xp/ pll Lo 18050/ VT || s |h:T /T | e

and ||h202T/T| 1, are small enough, where p denotes the density, v the velocity vector, T the abso-

lute temperature, and h =1/ T%_}‘p is a weight associated with the dependence of the local mean free
path on density and temperature. As a consequence, we establish that higher order kinetic entropy
estimators—obtained by summing up a zeroth order entropy with kinetic entropy correctors—obey
conditional entropic principles. These inequalities for kinetic entropic estimators are the main result
of the paper.

As an example of application of higher order entropic estimates we establish a global existence
theorem around constant equilibrium states provided that log(po/ps,), log(To/T..), and vo/+/Ty are
small enough in appropriate spaces, which may be interpreted heuristically as an existence theorem for
small Mach number flows.

In Section 2 we discuss the concept of higher order entropies. In Section 3 we derive higher order
entropies governing equations and in Section 4 we establish various weighted inequalities. In Section 5
we establish that higher order entropies satisfy conditional entropic inequalities. Finally, in Section 6,
as an example of application, we concentrate on global solutions.

2 Higher order entropies

In this section we briefly motivate the introduction of higher order entropies by discussing Bernstein
equations and Enskog expansion of kinetic entropy[14, 15]

2.1 A thermodynamic interpretation of Bernstein equations

For parabolic—or elliptic—scalar equations, a priori estimates for derivatives can be obtained by using
Bernstein method[2, 30]. More specifically, consider—as a simple exemple—the heat equation

O, u — Au = 0.
Defining ¢ = |0Fu|? = D i<ir ip<n(@iy- - - 05 u)?, Bernstein equation for the k'™ derivatives can be
written in the form - -
9, — At 4219k +1y|2 = 0, (2.1)

and more generally, for equations with variables coefficients, Bernstein equations are associated with
sums of squares of derivatives[30]. With Bernstein method, the higher order derivatives source term
|9+ 1u|? is discarded, Equation (2.1) then yields 9,¢!*! — A¢lFl < 0, and the maximum principle
can be used|[2, 30]. However, one may also directly integrate Bernstein equations to get estimates of
the integrals [p,C (¥l dz, and this method is still valid if the flux term 9,-(9,¢*) is simply a term in

divergence form 9, -pl¥ as may be expected for balance equations associated with squares of derivatives
of solutions of a system of partial differential equations. We may therefore try to derive equations similar
to that of Bernstein for systems of partial differential equations, with nonnegative source terms. In this
perspective, the structure of (2.1) appears to be formally similar to that of an entropy balance, where
¢l k> 1, play the role of generalized entropies, even though there also exist zeroth order entropies
like 2. In the next section, we introduce a kinetic framework supporting this entropic interpretation.

2.2 Enskog expansion of Boltzmann kinetic entropy

In a semi-quantum framework, the state of a polyatomic gas is described by a particle distribution
function f(¢,x,c,1)—governed by Boltzmann equation—where ¢ denotes time, z the n-dimensional
cartesian coordinate, ¢ the particle velocity, I the index of the particle quantum state, and Z is the cor-
responding indexing set[5, 9, 11, 13]. Approximate solutions of Boltzmann’s equation can be obtained
from a first order Enskog expansion f = f(O (1 + ¢ + O(e?)) where f(©) is the local Maxwellian
distribution, ¢(*) the perturbation associated with the Navier-Stokes regime and e the usual Enskog



formal expansion parameter. The compressible Navier-Stokes equations for polyatomic gases can then
be obtained upon taking moments of Boltzmann’s equation|[6, 11, 13].

The kinetic entropy S¥" = —k, doer fRn f (1og f- 1)dc, where ks denotes Boltzmann constant,
satisfies the H theorem, that is, the second principle of thermodynamics. Enskog expansion f/f ) =
14+ e¢M 4o 4 2Rp(2R) 1 O(2#+1) then induces expansions for S¥I in the form

Skin G0 = 262 1 390 ... 4 2GR 4 (1), (2.2)

where S is the usual zeroth order fluid entropy evaluated from the Maxwellian distribution f(®) and
where S® is a sum of terms in the form k, D oer fRn [Li<i< (qﬁ(i))wf(o) dc with nonnegative integers
v; > 0,1 < i <[, such that [ = Zl<i<l iv;.  For compressible polyatomic gases after detailed
calculations, one can establish that

—pS@ =0, T +%(9, v)* + 37 |d|?, (2.3)

where T denotes the absolute temperature, p the density, v the gas velocity, d = 0,v+0,v" — 2(9,-v) I
the nonisotropic part of the strain rate tensor, |d|> the sum |d|* = > i d;, and where the scalar

coefficients \, &, and 7 only depend on temperature. In a first approximation, using a single term
in orthogonal polynomial expansions of perturbed distribution functions, one can establish that X\ =
(1/213¢p) A% /T3, B = (3cy/4AnCint)r?/T?, and 1 = (1/2x,)n*/T? where ¢, is the constant pressure
specific heat per unit mass, ¢, the constant volume specific heat per unit mass, 7; the gas constant
per unit mass, c;,¢ the internal specific heat per unit mass, A the thermal conductivity,  the shear
viscosity, & the volume viscosity, and the actual values of the numerical factors in front of A, &, and 7
are evaluated here for n = 3.

More generally, from the general expression of ¢(*) in the absence of external forces acting on the
particles[15], one can establish that

SCW = o ( 2k Z H (TP) (%)V& (8§1T)V;/7 (2.4)

v 1<]a] <2k

where v,, v, v, € N, @ € N*, and v = (Va, V), V) 1<|a|<2rx must be such that El<|a\<2k laf(ve, +
vl, +vl) = 2k and where the coefficients ¢, are smooth scalar functions of logT" of order unity. After
integrations by parts in the integral fRnS (2k) dx, in order to eliminate spatial derivatives of order strictly
greater than k, and by using interpolation inequalities, one obtains that | fRnS(Qk) dzx| is essentially
controled by the integral of

[K] — n 2k w C'u 8 T2 95
R (S ) (25)
or equivalently of
~k] n 2k (1901 2 k 2, %gk 2
~ o " log p|© + |05 (v//T)|* + —102 log T'|*), 2.6
i ()™ (9108l + DL/ VRT)P + 10k o5 TP) (26)

and | [5,,S@*=Y dz| is also controled by [p, 7" dz and [,,y*~ dz. This suggests quantities in the

form ¥ or ¥ as (2k)*™® order kinetic entropy correctors—or kinetic entropy deviation estimators[15].
Note that, at variance with S, it is not clear that S(*) has a sign, and this is a motivation for
using quantities like v*! and F¥ rather than S*) beyond simplicity. We are therefore looking for
magjorizing entropic correctors that we are free to modify for convenience, e.g., by multiplying the
temperature derivatives by the factor ¢, /7. These correctors may also be rescaled by mutiplicative
constants depending on k and their temperature dependence may be simplified in accordance with that
of transport coefficients. Finally, a similar analysis can also be conducted for the Fisher information
and suggests the same quantities ¥/ or ¥ as higher order kinetic information correctors.

2.3 Persistence of kinetic entropy

Denoting by 7% a nonnegative quantity associated with the zeroth order entropy S(©), we investigate
kinetic entropy estimators in the form (% +- .. +~[¥ with 0 < k < [, for the solutions of a second order
system of partial differential equations modeling compressible fluids. For this system, the zeroth order
entropy S(? is already of fundamental importance as imposed by its hyperbolic-parabolic structure and



the corresponding symmetrizing properties[13, 19, 25, 27]. Therefore, we only consider the quantities
AT 4. 4 4K 0 <k <1, as a family of mathematical entropy estimators—of kinetic origin—and we
will establish that they indeed satisfy conditional entropic inequalities for solutions of compressible fluid
equations. This will yield incidentally a thermodynamic interpretation of the corresponding weighted
Sobolev norms.

This point of view differs from that of thermodynamic theories that have already considered en-
tropies differing from that of zeroth order, that is, entropies depending on transport fluxes or on macro-
scopic variable gradients. These generalized entropies have been associated notably with Burnett type
equations[6, 11] or extended thermodynamics[38]. In both situations, new macroscopic equations are
correspondingly obtained, that is, ‘extended fluid models’, which are systems of partial differential
equations of higher orders than Navier-Stokes type equations.

3 Higher order entropies governing equations

We first present the equations governing compressible fluids and then discuss the temperature depen-
dence of transport coeflicients as obtained from the kinetic theory of gases. We then derive governing
equations for kinetic entropy correctors of arbitrary order.

3.1 Fluid governing equations

The conservation equations governing compressible fluids can be written[13, 32]

Op+ 0, (pv) =0, (3.1)
O, (pv) + 9, (pv@v + pl)+0,- I =0, (3.2)
0,(pe) + 0, (pev) + 0,-Q = —I1:0,0 — pd,v, (33)

where t denotes time, = the n dimensional cartesian coordinate, p the density, v the velocity, p the
pressure, I the unit tensor, I the viscous tensor, e the internal energy per unit mass, and @Q the
heat flux. In these equation, 9, denotes partial derivation with respect to time, 9, = (dy,...,0,)
the usual spatial differential operator, and ! the transposition operator. We assume for the sake of
notational simplicity that these governing equations are in reduced form in such a way that the specific
gas constant 7 is taken to be unity. The pressure is given by the state law p = pT where T is the
temperature and the energy per unit mass e is taken for simplicity in the form e = ¢, T where ¢, is a
constant.

The viscous tensor and the heat flux can be obtained from the kinetic theory of gases and written
in the form

II = —k(T) 0y v I —n(T) (v + 00" — 20,-v 1), (3.4)
Q=-\T)0,T, (3.5)

where k(T") denotes the volume viscosity, n(T) the shear viscosity, and A(T') the thermal conductivity.
We will denote by d = d,v + 0,v' — 20,-v I the non isotropic part of the strain rate tensor so that
II = —k0,-vI —nd. The assumptions on the transport coefficients k, 7, and A—which are smooth
functions of temperature—are specified in Section 3.2.

Our aim is not to study various boundary conditions and we only consider the case of functions
defined on R™ that are ‘constant at infinity’. From Galilean invariance, we can also choose that v
vanishes at infinity. Therefore we only consider smooth solutions such that

p— pos € C([0,2],WH2) nCL([0,2], W!I12), (3.6)
v, T —T, € C([0,], Wh2) n CL([0,£], W!=22) N L2((0,¢), WT12), (3.7)

where [ is an integer such that [ > [n/2] 4+ 3, that is, [ > n/2 + 2, t is some positive time, p,, > 0
a fixed positive density and T, > 0 a fixed positive temperature. We also assume that p and T are
such that p > pyin and T > Ty where ppin > 0 and T, > 0 are fixed positive constants. Such
smooth solutions are known to exist[13, 24, 25, 26, 27, 28, 33, 39, 43] either locally in time or globally
when the initial state is close to the constant state (p..,0,7..). We use clasical notation for functional
spaces[1, 45] as for instance W*? = Whkr(R") = WFP(R") for the usual Sobolev space with k > 0 and
1< p < oo, and W=*2" for its dual where p’ = p/(p — 1).



Remark 3.1 In the special case where A = a T, n = a,7*, v = a,1%, and c, is constant, if
(p(t,z),v(t, x), T(t,x)) is a solution of the Navier-Stokes equations (3.1)~(3.3), then

(€1 ¢ plect o), €u(etCa), € T(ECt (), (3:8)

is also a solution for any positive & and (. For arbitrary transport coefficients, the one parameter family
obtained by letting & = 1 is still a family of solutions. The scaling properties of the incompressible
case[15] can also be recovered from (3.8) by letting ( = 1727,

Remark 3.2 All the results obtained in this paper are also valid if the internal energy e per unit mass
is taken to be e = ey + fOTcU (s) ds with a heat capacity coefficient ¢, depending on temperature in such
a way that

¢ <¢ <75, 17 |07cv| <, o>1,

where ¢ > 0, ¢ > 0, and ¢, > 0, 0 > 1, are positive constants. We will not explicit the corresponding
results for the sake of simplicity.

Remark 3.3 The dimension n appearing in the coefficient 2/n of the viscous tensor (3.4) is normally
the full spatial dimension, that is, the dimension n' of the velocity phase space of the associated kinetic
model. We may still assume that the spatial dimension of the model has been reduced, that is, the
equations are considered in R™ with n < n'. The full size viscous tensor II' is then a matriz of order
n', and the corresponding coefficient is 2/n’. However, if we denote by II the upper left block of size n
of IT', that is, the useful part of II', we may rewrite II in the form

I=—(k+(2-2)m)0,vI—n(0,v+ 00" —29,vI), (3.9)

where I is the unit tensor in n dimensions. Therefore, using a smaller dimension n instead of the full
dimension n' in the coefficient of the viscous tensor is equivalent to increasing the volume viscosity by
the amount 2n (n’ —n)/nn'.

3.2 Temperature dependent transport coefficients

Thermal conductivity, shear viscosity, and volume viscosity of a polyatomic gas depend on temperature
N=XT),  n=nT), =), (3.10)

as shown by the kinetic theory of gases[6, 11, 13]. When one term Sonine-Wang-Chang-Uhlenbeck
polynomial expansions are used to evaluate perturbed distribution functions, the coefficients A/c,, 7,
and # are found in the form \/c, = a\T/2/QZ2* n = a,TY2/QZ2* and k/n = a,c" €M /c2 where
ax, ay, and a, are constants, Q22+ is a reduced collision integral, ¢™* the internal heat capacity per
unit mass, and £ a collision number associated with internal energy relaxation. Note in particular
that the ratios A\/c,n and x/n are bounded. For the rough rigid sphere model for instance, we have
exactly[6, 11] /e, = aT?, n = o.nTl/Q7 and k = a,T/2. Similarly, for particles interacting as
point centers of repulsion with an interaction potential V' = ¢/r”, where r is the distance between two
particles, one establishes[6, 11] that Q(2:2)* is proportional to T~2/" so that we have A/c, = a\T*, and
n = a,T” with 5 = 1/2+ 2/v, and & inherits the same scaling x = a, 7 if we assume that c™t, ¢n®
, and ¢, are constants. The temperature exponent » then varies from s = 1/2 for rigid spheres with
v =00 up to » = 1 for Maxwell molecules with v = 4.

More generally, consider particles interacting with a Lennard-Jones v-1/ potential V = 4¢((o/r)” —
(o/ r)’/) where o denotes the collision diameter, € the potential well depth, and v, v/ are intergers with
v > v/ and typical values v = 12, v/ = 6[6, 11]. Collision integrals like Q2(>2* then only depend on
the reduced temperature k;T/e, and, when k;T'/e is large, the repulsive part r=” is dominant[6] so
that collision integrals behave like 7% with s = 1/2 4+ 2/v for large T. In particular, the logarithm
log 2(2)* has linear asymptotes as function of log T, and d* log Q(>2* /d(log T')* is bounded for any
k > 1. In addition, classical models indicate that ¢, £ and ¢, converge towards constants for large
temperatures[13]. As a consequence, log A\, log7, and log k have parallel linear asymptotes as function
of log T, and d*log \/d(log T)*, d*logn/d(log T)*, and d*logr/d(log T)* are bounded for any k > 1,
or equivalently, (1/\)T*d*\/dT*, (1/n)T*d*n/dT*, and (1/k)T*d*k/dT* are bounded for any k > 1.

Similar results are also obtained when more than one term are taken into account in orthogonal
polynomial expansions of perturbed distribution functions. Indeed, all collision integrals QU-)* 4, j >
1, have a common temperature behavior, that is, all ratios of collision integrals are bounded, as for



instance for Lennard-Jones or Stockmayer potentials[11, 13]. These collision integrals are then used to
define the coefficients of the transport linear systems which thus share a common temperature scaling.
As a consequence, the transport coefficients, which are obtained through solutions of transport linear
systems, inherit a common temperature scaling[13].
On the other hand, in our particular application, we are only interested in solutions such that
T > Tin, where Ty, is fixed and positive. In this situation, the behavior of transport coefficients
for small temperatures is not relevant and only the repulsive part of the interaction potential between
particles plays a role. Therefore, from a mathematical point of view, since we are not interested in
small temperatures, we assume that A, 7, and k are C*°(0,00) , that there exist », a > 0, and a > 0
with
aT* < Nec, <aT*,  aT*<n<aT*  aT*<wk<aT~, (3.11)

and that, for any integer o > 1, there exists a, > 0 with
T7(|0FA| + [070] + |07k]) <@, T*. (3.12)

Kinetic theory suggests that 1/2 < s < 1 but the situations where 0 < 3 < 1/2 or » > 1 are still
interesting to investigate from a mathematical point of view.

Remark 3.4 Theoretical calculations and experimental measurements have shown that the viscosity
ratio /1 is of order unity for polyatomic gases(3, 6, 11]. Using a one or two terms expansion in Sonine-
Wang-Chang- Uhlenbeck polynomials for the perturbed distribution associated with volume viscosity,
it is established for instance that k/n = %ﬂgcimfi“t/cg for a polyatomic gas. The collision number
£t associated with internal energy relazation is usually taken to be a simple decreasing function of
temperature and the internal heat capacity per unit mass ™ is associated with the various internal
energy modes like rotation, vibration or electronic. In particular, the internal heat capacity is such that
cdnt > 7y for linear molecules and cdnt > %7;% for nonlinear molecules solely from rotational degrees of
freedom. Volume viscosity also arise in dense gases and in liquids so that its absence in monatomic
dilute gases is an exception rather than a rule[3, 11].

3.3 Higher order kinetic entropy estimators

Following the physical ansatz (2.5) and taking into account the simplifications associated with the
temperature dependence of transport coeficients (3.11) and with a specific gas constant taken to be
unity, we define the (2k)*™ order kinetic entropy corrector ~[*] by

W pan (100 [0%0]2 |ORTP
A = pht( R R ) (3.13)
where h = 1/T2 *p. If « = (a1, ..., o) € N™ is multiindex, we denote as usual by 0 the differential

operator 97" -+ -9 and by |a| its order |a| = a1 + -+ + ay, and the square of k' derivatives of a
scalar function ¢, like T', p, or v;, 1 < i < mn, is defined by

05 0* = ) g(a%)? = > (00,0, (3.14)

la|=k 1<iy,...,ix<n

where k!/a! are the multinomial coefficients[8, 41]. Similarly, for a vector function like v we define
|0F]? = Zlgign |0

This choice of 4¥! yields more convenient higher order entropic estimates. Calculations show that it
eliminates various quadratic terms associated with hyperbolic variables thanks to symmetry properties.
This choice can also be associated with symmetrized forms of the system of partial differential equations.
Denoting U = (p, pv, p(e + %|’U|2))t the conservative variable, v = —(9,8®) the entropic variable,
Z = (p, v, T)t the natural variable, which is also a normal variable[19, 27], and defining the matrix
Ag = (9,V)'0,v(0,V) associated with normal forms of the system of partial differenial equations[19, 27,
one can rewrite the higher order entropy correctors in the form v* = h?* < 9%z, 4;0%z >, where h
is the weight associated with the dependence of the local mean free path I =7/ p\/rg_T on density and
temperature. This choice of v[¥! can also be associated with a ‘spatial gradient’ Fisher information
with for instance 4! = r2 ez b fgn 10, 1og FO12£0) de, where f(©) is the local Mawellian distribution
discussed in Section 2.2.



Remark 3.5 We define similarly the p™ power of derivatives |0%¢|P by
k' o
0" = D =(0%0)" = Y (000, (3.15)
la|=k 1<it,.., ik <n

and these definitions (3.14)(3.15) are compatible with the classical definition already used in Section
2.1 when p = 2. These natural definitions also simplify the analytic form of higher order entropies
governing equations. In agreement with (3.14) we also set for future use

k! k!

¢ 8%y = |Z aa% 9™, O*v-0k0,p = le aa%i 9%0;p. (3.16)
a|=k al=k
1<i<n

In order to recast the zeroth order entropy balance equation into a more convenient form we
introduce a modified zeroth order entropy v[%). The mathematical fluid entropy —S®) can be shown to
be a strictly convex function of the conservative variables[13, 27] U = (p, pv, pe+ %v- v))t. Denoting by
EYY = p(e + %’U-’U) the total energy per unit volume, we define (% = Cy1l% where [ is the modified
zeroth order entropy

U = =5 50+ (3,8 oc(p = prc) + (Ouer S (81 — BL1),

and Cy is a positive constant that will be taken large enough. The zeroth order term ~% is easily
rewritten in the form
2
0 P v T-T, T
/¢ :(plog(p;) ~(p=p)) + 27 T pea ;. 1og(§))- (3.17)

Thanks to the fact that v and T are parabolic variables, we can expect source terms in the form
|0*H1T/T|? and |0%+'v/V/T|? to appear in the governing equation for v*l—up to weight factors.
However, since p is a hyperbolic variable, there will be no such corresponding source term |9**'p/p|? for
density. A priori estimates for density derivatives and more generally of hyperbolic variables derivatives
indeed require to introduce extra entropic corrector terms. These extra corrector terms will yield source
terms in the form |0¥p/p|2. These terms are similar to the perturbed quadratic terms introduced by
Kawashima|[25] in order to obtain hyperbolic variable derivatives estimates for linearized equations
around equilibrium states and decay estimates[25]. They are used here with renormalized variables, as
well as with powers of h as extra weights factors, in order to obtain higher order entropic principles.
More specifically, we define the quantity ”y[k_%] by

akflv akflamp
VT p
and we will see that in the —3l governing equation there is a source term in the form |0%p/p|?>—up

to weight factors. From a physical point of view, we also note that v[k_%] is of the general form (2.4)
for S?=1) Finally, we define the (2k)*™ order kinetic entropy estimator by

ylE=3] = pp2k-1 (3.18)

[k

T =410 1 $™ (41 4 ayli=2), k>0, (3.19)

1<i<k

where a is a parameter that will be chosen small enough. The quantities v[i_%], 1 <11 <k, are

multiplied by the small rescaling factor a in (3.19) so as to not modify the majorizing properties of the
correctors 7[’“], k> 0.

Similarly, following the physical antsatz (2.6), we define the modified (2k)*® order kinetic entropy
corrector 7 by

A — pp2k (|akT|2 +10%w|? + cv|8k7'|2), (3.20)
where r = log p, w = v/\/T, and 7 = logT. We correspondingly define
=31 = pp2e=1gh—1y, gk=1g ;. (3.21)
AT = 419" and introduce the modified (2k)t" order kinetic entropy estimators

T =300+ N™ 3l azli=2h), k>0 (3.22)

1<i<k



The entropy correctors v!¥! and 4%, as well as the estimators I''*! and f[k], will be shown to have
similar properties and both may be used to derive a priori estimates. Strictly speaking, we should
term ¥ and F¥1 «(2k)* order kinetic entropy correctors” or “(2k)*™™ order kinetic entropy deviation
estimators”, and ¥~ 2] and k=2l “(2k — 1)* order kinetic entropy correctors”, and I'l® and [Ix]
“mathematical (2k)'" order entropies”, or “(2k)'" order kinetic entropy estimators”. However, we will
often informally term ~* 7K, 'y[k*%], :y[k’%], T'* and T'# “higher order entropies”.

Remark 3.6 Entropic correctors can also be defined by using the derivatives of the strain rate ten-
sor OF~1d instead of that of velocity O%v. We have chosen to work with the derivatives of veloc-
ity O%v for the sake of simplicity. It is also possible to define extra entropic correctors in the form
ph?E=19k=1(9,-v)0* 1 p//Tp and ph**=10%=1(d,-w)d*~1r but their properties are similar to that of
"y[k’%] and :y[kfé]. Entropic estimators can also be defined in the form

RO A R N B (3.23)
1<i<k

FH =50 ¢ Y g6 4 a3l d), k>0, (3.24)
1<i<k

where 0 is a fized parameter smaller that unity, but the corresponding results are similar to the simpler
situation 0 = 1.

3.4 Balance equation for 7*l and 7[1@_%]

Our aim is to establish balance equations for ¥ and 7[’“_%]. In Section 5, we will use these equations
to derive a priori estimates and to establish that I'*! satisfies conditional entropic principles.

Proposition 3.7 Let (p,v,T) be a smooth solution of the compressible Navier-Stokes equations (3.1)—
(3.5) with regularity (3.6)(3.7) and let 1 < k < I. Then the following balance equation holds in
D'((0,£)xR™) and L'((0,¢), W!=k=11)

O™ + 0, (vyM) + 0, ol 4+ 7lF 4 sIH 4 I = 0, (3.25)

where wLYk] € L'((0,8), W!=F1) is a fluz and W’[Yk], ELYk], wgk] € L'((0,t), W'=k1) are source terms. The
(K]

term " is given by

A |ak+1T|2 n |ak+lv|2 l77+ K |3k(8 ~v)|2
(K] — 9,2p20k+1) 3 ' 9
Ty = (T% T2 T= T | T~ T ) (8:26)

where g = pT%(l_") and h = 1/pT%_% so that ng] only contains the temperature and velocity (k+ 1)t

derivatives squared as expected from the hyperbolic—parabolic nature of system of partial differential
(k]

equations. The term =5 s in the form

oo k(1 — 230\ ok p|> AT
Sl = 37 s 7706 DI 4 (CT)QW(W)%T’ (3.27)
ovud !

where ¢g,u¢ are constants and the sum extends over g € { X1,k },0< 0 <k, v = (Va, Vs, V3)1<|a|<kt1/
k+1 k+1
1= (P Hoys Ho)1<|a|<k+1r Vas Vi Vo Has e, o € N, a € N The products H( ) and H,S ) are

defined by
O%p\ve [O%\Va [O¥T\Va
D = g pit I (_) (_) (_) , (3.28)
1<|aj<kti P VT r
where v denotes—uwith a slight abuse of notation—any of its components vi, ..., vy, and v must be such
that
Z|a|(1/a+u(’l+ug):k+l, Zua:O,
1<]a|<k+1 la|=k+1

so that there is a total number of k+1 derivations and there are no derivative of order k+1 of density.
Moreover, there is at most one deriwative of order k + 1 of temperature or velocity components in the

product H(kH)H(kH)

> W VLAl ) <1,
|a|=k+1



so that one of the terms H(kH) Hfﬁﬂ) is split between two or more derivative factors. Furthermore

the term w»[,k] is given by

Wi =3 ", IPTIFD), (3.29)
Vi

where ¢, are constants and we use similar notation for H,(, )

over

as for H,(fﬂ) and the summation extends
dolola+vh+v0) =k Y lal(pa + Hy +pl) =k + 1.
1<]|a|<k 1<l <k
In particular Z|a\:k+1(/‘a + ul,+ p) = 0 and there are at least two factors in the product H£k+1).
Finally the flux cp[ (gp[vkl], ce gp[yk,]z) is in the form
=3 o056 IITIIHD 13 ¢,y hTIITIP.
ovug vp

Proof. The proof—given in A—is lengthy and tedious but presents no serious difficulties. a

We investigate the v[k_%] balance equation for compressible fluids with temperature dependent
transport coefficients.

Proposition 3.8 Let (p,v,T) be a smooth solution of the compressible Navier-Stokes equations (3.1)—
(3.5) with regularity (3.6)(3.7) and let 1 < k < I. Then the following balance equation holds in
D’((O,E)XR”) and Ll((O,f ,Wl*kflvl)

O3] 4 0, (oy 31y 4 9, B bl iRl el (3.30)
where @[Ykié] € LY((0,8), W'=k1) is a fluz and w.[ykié], Egkié], w.[ykfé] € L'((0,8), W= 1) are source
terms. The term ng—%] is given by

_1 8
p?

1
where g = pT%(lf") and h = l/pT%f" so that w.[yk 2l will help to complete the missing gradient terms

_1
in wgk Y. The term ELY]C 2l is in the form

4 k k
S8 ST 05 T - S5 2 T0) 07

- N (3.32)

ovpug

where Coupg are constants and the sums are over ¢ € {A,n,k}, 0 <o <k, v= (Va,V,,V a)1<|a\<k;
k+1
Bo= (B, iy, B ) 1< ] <k+15 Vo Vs Ves Has s oy € N, o € N, The products % and HEL+ ) q

defined as in the governing equation for v*! and the products H(kﬂ) do not contain derivatives of
[k—3]

order k+ 1 and are thus split between two or more derivative factors. Furthermore the term w- 18
given by
ko ok k—1 2
[k—3] k 2,2k 0"T 0%p 2,2k 107 (0,0))]
Wy ch PP + g*h T, Y h #7 (3.33)

where ¢y, are constants and at least one of the two products H(k) or ch) is split between two or more

1 1
derivative factors. Finally the fluz <p£yk 2] _ (<p£yk1 2], ce <p£m 2]) is in the form

1

‘P[ykz 3l _ Zcuul h Hl(/kfl)HLk)'
vi

Proof. The proof—lengthy and tedious—presents no serious difficulties and is similar to that of
Proposition 3.7. O



3.5 Balance equation for 7¥1 and ﬁ[k—%]

We establish balance equations for 4%, and 7[’“ . In Section 5, we will use these equations to derive
a priori estimates and to establish that ik satlsﬁes conditional entropic principles.

Proposition 3.9 Let (p,v,T) be a smooth solution of the compressible Navier-Stokes equations (3.1)—
(3.5) with regularity (3.6)(3.7) and let 1 < k < l. Then the following balance equation holds in
D’((O,E)XR”) and Ll((O,f Wl’k’lvl)

OAM + 0, (i) + 8, 4l 4 5l G — g (3.34)

where cp%k] € L'((0,2), W'=k1) is a flur and w,[?k], b

term w%k] is given by

Lyk]7 W,[?k] € L'((0,t), W'=k1) are source terms. The

py +
74;1:292h2<k+1>(67|ak+1f|2+e%|a’f+lw|2+3” B2 104 (0,w) ), (3.35)

where g = pT%(lf") and h = l/pT%”‘ so that 7T,[~Yk] only contains the temperature and velocity (k+1)th
derivatives squared as expected from the hyperbolic—parabolic structure of system of partial differential

equations. The term E[Yk] is in the form

7k( )X 22D 19k 12 A, (3.36)

TC'U

ZCUVM¢6 %Taa(b I k+1)1—[(k+1) +
ovud

where Coypp are constants and the sum extends over g € { X\, n,k},0< 0 <k, v = (Va, V), a)0<|a‘<k+1,

k k
H = (:uamuanua)og|a\gk+1) Vaauavyahu@m,uou,ua € N) a € N*. The pTOdUCtS HI(/ 1) and HEI, +1)

defined by

H,(ijrl) =g e H (aaT)va (aaw)ua (aaT)vQ7 (3.37)
0<|a|<k+1
where w denotes—with a slight abuse of notation—any of its components w1, ..., wy, and u and v must

be such that

Z|a|(ua+ug+ug):k+l, Zl/a:O, Z(ua+ug)=o,

1<|a|<k+1 la|=k+1 |a|=0

so that there is a total of k+1 derivations and there is no derivative of order k+1 of density. Note that

powers of the renormalized velocity w may appear in H(k+l) but not of 7 or r. In addition, there is at

most one derivative of order k+ 1 of temperature or velocity components in the product H(kH)H(kH)

S Wa v+, +pn) <1,
lo|=k+1
so that one of the terms H(kH) or HLkH) 1s split between two or more derivative factors. Furthermore
(K]

the term w18 given by

W = 37 e DI 4 W% 987 0F (0, 7)w + gh 9 9 (0, )

vp
1 1
— — g2 gR 08 (D, -w) — 2—g2h%+18kw-w ok (9, 7)-w, (3.38)
v C'U
where c,,, are constants and we use similar notation for H,(,k) as for Hgﬁ_l) and the summation extends

over

Slalva+ v +v0) =k, > lal(pa + ph +ul) = k+ 1,
1<]a|<k 1<]a|<k
so that in particular E|a\:k+1(ﬂa + pul, + pl) = 0 and there are always at least two factors in the
(K] (k]

product HLkH). Finally the fluzx cp%] (©%7:- -+ 95,) is in the form

P8 = covuoneTOZG R IIPTETD + 3¢y AT TP

ovug vp
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Proof. The proof is similar to that of Proposition 3.7 and is omitted. O

Proposition 3.10 Let (p,v,T) be a smooth solution of the compressible Navier-Stokes equations (3.1)—
(3.5) with regularity (3.6)(3.7) and let 1 < k < I. Then the following balance equation holds in
D’((O,E)XR”) and Ll((O,f),Wl*k*M)

1
3]

0% 3 1 8, (v7F2)) 1+ 9, ol 2 +wlf g, (3.39)

where ga[kié] € LY((0,8), W'=k1) is a fluz and w%ki%], z[fcf%], w,[}kié] € L'((0,8), W= 1) are source

¥ ¥
1
terms. The term wgk 2] s given by
k=31 _ 23 2k9k,.2
T 2 =g h¥0"r|%, (3.40)
1
where g = e”‘%(l_")T, and h = e =277 5o that wgk 2 il help to complete the missing gradient
_1
terms in 71',[7]6_1]. The term zgk 2l s in the form

[k—1] T Y L o1/ JE T R PRAp
E’y :ZCUVﬂﬁbe a‘rd) Hu H,u - eTg h 0"ro (amw)
vp

A
+ 53— B0, rwd T A, (3.41)
Cp€

/

where coyug are constants and the sums are over ¢ € {A\n,k}, 0 <0 <k, v = (Va,Vh, Vi) 1<|a|<k

H = (/Lavﬂixaug)lg\a|§k+l) VavV&ana,Um,Ufyﬂg € N) a € N*. The pTOdUCtS Hl(/k) and H,Stk-‘rl) are
defined as in the governing equation for ¥ and there is no derivative of order k + 1 in Hgk+1).
[k—3]

Furthermore the term wy is given by

) L chunl(jk)nﬁk) + g2h* O raRr — g2R2K|9R=1 (9, w)|?

v

1
= 39° W00, w) 0" (0, 7)w — o g* W OF T (0, w) 07 (O,m)w

Cy

— ig2h2k8k_1(8m7')-w Bk_l(amr)-w, (3.42)

(k)

where ¢, are constants and at least one of the products Hl(,k) orII,,” is split between derivatives factors.

Finally the flux <p£yk7%] = (gpgkf%], ce, gp%knié]) is in the form

4 Weighted inequalities

We investigate weighted inequalities in Sobolev and Lebesgue spaces[7, 12, 15, 21, 22, 35]. These
inequalities are required for renormalized variables with powers of temperature and density as weights
as well as for temperature dependent thermal conductivity and viscosities.

4.1 Differential identities

Let o, 1 <14 < n, be nonnegative integers and o = (a1, . .., a,) € N be the corresponding multiindex.
We denote by 9¢ the differential operator 97! --- 99" and by |«| its order |a| = oy + -+ + ay. The
derivative of superpositions has been investigated in particular by Vol’'pert and Hudjaev[43] and the
following proposition is established by induction on |a.

11



Lemma 4.1 Let f and g be smooth functions and o = (aq, ..., a,) be a multiindex. Then we have

0°(fg) = Y capd’foleyg, (4.1)
0<p<a
where cop = a!/Bl(a — B)! are nonnegative integer coefficients, B! = f1!--- B!, and where we write
0<pB<awhen0< b <a;,l<i<n.

Let 1 > 1, f be a smooth scalar function of u € RY, uy,...,u; be smooth scalar functions of v € R™,
and let o be a multiindex o = (a1, ..., ) with |« > 1. The partial derivatives of the superposition
fou= f(u1,...u;) can be written in the form

ch o°f T[(0%u;)", (4.2)
1<|BI< ]l
1<j<l

where ¢, are nonnegative integer and the sum is over o € N', 1 < |o| < |af, p = (155)1<181<]al 1<i<t
with pg; €N, 3 € N", j €N, such that

1<|BI<]al 1<|Bl<]al
1<5<

so that we have in particular 3 _ 5. 8] pg; = |of.
The rescaled unknowns r = logp, w = v/ VT, and 7 = log T, naturally appear in higher order

entropy estimates. We will need the following differential identities[15] easily established by induction
on |a| and the next lemma will be used for temperature as well as for density.

Lemma 4.2 Let T be smooth and positive and o be a multiindex. Then we have

T _ Z Cu H(aﬁr)“ﬁ = 9% + Z Cu H(aﬁf)“ﬂ, (4.4)

wo 1<|BI<] e po 1<|BI<]al -1
where | = (Mﬁ)lélﬁ\é\al with pg € N, B8 € N*, and c,, are nonnegative integer coefficients. The sum is
extended over the u such that
Zﬁ MB = aq,
1<[B]<] e

so that we have in particular 32, 5<|q 18] 8 = |, and the only term with |B| = |a| corresponds to
0“t. Conversely, we have

aﬁT 9T o°T
‘= Z H = T + Z C/H H(T)Mﬁa (4.5)
1<\5|<|a\ #o1<|BI<]al-1

where CL are integer coefficients and the sum is extended over the same set of L.

Lemma 4.3 Let T and v be smooth, T be positive, © with 1 <1 <n, and o be a multiindexr. Then we

have 5o
vl ch H Hﬁ O%w (4.6)

e 1<|8i</al

where p = (Nﬁ)lg\mga\; Kg € N, 8 € N*, & € N*, ¢,5 are nonnegative integer coefficients, and the
sum s extended over the u and &, such that

0<

jo)

SO&, ZBHQ—Fd:Oé

1<[B]<] |

More precisely, isolating the only term 0“w; corresponding to & = « and all the terms corresponding
toa=(0,...,0), we have

8\}“ = 0w+ > cua [[(077)" 0%wi + w0 [[(8%7) (4.7)

pé 1<|8i<]al W 1<[BI<]al

12




where the & in the middle sum are such that 1 < |a&| < |a|. Conversely, we have
BT\ 1s O%v;
(0% _ / K3
o wi—ZCud H( T ) JT (4.8)
pa 1<|B]< e
and more precisely

9w, 3 v; +Z ¢ H(aﬁT)Hﬁ 0%; Z o H(aﬁT)Hﬁ \;%, (4.9)

na 16| ol 1<[B]<] |

where CL& are integer coefficients and the sums are extended over the same sets.

4.2 Weighted operators

A natural condition associated with weights[7, 12, 35] has been shown to be the Muckenhoupt property
Ap, where 1 < p < oo.

Definition 4.4 Let g € L}, .(R™) be positive and let 1 < p < co. The function g satisfies the Mucken-

houpt condition A, if
p—1
g sup / d)( /gr'ldx) < 00,
s, == (i Q

where the supremum is taken over all cubes Q.

For detailed studies about the Muckenhoupt property we refer to the book of Garcia-Cuerva and
Rubio de Francia[12]. We have in particular A, N A; = Ayin(p,q) and the weights of A, have their
logarithms in BMO[12, 35]. A locally summable function f belongs to the space BMO(R") if

1 _
Illmsa0 = 510 1 /Qlf(x) ~ Jo|de < oo,

where the supremum is taken over all cubes ) and where fQ =1/|Q| f 0 x) dz denotes the average of
f over Q[34]. The function space BMO has been introduced by John and N1renberg[23] and naturally
arises when estimating the norms of the weighted operators T R;T~% where R; = (—A)~1/29;,1 <i <
n, are Riesz transforms, or when using the Coifman and Meyer inequalities[36, 37]. The space BMO
and its dual H! have already been used in the context of the Navier-Stokes equations[32, 29, 31].

Theorem 4.5 There exists constants b(n) and B(n) such that for any 6 € R, any u € BMO, and any
1 < p < 0, the condition
0llull Bpo < 3b(n) min(1,p — 1),
implies that exp(6u) € A, and
[exp(0u)] , < (1+B(n)".

Moreover, the constants b(n) and B(n) only depend on n and are thus invariant by a change of scale
in the coordinate system.

Proof. These estimates are proved in [15] and the scale invariance of b(n) and B(n) is straightforward
since both the BMO seminorm and the A4, condition number [g] , = are scale invariant. O

We now investigate the continuity of Calderén-Zygmund operators in weighted Lebesgue spaces. In
the following theorem the quantitites cg, c1, co are the constants naturally associated with the norm
of a Calderén-Zygmund operator G[35].

Theorem 4.6 Let G be a Calderdn-Zygmund operator, let 1 < p < oo, and let gP be a weight in A,.
Then the operator G is bounded in LP (gpda:), or equivalently, the operator gGg—! is bounded in LP,
with norm lower than C(co, c1,c2,n,p, [gP]a,), where co, c1, c2 are the constants naturally associated
with the norm of G.

Proof. We refer to the books of Garcia-Cuerva and Rubio de Francia[l12] and of Yves Meyer[35]. O
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4.3 Multilinear estimates

We investigate weighted multilinear estimates with weights in A, classes[7, 12, 15, 21, 22, 35] and
we denote by C3(R™) the set of continuous function that vanish at infinity. The following multilinear
estimates have been obtained in previous work[15] by using the Wiener algebra A(R") instead of C§(R™)
but the proofs are similar thanks to the density of D(R") in Wk2(R") N CJ(R™). The proof of this
theorem essentially relies on the Coifman-Meyer theory and on Theorem 4.6.

Theorem 4.7 Let k > 1, 1 > 1 be integers, and al, 1< 7 <1, be multiindices such that |o<j| > 1,
1< <1, and k = Zl<j<l lad]. Let 1 < p < 00, g € A, and uy,...,u;, be such that there exist
constants Uj oo with uj —uj oo € WH2(R™)NCY(R™), and such that gd*u; € LP, 1 < j < 1. There exists
a constant ¢ = c(k,n,p, [g"]a,) only depending on (k,n,p,[g"]a,), such that

P

loTTo"wl, <e > ( Tlwlisvo ) llsd ], (4.10)

1<5<1 1<i<l 1<5<d
J#
and thus )
i 1—
HQHBQUJ’HLP < cllullEarollgd*ull oo, (4.11)
1<5<
where
lullzro = D lujllamo, g™ ullte = > llg0™u;llf,-
1<5<1 1<5<

We now investigate multilinear estimates where a weighted L norm of the gradient is used to
decrease the total number of derivations k in the upper bound. We denote by Ci(R") the set of
continuously differentiable functions that vanish at infinity with their gradients.

Theorem 4.8 Let k > 2, 1 > 2 be integers, and of, 1 < j < I, be multiindices such that |a?| > 1,
1<j<l, and k = Zl<j<l la?|. Let 1 < p < oo, g be positive, g € L}, with logg € BMO, and
Ui, ..., U, be such that there exist constants uj oo with u; — uj o € WE"LZ(R™) NCH(R™). Let h be the
weight h = exp(f1uy + - - -+ 0ju;), where |0;| < 0 and § > 0. There exist constants 6 = §(k,n,p,0) and

¢ = c(k,n,p,0), only depending on (k,n,p,0), such that if ||log gl grro + 1< j<i lujllpao < 6, then,
whenever gh*~10%~1u; € LP and gh*=20%2u; € LP, 1 < j <, the following estimates hold

lon* [Towll,, < e lullgyiollhdull=llgh* = 0¥ 1u]] ,
1<5<d

_ a2\t
+e Lisllull i [1h,ul 3]l ght 2042 (4.12)

UHLP’

where

hopullzm = Y [h0,ujllpes  lgh™d™ullh, = D Ilgh™ 0™ ujllE.

1<j<1 1<5<

and where 1y>3 = 1 if k > 3 and 1x>3 = 0 if kK < 2 so that in the special situation 2 < k < 3, the
second term in the right hand side of (4.12) is absent.

Proof. If there exists one multiindex a/® such that |a’°| = 1 we can directly write that

lot* TT0%l,0 < 11yl o= TL0%usl,. (4.13)
1<5<1 1<5<
J#Jjo

and use the multilinear estimates of Theorem 4.7. The weight gh*~! is in the A, class and [gPhP(F=D)] 4
is bounded by a constant only depending on n and p from Theorem 4.5 for § small enough since
[ log(gh* Y)|Bmo < (1 + k6)§ provided we select § < 2b(n)min(1,p — 1)/(1 + k6). This covers in
particular the situation where 2 < k < 3 since it is assumed that [ > 2 so that there is at least one first
order derivative factor 9%, with |a7°| = 1 in this case.

Keeping in mind that [ > 2, we can now assume that |a!| > 2 and |a?| > 2, so that k > 4, and
write a! = al + e;,, a? = &% + e;,, where |a}| =k — 1, |a®| = k — 1, and iy,i2 € {1,...,n}. We have
denoted by e;, 1 < ¢ < n, the canonical basis of R” with e; = (1, ..., din), where d;; is the Kronecker
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symbol, so that 0% = 0;. We introduce the auxiliary functions v; = h0;,u; and vo = h0;,us and write
that
k ol ko (V1 gas (V2 ol
gh H8 uj = gh"o 1(W)8 2(3) Ha uj.
1<5<1 3<5<l

We next expand the derivatives by using Lemma 4.1

- 1 3 .
0% () = = X, i [1(0%u)"™, (4.14)
Brp 1<|B8I<] e
1<y<!

where ¢, are nonnegative integer coefficients, and the sum is over 0 < B < @ and p = (g 1<181< a1 1< )<
with pg; €N, feN' 1<j5<I, and Eﬁjﬂ g = a1 — Bl. We can thus write that

gth(?O‘]ﬁj = Z C§1§2d ghk*2651v1 652V2 H@O‘juj Hadjﬂj, (415)

1<5<1 1 Baa 3<i<l 1<y<i

where the derivatives factors arising from the derivation of 1/h in (4.14) are rewritten in the form
ngjgi 0¥ 0, where (0y,...,0;) are proper replicates of uy,...,u;. We can then use the inequality
(4.10) of Theorem 4.7 to estimate the I” norm of each term in the sum (4.15). Inequality (4.10) is
used with the weight gh*~2 and with the variables (Vi,v2,u3,...,u;,01,...,0;). The weight gh*=2is
in the A, class for § small enough and [gPhP(F=2)] 4, is bounded by a constant only depending on n
and p from Theorem 4.5 provided that 6 < $b(n) min(1,p —1)/(1 + k). We can thus estimate the L?

norm of gh* H1<j<l o’ uj, up to multiplicative constants depending on (k, n, p, 6), in terms of

Ivall Baro H||ujHBMO HHﬂj”BMO ||9hk723k72V1HLp7
3<5< 1<5<i

Vil garo H||ujHBMO HHﬂj”BMO ||9hk_2ak_2V2HLpa

3<5< 1<5<i

Vil saolIvall Bao H llujll Bro H 11051l Bazo thk_25k_2uiuma 3<i<l,

3<5<! 1<;5<i

J#i

and A
Ivill aso lIvall Brio H [[u;ll Baso H 16l pao lgh* 20" 04| 1<i<li

3<y<l 1<<i

J#i

Expanding then the derivatives 9" 2v; = 8" ~2(hd;,u;), j = 1,2, it is easily checked that ||gh* 20" 2v,]| 1»
is majorized by a multiplicative constant multiplied by >, ., [|gh*~10¥~1u;|| 1» and the proof is com-
plete since one may choose § such that 0 < § < 1. o O

Remark 4.9 The space of smooth functions with compact support D(R™) is dense in W*2(R™) N
BMO(R™)—for the norm || - w2 + || - || BMo of course—if and only if k > n/2. Indeed, for k < mn/2,
D(R™) is not even dense in WE2(R™) N L>°(R™) and counterexemples are classically found in the form
of series of needles[15]. On the other hand, for k = n/2, we have Wk2(R") N BMO(R") = Wk2(R"),
whereas for k > n/2, WE2(R") is included in CJ(R"™). We have introduced the natural simplifying
assumption uj — uj oo € WE2(R™) NCY(R™) since it will be sufficient for our applications and since for
k <n/2, D(R™) is dense in WE2(R™) N CY(R™) and CJ(R™) C L*(R™) C BMO(R™). Similarly, when
using the gradient norms ||hoyuj||r-, 1 < j <1, we have introduced the natural simplifying assumption
that uj — uj oo € WH2(R™) N CH(R™) since it will be sufficient for our applications.

4.4 Weighted products of derivatives

We first investigate products of derivatives of the rescaled unknowns 7 and w with powers of tempera-
ture and density as natural weights[15]. Since in our applications w and 7 will be parabolic variables,
the total number of derivations k is left unchanged in the estimates.
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Theorem 4.10 Let k > 1 be an integer, § > 0 be positive, 1 < p < 0o, T be such that T — 7., €
WHE2(R™) N CY(R™) for some constant 7, and let r € BMO. There exist positive constants §(n,p,0)
and c(k,n,p), only depending on (n,p,0) and (k,n,p), respectively, such that if ||r||pao + || 7| Bro < 6,
then for any a, b with |a| +|b] < 0, any integer 1 > 1, and any multiindices o’ , 1 < j <1, with |o?| > 1,

1<j<l and}> |o?| = k, whenever e?™ 9% ¢ LP(R™), the following inequality holds

’ eaTerr H 8o¢j7_
1<5<1

Further assuming that w € WE2(R™) N CY(R™), e®™tr9kw € LP(R™), and 0 <1 < I, then

ea‘r—i—br H 60¢jw HaajT

1< 415

-1
BMO

< CHTH He‘”*brakTHUJ. (4.16)

’LP

-1

- C(HwHBMO + HTHBMO)
% (Hear+brakaLp n Hear+brakTHLp)7 (4.17)

where we have naturally defined He‘”"'br akaip = ZlgignHe‘”"'br 8kwiHip and in the left hand mem-

ber of (4.17), with a slight abuse of notation, we have denoted by w any of its components wy, . .., wy.

We now investigate products of derivatives of the rescaled unknowns r, 7 and w. Since in our
applications r will be a hyperbolic variable, the total number of derivations appearing in the estimates
needs to be decreased by using a weighted L>° norm of the gradients.

Theorem 4.11 Let k > 2 be an integer, > 0 be positive, 1 < p < oo, 7, r, w be such that
T—Toy T —Tog, w € WFLZR™M)NCE(R™) for some constants 7., andr,,. Leta, b, @, and b be constants
with |a] + |b] < 0, |a| +|b] < 0, and let g = exp(at + br) and h = exp(ar +br). Let | > 2, let o,
1 < j <1, be multiindices with |o?] > 1,1 < j <1, and Zlgjgl |ad| = k. There exist positive constants
§(k,n,p,0) and c(k,n,p,0), only depending on (k,n,p,0), such that if |r||symo + ||7||Bro < 6, then
whenever gh* =10k =1y ghk=19k=1w, gh*=10%=1r gh*=20F=2y ghk=20k—2w, gh*=20%2r ¢ LP(R"),
and 1 <1< l~§ [, we have the estimates

thk H 9'r H 0w H 0'r

1<l TH1<y<l T+1<5<d

~il= ~ _ 1~
|, < clElaio 1m0, 2] i gkt~ 012 1

~(1—3)T ~ _ o~
+ Liza| 7l 150,713 lgh* 20" 27| 1, (4.18)

where we have denoted 7 = (r,w, ) and

1zl Bpo = 17l sro + 1wl Baro + 171l Baros (4.19)
170, Zl| oo = [|h0, 7| 1o + RO, 0| e + [|hO,T || o (4.20)
lghmomZE, = lgh™ms|L, + lghmamwlh, + lghmom |, (.21)

for any m € N* and in the left hand member of (4.18), with a slight abuse of notation, we have denoted
by w any of its components wi,...,wy. In particular, in the situation where 2 < k < 3, the second
term in the right hand side of in (4.18) is absent.

Proof. Theorems 4.10 and 4.11 are direct consequences of the multilinear estimates of Theorems 4.7
and 4.8. a

4.5 Weighted products of renormalized derivatives

We now estimate products of derivatives of density, temperature and velocity components rescaled by
the proper renormalizing factors.

Theorem 4.12 Let k > 1 be an integer, @ > 0 be positive , 1 < p < oo, T be such that T > Tpin > 0
and T — T, € WE2(R™) N CY(R™) for some positive constant T, and p be positive such that r =
logp € BMO. There exist positive constants §(n,p,0) and c(k,n,p), only depending on (n,p,0) and
(k,m,p), respectively, such that if || log pllemo + || 1og T || Bmo < 6, then for any real a and b such that
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la| 4+ |b] < 0, any integer I > 1, and any multiindices o7, 1 < j < 1, with |o7| > 1,1 < j < I, and
di<j<i |ad| = k, whenever T“pb(akT)/T € LP(R™), we have the estimates

u “ orT
| TT 5 H < clllog ||, [T
1< <l

|| . (4.22)

Assumingv € WE2(R™)NCY(R™), || log pll prro+1v/VT || 10+ 1og T|| paso < 6, whenever T (8%v) /T €
LP(R™), we have for 0 <[ <1

HTW bII 0% 8?;1’

b S Ul +og T sy0)

1<g<l l+1§j§l
oFv oFT
b b
<(Jlrp il 7% T ). (4.23)
where, in the left hand member, with a slight abuse of notation, we have denoted by v any of its
components vy, ..., Un.

Theorem 4.13 Let k > 2 be an integer, 8 > 0 be positive , 1 < p < 00, p, v, T, be such that p > pmin,
T > Twin, and p—poo, v, T—T,, € WFL2(R™)NC(R™) for positive constants pa,, pmins Toe and Tiin.
Leta, b a, and b be constants with |a|+|b| < 0, |a|+|b| < 0, and let g = Tp°, h = T". Letl > 2, o,
1 < j <1, be multiindices with |o’| > 1,1 < j <1, and Elgjgl |a?| = k. There exist positive constants
5(k,m,p,6) and c(k,n,p,8), only depending on (k,n,p.6), such that if | log pll sy + /v o +
[log Tl prso < 6(k,n,p,0), then whenever gh*=(9¥1p)/p, gh*=1(9F—1v)/VT, ghk Yor-t1)/T,
gh*=2(0%2p)/p, ghk_Q(Bk_%)/\/T ghk_2(8k_2T)/T € LP(R™), we have for 0 <1 <1<

v v ~i7l— ~ lak—1~
| T2 T 2 15, < el ino.zl o=z,

1<5<l l+1§j<l l+l<_]<l

—~ _ a2\t ~ ~
+ sl Zlmhe) 100, Z)5 2 lgh* 205 22|, (4.24)

where, in the left hand member, with a slight abuse of notation, we have denoted by v any of its
components vy, ..., vy, and where Z = (r,w,T) and

1Z1 5310 = [110g Pl paso + 10/ VT Il + [ 0g Tl pasos (4.25)
110, Z]| 7 = Hh = + Hh\/—”LOO pl VS (4.26)
lgh™0™Z|E, = |lgh —II” + llgh \/— =17, + llgh Tllm (4.27)

for any m € N*. In particular, in the situation where 2 < k < 3, the second term in the right hand
side of (4.24) is absent. Note that there is a L™ norm for the rescaled velocity w in ||Z]|’gp0 -

Proof. The proof of Theorems 4.12 and 4.13 essentially relies on Theorems 4.10 and 4.11 and on
the differential identities established in Lemmas 4.2 and 4.3. Considering temperature as a typical
example, the differential identities and Theorem 4.10 yield estimates in the form

[ TTZE| < clos Tl 70, (1.28)

1<<l
and similarly that

a akT a
|7 (5 = 97)|| < elllog T oy 1790071,

where ¢ = ¢(k,n,p). Therefore for c¢(k,n,p)|| log T||BM0 < 1/2 we have

s[Totot||,, < T 0% (4.29)

Il < 2l 10

and reinserting (4.29) in (4.28) completes the proof of (4.22). The same procedure can be applied to
get estimates of HT“pkap/pHLp and HT“pbakv/\/THLp and then to obtain (4.23) and (4.24). O
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Remark 4.14 Assuming that T — T, € W22(R") NCF(R™), T > Tynin > 0 and ||logT|| pmo is small
enough, we obtain from Theorem 4.13 that

0. T°
T5+a

|0°T?
||L°° o TiTe

dz < || 1ogTHBMO|| dx. (4.30)

Rn

In contrast, when T — T, € W32(R") N CY(R™), T > Twin > 0, and || logT||pmo is small enough, we
obtain from Theorem 4.12 that

10,T° [°T
. Tova dx < ||10gTHBMO i dx. (4.31)

5 Higher order entropy estimates

In this section we investigate higher order entropy estimates for compressible flows spanning the whole
space. We establish entropic inequalities when the quantities || log p||gro, ||v/VT 1, || 10gT||BMO,
h02p/pll s s |hOxv/ VT oo, ||hO:T/T|| o<, and ||h202T /T 1~ are small enough, where h = 1/pTz~*
is a weight asssociated with the dependence of the local mean free path I = n/ p\/T'g_T on density and
temperature. In the following, all constants associated with a priori estimates and entropic inequalities
may depend on the system parameters a, a, a@,, 0 > 1, 3, and ¢,. However, these dependencies are
made implicit in order to avoid notational complexities and only the dependence on k and n is made
explicit.

5.1 Preliminaries

The balance equations of higher order correctors can be integrated over R and [0,¢] where 0 < ¢ < ¢
thanks to the regularity properties of the solution. Considering the ¥/ balance equation (3.25) as a
typical example, we have the following result.

Lemma 5.1 Let (p,v,T) be a smooth solution of the compressible Navier-Stokes equations (3.1)—(3.5)
with regularity (3.6)(3.7) and let 1 < k < 1. Then the following equation holds in D’'(0,%) and L*(0,t)

8, [ A" d:v+/( W slH 4 wlH) gz = 0, (5.1)
R’n n

and the following equation holds in C°[0,1]

t
/ Ak e +/ / (F[Vk] + ELYk] —l—wgk]) dr = / W(Ek] dz, (5.2)
R" 0 JR" n
[k

where 7y, ! denotes the functional ¥¥ evaluated at initial conditions.
Proof. This lemma results from standard manipulations using distributional derivatives and test

functions in the form of tensor products ¢(t)i(x). O

As a consequence of Lemma 5.1, integrating the balance equation (3.25) for A with 1 < k <1, we
deduce that

0, 7[’“ d:c—i—/ K] dy < |E£Yk]|d$€+/ |w[7k]|dac, (5.3)
RTL &<

so that we have to investigate the integrals f]Rn|EV | dz and fRn|w )| dz. Similarly, we obtain by inte-

grating the balance equation (3.30) for y[*~ 2] that

o, [ =3 dx+/ A gy < [ 2]|d:c+/ w2 g, (5.4)
Rn g R

1 1
and we have to investigate the integrals fRn|E[Yk 2]|d:c and fRn|w,[yk 2]|d:c. We will simultaneouly

estimate the analogous integrals fRn|Z%k]| dx and fRn|w£~Yk}| dx associated with the balance equation of
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_1 _1
71K as well as the integrals fRn|E%k 2] | dz and fRn|w£~Yk 2]| dx associated with the balance equations for
Flk—2],

It will be convenient to denote by x., the quantity

v
Xy = |l log pll prro + ”ﬁ”LN + [[log T'l| grpso

Ozp Ozv 0, T 02T
T T R TR B T 5:5)
and similarly by x the quantity
X5 = "l svo + lwll e + 7]l sro
H Rl o + llhwl oo + A7 o + [1R20? T Loc (5.6)

It can easily be established that x, < x5(1 + x5) and x5 < x,(1 + x,) so that x, < 1 implies
that %Xv < X5 < 2x,, and x5 < 1 implies that %Xﬁ/ < Xy < 2x5, and assuming thatNeither X~ or
X5 is small is equivalent. We will establish that entropic inequalities hold for T and Tl when X~
or x5 are small enough. These quantities x, and x5 are invariant under the change of scales (3.8)

described in Remark 3.1. They can also be interpreted as involving the natural variables log p, v/ \/rg_T ,
and log T, appearing in Maxwellian distributions[5] and the natural scale h associated with the local
mean free path n/p\/iT. Since we have formally v/\/pT = O(Ma), log(T/T,,) = O(Ma), and
log(p/pos) = O(Ma), where Ma denotes the Mach number, the constraint that ., or x; remain small
may be interpreted as a small Mach number constraint, which is consistent with Enskog expansion[20].

5.2 A priori estimates

We first investigate the integrals fRn|E£k] | dz and fRn|wgg] | dz, where & denotes any of the symbols v or
¥, by using the weighted inequalities established in Section 4.

Proposition 5.2 Let (p,v,T) be a smooth solution of the compressible Navier-Stokes equations (3.1)—
(3.5) with regularity (3.6)(3.7), let 1 < k <1, and let & denote any of the symbols v or 7. There exist
positive constants 6(k,n) and ¢, = c(k,n) such that for x, <& we have

_1 _ _3 -
/|E[5k]|d$§0k xg/ (7l 4l 2l (T Al de (5.7)
Rn R > S

k—3]

_1 _ _
/]R |wg€]| dzr < ¢ Xg/R (ﬂ'gc] + 7T£k 2l 4 ﬂ'gc Uy lkZQ(Tré 2+ ﬂ'gc 2])) dx. (5.8)

Proof. We only give the proof for £ = ¥ since the proof for £ = v is similar. We have from (3.36)

k(1 — 25)

A
2 = N eouupe 076 DI g?h2 D |9k 2 A,

e*7c,
ovpug

and the integral associated with the last term is directly majorized by

A _1
/ —ngh2(k+l)|8kr|2|AT|dx < c||h2827-||Loo/ i %]dac,
RTL

Rn ex v
is bounded. Considering then the terms of EL;C]
we observe that the quantities e=*797¢ are bounded since dZ¢ = > ., - ComT O ¢, where copm,

are constants and where ¢ € {k,7, A}, so that we only have to estimate the L? norms of the products
k+1)
.

—xT

where c is a constant since Ae appearing in the sum

When H,(,kﬂ) only contains derivatives of w and 7—in particular if there is a derivative of order
k +1—we obtain from Theorem 4.10 applied to (w,7) with k replaced by k + 1, that when x5 is small
enough

v N,—1 k
Tz < e (1108 Tl oo + 7=l { / w%]dw} , (5.9)
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where N, = 21<\a|<k+1(Va +v, T, = Zl<\a|<k+1(yt/x + /). However, if the product D g

split—in particular if there is a derivative of density—we obtain from Theorem 4.11 applied to (r, w, T)
with % replaced by k + 1, that when x is small enough

T+ 2 <c |2l gk 10, 2] oo |l gh* 0¥Z| 12
~ _\t+ ~ _ 1~
+ s |70 100,72 (gt 017 12,

keeping the notation of Theorem 4.11 for ||hd,Z|| L~ and ||gh™d™Z|| 2. Therefore, we obtain that

2
I 2 < ey { [ (Al el ) dw} L (5a0)
R’n
where ¢ = c(k,n) thanks to x5 <1 and

lgh'a'Z||2, < b/ (Wl al Ty de, 1<i<k,

Rn

where b is independent of | and n. Since one of the two products Hl(,kH) or Hﬂ”l)

combine the inequalities (5.9) and (5.10) in the form

is split, we can

_ _1 _3 _
HHl(,k"'l)HLkJ"l)HLl <cexs /Rn(”[ﬁku”[ak 1]+”[&k 2]+1k22(71',[~yk 2]+F%k 2])> de,

where ¢ depends on k and n. On the other hand, in the expression of w%k], the products HLkH) are

always split between several derivative factors, so that the inequality (5.8) is established in a similar
way. The proof in the situation & = ~ is similar with Theorems 4.10 and 4.11 replaced by Theorems
4.12 and 4.13. ad

Proposition 5.3 Let (p,v,T) be a smooth solution of the compressible Navier-Stokes equations (3.1)-
(3.5) with reqularity (3.6)(3.7), let 1 < k <1, and let £ denote any of the symbols v or 7. There exist
positive constants §(k,n) and cy = c(k,n) such that for x, < § we have

r—1 k— 1 _ k—3 _
/Rn|zé 2]| dx < cp Xe /Rn(wék} +7T£ 2] +7T£k Uy lkzz(ﬂé 2y wék 2])) dx

1 1
2 2
+c0{/ ¥ d:v} {/ ) dx} : (5.11)

-1 -1 _ R —
[t e [ et el s il ) a

} }
+ Cg/ ﬂ'gk*l] dz + ¢ {/ wék_%] d:c} {/ wékil] da:} , (5.12)
n n Rn

where ¢o and cfy, are constants independent of k and n.

_1
Proof. Considering first the case & =y and the expression (3.41) for E[Yk 2], all terms in the sum are

estimated as in the proof of Proposition 5.2. More specifically, the I? norm of H,(,k) is estimated with
Theorem 4.12 applied to p, v, and T, whereas the IL? norm of the split product Hﬂ”l) is estimated

with Theorem 4.13 applied to p, v, ad T with k replaced by k + 1. Furthermore, the remaining extra

terms are directly estimated in terms of 7, W»[Yk_%] and 7 7. The same argument is valid for wlE2]
using the expression (3.33) as well as in the case £ = 4 using (3.42) and (3.42). O

20



5.3 Zeroth order entropic inequalities

We now recast the classical zeroth order entropic inequality into a convenient form that will be used
to investigate entropic principles associated with 'l

Proposition 5.4 Let 7% be given by (3.17). Then 7% > 0 and the following balance equation holds

T-T IIv
[o] ( _ oo) (i _4 _)
O™/ Co + 0, pr(sc0 — 8) + pucy T +0, . T + T
)‘|azT|2 77|d|2 K(ax'v)2 _
+ ( R b )dw ~0. (5.13)
Morover there exists positive constants By and d, > 0 such that for Co > By and x., < d, we have
6,5/ A0 dg 4 / F[VO] dx <0, (5.14)

where we define from (3.26)

2 2 1 k(0. v)2
Proof. It is easily established that both the temperature and density parts of % are nonnegative
so that 1% > 0. Multiplying the total mass equation by (9,5®) = es/T + % — S0, the total
energy equation by (0.0 S). = 1/T,,, and substracting this linear combination from the fluid
entropy governing equation yields (5.13). Integrating this balance equation (5.13), keeping in mind the
regularity assumptions such that fluxes and sources are in L! ((O7 t), L} (R")), we obtain that

MO, T|? d|? 0,-v)2
8t/7[0]dx+co ( |;2| +77;1£ +K( %U) )dx:O.
n R’Il

From the properties of the transport coefficients we obtain

2 t]2
[0] » |amT| |(91’U+ (amv) | <
at/ww dfC+Co(g/2)/RnT (Bt + ) dr <o

On the other hand, for any v € W2 and any index pair (i,j) we have[42)]
20;v; = (Ov; + Oyv;) — Z RiR;(Oyv; + O;up) + Z R R;(Oyvj + Ojvp) (5.15)

1<i<n 1<I<n

where R; = (—A)_l/ 29; are the Riesz transforms, 1 < 4 < n, and from the continuity of Calderon-
Zygmund operators in weighted Legesgue spaces established in Theorem 4.6 we deduce that there exits
a constant ¢(n, ») such that

2 t|2
0 o [ P @)
RnTl_% Rn T1-»

for |[log T'|| Bmo < 8(n, ) small enough. By combining these estimates and by using that T* = g2h?
we obtain

11
) Ol 4z + Co(a/2a) —— / O gr <0
t/npy @+ Cola/ a>1+é1+§n T

and selecting Co > 2(1 + ¢)(3 + 4n)a/a completes the proof. 0

We also recast the classical zeroth order entropic inequality into a convenient form that will be
needed to investigate entropic principles associated with T'¥.

Proposition 5.5 Let 719 = 4% by given be (3.17). Then A0 > 0 and the balance equation (5.13)
holds. Moreover there exists positive constants By and &y > 0 such that for Co > By and x5 < 4,

at/ 5100 dac—i—/ P dz <0, (5.16)
where we define from (3.35)
A i+
w = 2022 (2 0,7 + 10 ul + B (0,w)?).

ﬁ/
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Proof. This is a consequence of the proof of Proposition 5.4 and of the differential relations

81'1)
= 0w + swo;T, 1<i<n,
VT ?
which yield that fRnng] dz is minorized by (1 — cx5) fRnw[ﬁO] dx. 0

5.4 Higher order entropic inequalities

Our goal in this section is to obtain entropic inequalities for the (2k)'™" order kinetic entropy estimators

Tk — A0 4 Z (Y +ayli=2l)y k>0, (5.17)
1<i<k
and - . g
T =504 3 3+ a4l=2)) k>0 (5.18)
1<i<k

The quantities v[i_%] and ﬁ[i_%], 1 < i < k, are multiplied by a small rescaling factor a in (5.17) and
(5.18) so as to not modify the majorizing properties of the correctors Al and A1, 4 > 0.

Lemma 5.6 Let (p,v,T) be a smooth solution of the compressible Navier-Stokes equations (3.1)—~(3.5)
with regularity (3.6)(3.7), assume that T > Tyin. There exists Bo(T,,, Tmin) such that for Co > By,
0<a<l,and0<k<I

T 4 By < T < 3004y Ry 0 <k <, (5.19)
%(:y[01+~~+ﬁ[’“])§f[k1 < %(:Y[O]‘F""":Y[k]), 0<k<l. (5.20)

Moreover, assuming that T > Tyin and p < pmax, there exists exists Bo(Tsy, Tiin, Poos Pmax) Such that
for Co > By,
p(Ir = rool® + [w]? + co |7 = 7o [?) <AL (5:21)

Proof. Using the Cauchy-Schwartz inequality, it is straightforward to check that forany 1 <7 <k <1

1 1
i—1 2 7 2
-] <{ p2i-1 90 2} { 21 9P 2}
2l <<p ! Ny | ph?!| P |
1 107 o 10 2
<Z hZ(z nye v hZz g i
_2(p v *)

Therefore, half of the density part of ! and of the velocity part of v~ compensate for |7[i_%]|
provided we ensure that (%! > plv/v/T|?> but this is a consequence of Co > 27T, /Tmin. The same
method also applies for the modified estimators ﬁ[i_%], 1 <4 < k, and this yields Inequalities (5.19)
and (5.20) upon summing over 1 < ¢ < k. Inequality (5.21) is a consequence of

Loin 2 < 01
2T 2T
Tmin 2
oT |T_ oo| S eXp(T_Too) -1- (T_Too)v
oo
valid for Tmin < 7, where Tmin = 108 Tin, Too = log T, and Tinin < T, and of
Poo Ir—ro > <exp(ry, —7) —1— (rog —7),
2pmax
valid for r < Tpax, where Tmax = 10g Pmax, T =108 po and 7, < rmax letting By = max(1, ;?‘;, g‘;—:)

and CO Z BQ.
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Theorem 5.7 Let (p,v,T) be a smooth solution of the compressible Navier-Stokes equations (3.1)-
(3.5) with regularity (3.6)(3.7) and let 1 < k < 1. There exist positive constants @ and dy(k,n) such
that for a < a and x. < dya we have

8t/ Tk g + = / 0 4 Z i1y CL?T ])) dx <0, (5.22)

1<i<k

and for a < a and x5 < dya we have

at/ T g + = / (" + 3 (@7 4 axl ) dx < 0. (5.23)

1<i<k

Proof. We only consider the case £ = = since the proof is similar for the modified estimators & = 4.
From the differential inequality (5.3) for 411, 1 < i < k < I, and the results of Proposition 5.2, we
obtain that

)

n

0, A d + (1-2¢ X'v)/ ﬂ',[f] dx < 2¢ X'y/
Rn

Rn

+ 1i>22¢; X’y/ (F[yi_%] + W,[f_2]) dx. (5.24)

n

Similarly, from the differential inequality (5.4), and the results of Proposition 5.3 we obtain that

2
0, Rnfy[ifél dr + (1 — 2e0 — 2¢; x,) /nw,[y 2 gy < (4_0 + 2¢; XW)/R 7l dx

/2

- i—3 i—
+ (e + 4— +2¢ XV)/R i dr + 15592¢; XW/ (rl 2l 4 =2 da. (5.25)

Forming (5.24)+a(5.25), we obtain after some algebra

) . c2 .
0, ) (Y + anli=zly da 4+ (1 - 2eix, — a(4—€00 +2¢; X)) / 7l d

n

n

+ (a(l — 2¢9 — 2CiX'y) — 2CiXV) / W[}?i%] dx <

/2

+ ( (ch + 4— +2¢i x,,) +2¢ Xv) / ﬂ-g*l] dx

m

+ 1;>22(1 + a)e X'y/ (W[v d +7r[l 2 d. (5.26)
Assuming then that
0<a<l, 2=~ 2( ) <2
“=5 Ty 125, = 100
12
R I IR & P
460 460 10

that is, a < @ and Xy < oya with

a= min(l hadl i) ) Oy = ;
B " 10c3” 10(cf + 4eocy)/’ Y ’

we obtain that

n R’Vl

3 [ - 2 -3, i
+ 15 K 1 d+ Liza 75 X /(aw7 2 a2y da (5.27)

Summing for 1 < ¢ < k, and adding to the zeroth order inequality (5.14) we finally obtain (5.22) and
the proof of (5.23) is similar. O
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Corollary 5.8 Let (p,v,T) be a smooth solution of the compressible Navier-Stokes equations (3.1)—
(3.5) with regularity (3.6)(3.7) and let 1 < k < [. There exist positive constants b and 6, (k,n) such
that for the fized value a = a of Theorem 5.7 when x., < 0l we have

at/ Ik d:z:+b/ pT =7 (1 4 44z <0, (5.28)
and when x5 < 8 we have

at/ [[*] d:v—i—b/ pT =7 (3 4 4 3 gz < 0. (5.29)
Proof. This is a consequence of Theorem 5.7 in the special situation a = a letting 0 = dya,
b =amin(1,a)/5(1 + ¢,), and using pT* = = ¢*/p. O

Theorem 5.7 and Corollary 5.8 show that the (2k)'" order kinetic entropy estimator Tkl and T
obey entropic principles. Upon integrating these inequalities (5.28) and (5.29), a priori estimates are
obtained for the solutions of the compressible Navier-Stokes equations. These entropic inequalities
and the related a priori estimates are also invariant—up to a multiplicative factor—by the change of
scales (3.8) described in Remark 3.1 and naturally associated to the Navier-Stokes equations. Since
we have formally v/ /T = O(Ma), log(T/T,,) = O(Ma), and log(p/p..,) = O(Ma), where Ma de-
notes the Mach number, the constraint that x, or x5 remain small may be interpreted as a small
Mach number constraint, which is consistent with Enskog expansion[20]. These estimates also pro-
vide a thermodynamic interpretation of the corresponding weighted Sobolev norms involving either
renormalized derivatives for I'*], or derivatives of the renormalized variable Z—which is also a normal
variable[19, 27]—for I'*], and involving as well the dependence on density and temperature of the local
mean free path through the factor h. This factor h ensure in particular that the operator hd, is scale
invariant.

6 Global solutions

In this section, as an example of application of higher order entropy estimates, we investigate global
existence of smooth solutions when the initial values log(po/pso), vo/vTo, and log(To/T,,) are small
enough in appropriate weighted spaces.

6.1 Local existence

We denote by z the combined unknown z = (p,v,T) and accordingly by 7z, the equilibrium point
Zoo = (Poos0,To.) with pog > 0, v = 0 and T, > 0. We denote by O, = (0,00) x R™ x (0,00) the
natural domain for the variable z.

Theorem 6.1 Letn > 1 andl > [n/2]+3 be integers and let b > 0 be given. Let Oy be an open bounded
convex set such that Oy C Oy, dy with 0 < dy < d(Og,00,), and define Oy = {z € Oy; d(z,00) < dy }.
There exists t > 0 small enough, which only depends on Oq, di, and b, such that for any Zo with
1Zo — Zoo|lwr2 < b and zg € Oy, there exists a unique local solution z = (p,v,T) to the system
(3.1)~(3.3) with initial condition

(p(O,x),v(O,x),T(O,x)) = (po(x),vo(:zr),To(:zr)), (6.1)
such that
(p(t,z),v(t,z), T(t,x)) € Oy, (6.2)
and
p— po € CO([0,2], WHE(R™)) N C ([0, 7], WIH2(R™)), (6.3)
v, T — Ty, € C°([0, ], W (R™)) nC*([0,], WI=22(R™)) N L*((0,%), WTH2(R™)). (6.4)
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In addition, there exists C > 0 which only depends on Oy, di, and b, such that

sup {119(5) — poc s + ) s+ 17(5) — T
0<s<t

t
b [{100) = puclBes + 106 By + 1705) = Telyron s ds
0

< C(lloo = pacllprs + loollZyrs + 1To = Tucll3rz). (6.5)

Proof. We refer the reader to Kawashima|[25, 26] for a general proof concerning hyperbolic-parabolic
symmetric systems in normal form. This proof is also adapted to the parameter dependent case in
Giovangigli and Graille[18]. O

6.2 Properties of the solutions

We establish in this section that the solutions constructed in Theorem 6.1 are as smooth as expected
from initial data.

Theorem 6.2 The solutions obtained in Theorem 6.1 inherit the reqularity of Zg, that is, for any k > 1
such that Zy — Zeo € W*2, we have

p— poo € CO([0,2], WE2) nC* ([0, 2], Wr12), (6.6)
v, T —T,, € C°([0, ], WF?) nC* ([0, ], WF22) N L2((0,%), Wrt!2). (6.7)
In particular, 7 is smooth when Zg — Zo, € WH2(R™) for any k € N.

Proof. Let k > [ be such that 7z — Z, € W*? and denote by el¥! the quantity el¥l = |0%p|? +|9%v|? +
|0*T'|2. We have to estimate e*] in order to establish (6.6)(6.7).

Assume first that the regularity properties (6.6)(6.7) hold. A balance equation for elfl can easily
be derived—and is simpler than that of v*/ of 4*]—and written in the form

9, 1+ 9, (vel) 49, b 1 7l 1 slH 4 HIF — g, (6.8)

This equation holds in D’ ((0,£)xR") and L'((0,¢), W~11), elfl e C°([0,¢],L"), and cp[ek], ka], ELk],

Wit e L'((0,£), L (R™)). The term 7" is given by

2\ 2 2(3n+
albl = 22 gk 4 _’7|ak+1v|2 + ka@g'v)ﬁ (6.9)
Py P p
and the term ELk] is in the form
S = 37 o T pPone 09 T VT, (6:10)
oV

where the sums areover 0 < o <k, ¢ € { A\, 0,6}, v = (Va, U, V3 )1<|al<ht1) b = (Has iy i) 1< || <k+15

[e 2 e%

Va, Vs Vi Has iy, i € N, o € N, The quantities a,,4 and b, are integers depending on v, p and
¢. The products ﬁ,(jkﬂ) are defined by

A =TT (0%0)" (0°0)" (0°T)", (6.11)
1<]a|<k+1

where v denotes any of its components vy, ..., v,, and ¥ must be such that

Z lo|(ve + V), + V) =k +1, Z Vo =0,

1<|er| <k+1 la|=k+1

so that there is a total of k + 1 derivations and there is no derivative of order k + 1 of density. In
addition, we have 37, (V4 + V4 + g + o) < 1, so that there is at most one derivative of (k + 1)th
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order in the product ﬁ,(,kﬂ)ﬁftkﬂ). Furthermore the term wgc] is given by

e 2T
k] _ ayy by k k+1 k k
wik = EW ey T pPr TP — Za T 9%(9,v) (6.12)

+ %3% *(9,-v) — 2p0% 9*(9,v), (6.13)

ﬁﬁthrl)

. . =(k .
where we use similar notation for Hl(, ) as for and the summation extends over

> al(va + v +v2) =k, S ol (pa + ph + pl) =k +1,
1<]|a|<k 1<l <k

so that in particular E\a|: jt1 (o + Hp + pg) = 0 and there are always at least two derivative factors

in the product ﬁff“’. Finally the flux (p[ek] = (sp[ekl], e gpgﬂ) is in the form
P = 3" covugi T phene 9.6 T, (6.14)

ovpl

After integrating Equation (6.8) over R™ and using uniform lower bounds on A/pc, and n/p thanks
to (6.2), we obtain that these exists a § > 0 with

9, | el dx 4+ 26 (|07 T + |07 ]?) da < c/ (|E£k]| + |wt[ﬁ|) de, 1<j<k.
Rr Rr R"

Now regrouping all derivatives of order k+1 appearing in E[ek] in the left member, using xy < ex?+4y? /e,

we only have to estimate the L? norm of multiple products with & + 1 derivations ﬁ,(,kﬂ) with at least
two derivative factors or of multiple products with only k& derivations Hl(,k). From Theorem 4.8 and
since ||Z — Zoo || L, and |07z, are finite thanks to I > n/2+ 1, whenever the product Y s split,

we have estimates in the form
JTHD 12, < o1 + 02] g ) 2 / () 4+ elt)) da,
Rn

where ¢ only depends on [|Z|| . The products M) are also estimated thanks to Theorem 4.7. Com-

bining these estimates, we obtain after some algebra that

9, | eWdx+6 [ (10712 + |07 0|?) da gc/ (6[1] —l—---—l—e[k})dx, 1<j<k,
R" R" "

where 0 and ¢ depend on L™ estimates of z and 0z. Upon summing these inequalities and using
Gronwall lemma we deduce that fRne[k] dz remain uniformly bounded over the whole time interval under

consideration [0,7] and we thus have a uniform upper bound B for the sobolev norm ||Z— Zeo ||yy#.2 < B.
This also implies that fot Jgnl @1 T)? dzdt and fot Jgnl®7 10| dadt are finite.

Now from the local existence theorem, there exists a positive time 0 < #' < # constructed with the
parameters Oy, di and 2B, where a solution with regularity (6.6)(6.7) exists and coincide with z. The
preceding estimates then show that the local existence theorem can be used repeatedly over [0, ] since
we have the uniform bound ||z — Zeo||yr2 < B over this interval so that finally (6.6)(6.7) hold over
[0,#]. Moreover, when 7o — Zs is in W¥?2 for any k > 0, z — 2 is in C°([0,%], W*2) for any k, and
we recover the regularity with respect to time from the governing equations so that z is smooth. O

In the next propositions, we reformulate for convenience the local existence theorem in terms of the
combined unknown 7 = (r,w, 7) associated with the renormalized variables r, w and .

Lemma 6.3 Denote by F: (0,00)xR"x(0,00) — R"*2 the application defined by F(z) = Z, that is,

F(p,v,T) = (r,w,7) = (log p,v/VT,logT). Then F is a C* diffeomorphism and its jacobian matriz
reads

1 0 0
P
,F=10 % —T—
1
0 0 +

Moreover, for any M, > 0, My, > 0, M, > 0, defining 0= (=M, My) X (=M, Myy)™ X (=M, M), the
corresponding open set O = F~1(0) is conver.
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Proof. The proof is similar to that of the incompressible case[15]. O

Proposition 6.4 Let M, > 0, M, > 0, M, > 0, define
60 = (_MrvMT) X (_vaMw)n X (_MTvMT)v

and O = .7:*1((50). Let 0 < dy < d(Oy,00,), Oy ={z € Oy; d(z,00) < dy }, and select an arbitrary
b > 0. From Theorem 6.1 we have a local solution built with the paramaters Oqy, di, and b. This
solution is then such that

r—ry € CO([0, ], Wh?) nCt([o,£], Wi12), (6.15)
w, T — 7o € CO([0, ], Wh?) nCH([0,2], W22) 0 L2((0,¢), WHTH2), (6.16)

and there exists C > 0 which only depend on Og, di, and b, such that

sup {[Ir(s) = ooy + (@)l + 17(8) = mocllfyre |
0<s<t

t
b [{6) = el + ) e+ 175) = Ty} s
0
< C(lIro = raolyns + lwolyes + 70 = Too ez )- (6.17)
Moreover, the kinetic estimators are such that F[l],f[l] € C'([O, t], Ll(R")).

Proof. The set Oy = F _1((50) is convex and from Theorem 6.1, there exists a local solution built
with Op, d; and b. We then have estimates in the form

Iz = Zoo|lwiz < |2 = Zoollwiz < El|Z — Zoo| w2, (6.18)
where ¢, and ¢, only depend on O; and [ thanks to the classical estimates

1(6) = ©(0)llye2 < Collell ez, (1 + Il oe) " Illyprnce, (6.19)

where O, is a convex open set with ¢(z) € Oy, © € R™. Similarly, the regularity properties are direct
consequences of the estimates

(@) = ¥l < Coll¥ll grin )1+ [Dllwez + [Sllwez)* 16— vz, (6.20)

where Oy is a convex open set with ¢(x) € Oy, ¢(z) € Oy, x € R™, and k is such that k > [n/2] + 1.
The properties ', T C’([O, t], Ll(R”)) are then straighforward to establish. O

6.3 Global existence

In this section, we investigate global existence of solutions for which the quantity X5 = 7|l saro +
lwll 1o + 17l gaso + 17| 1oe + [[hw]| foo + [|AT ]| 1oo + [|H20?T|| [ remains small. We investigate solutions
with given bounds pmin < p < Pmax and Tnin < T < Thax, Where pmin < pog < Pmax and Tnin < Too <
Thax, and assume that Cy has been chosen large enough as in Lemma 5.6. We will also use the results
of Corollary 5.8 and assume that the fixed value a = a has been selected for the parameter a in this
section.

Theorem 6.5 Letn > 1 andl > [n/2]+3 be integers. Assume that the coefficients A\, k, and n satisfy
(3.11)(3.12). There exists d-(1, n, Trmin, Tmax, Pmin, Pmax) > 0 such that for pg, vo, and Ty satisfying
Tmin < infgnTh, supgno < Tmax, Pmin < infrnpo, SUPRePo < Pmax; Z0 — Zoo € Wh2, and

/ rdz <o, (6.21)
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where fg] denotes the functional T evaluated at initial conditions, there exists a unique global solution
z = (p,v,T) with initial conditions

(p(0,2),v(0,2), T(0,z)) = (po(x),vo(x), To(z)), (6.22)
such, that
P — PoesT — Too € C2([0,00), WH?) N C*(]0, 00), WIT12), (6.23)
v,w,T — T, 7 — 7oy € C°([0,00), Wh?) N C* ([0, 00), W22, (6.24)
9,p, 0,1 € L*((0,00), W12 9,T,0,7,0,v,0,w € L*((0,00), W"?), (6.25)

and we have the estimates
t
/ iy d:c—i—l_)// pT = (511 —i—---—i—ﬁm)dxdtg/ T dz. (6.26)
R’n 0 T n

Furthermore, this solution is smooth and we have

lim [|2(t, ) — Zoo|| ;e = 0. (6.27)

t—o0

Proof. We investigate solutions such that ppin, < p < pmax and Tiin < T < Thax. For such solutions,
thanks to classical estimates in the form

I1Z = Zsolloz < collZ = Zoollwio+22,
where lgp = [n/2] + 1 we have the inequalities
1Z = Zooll oo + X5 < xl|Z = Zoollwrio 222,
and

Cr||z_zw||%4/L,2 S/ f[l] dz,
R’Il

thanks to Lemma 5.6 where ¢, and c¢r depend on Tiin, Tmax, Pmins Pmax, and [. In order to obtain
a value of §r small enough, so that the higher order entropic estimates of Theorem 5.7 hold, we will
ensure that 6, < ¢:07/4¢; where §] is defined in Corollary 5.8 and this value will indeed insure that

X5 < 6%/2. Corresponding to this value of oy, we have estimates in the forms ||Z—Zeo|| o < ex(6r/cr)t/?
and ||Z — Zoo|| 12 < (6r/cr) /2. We now select M,. > 0, My, > 0, and M, > 0, such that

IOg(pmin/poo) < =M, <M, < IOg(pmaX/poo)v
log(Tmin/Ts,) < =My < My < 10g(Tmax/Tss)s
and define

OO = (_MT’MT) X (_MU“M’W)n X (_MTaMT)a

and for § > 0 _
Os ={2€R"2; ||z — Zoo|| < CX(6/CF)1/2 1.

For §y small enough we have
O = { 2 € R™2; |2 = Zocl < V2ey(d0/cr)"* } C Oy,

and we now set

12
op = min(cifg ,50).
X
The open set Oy = _7-'_1(60) is convex and let 0 < d; < d(Op,00,), and define Oy = {z €
Oy; d(z,0p) < dp } and 51 = F(O1). Now for functions taking their values in O; we have inequalities
in the form ||Z — Zoo|[yr.2 < €4]|Z — Zoo|| w2 Where €, only depends on k and O;. We thus obtain the
a priori estimate ||z — Zoo|| w12 < & (6r/cr)'/?. We now set b = &,(6r/cr)*/? +1 and from Theorem 6.1

and Proposition 6.4 we have local solutions over a time interval [0,¢] built with the paramaters Oy,
dy, and b.
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Let now pg, vo, and Ty satisfy Trin < infreTp, supgaZo < Tmaxs Pmin < infrep, SUPgep < Pmax,
Zo — Zoo € WH2, and fR,fg} dx < ér. Then by construction zg € O and ||Zg — Zeo||lwi2 < b, and we
have a local solution over the time interval [0,¢]. Letting

X5(&) =lr(t, M sro + 1wt )l e + 7 )l paro + 17(E )0, (E, )|l Lo
+ Hh(tv ')6mw(t7 ')||L°° + ”h(tv ')amT(tv ')||L°° + ”hz(tv ')6£T(t7 ')||L°°7

we also have by construction x5 (0) < 6} /2 and we claim that for any ¢ € [0, 7] we also have x (t) < 4} /2.
We introduce the set

E={s€ (0,TVt€0,3], x5(t) < (2/3)d, 2(t) € F*(Oas,) },

which is not empty since ¢ — x;(t) is continuous, x5(0) < dy/2, and 7z(0) € Os, so that z(0) €

F~1Os,). Denoting e = sup€ we have X5(t) < (2/3)d5 over [0,e] so that the entropic estimates of
Theorem 5.7 hold and we have

[[acs [[ar<s, o<t<e

This now implies that x5 (t) < 65 /2 and that pmin < p < Pmax and Tnin < T < Thax uniformly over
[0,e] so that e = ¢. From the above a priori estimates, we also obtain that for ¢ € [0,7] we have
1Z(t) = Zool| e < ey (0r/cr) /2, so that z(t) € Op, and ||Z(t) — Zeo||wi2 < b—1 < b, in particular at
t =t. We may now use again the local existence theorem over [¢,2¢] and an easy induction shows that
the solution is a global solution.

The asymptotic stability is obtained by letting ®(t) = fRn(’y[l] + -+ A=) dz and establishing
that

/ |<I>(t)|dt+/ |8t<1>(t)|dt§0/ T da.
0 0 Rn

This shows that lim;_, e ||02Z(t, ) |lywi-2.2 = 0, and using the interpolation inequality

— a —
Illco < Co 105 ¢l Nl 12,

where n/a = 2(1 — 1) we conclude that limy_o ||Z(¢, ) — Zoo||co = 0, and next that limy_o ||2(¢,-) —
ZooHCo =0. O

Asymptotic stability of constant equilibrium states is usually obtained for Zg — Zs small enough
in appropriate spaces. Assuming that log(po/p..), vo/vTo, and log(Ty/T.,) are small enough seems
more natural since these quantities are scale invariant and since the Knudsen and Mach numbers are
of the same order of magnitude. The corresponding a priori estimates have a natural thermodynamic
interpretation with higher order entropies. A complete analysis of the asymptotic expansions for small
Mach and Knudsen numbers, however, is out of the scope of the present paper[16, 17].

7 Conclusion

We have investigated higher order kinetic entropy estimators for compressible fluid models in the natural
situation where the volume viscosity, the shear viscosity and the thermal conductivity coefficients
depend on temperature. We have establish that entropic inequalities hold for such estimators provided
that the quantities ||10g ol sy 110/VT 1|1 1168 Tl pason 100p/pll s 1700/ VT e, [ROT /T e
and [|h202T /T ||, are small enough. As an example of application, we have established a global
existence theorem provided that the initial values log(po/p.. ), 1og(To/ Ty, ) and vo/+/Tp are small enough
in appropriate weighted spaces.

(]

A Derivation of the "l balance equation

We derive the balance equation for the entropic correctors y*. The proof is lengthy and tedious but
presents no serious difficulties.
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To obtain more concise analytic expressions it is convenient to define ar = 1 + k(1 — 25) and
b, = —1 + 2k in such a way that

1 8k 2 8k 2 8kT2
. (120l Rl BT

- Tak_lpbk p2 T v T2

In order to obtain a balance equation for 4*! for smooth solutions we form its time differential 6,57[’“]

ar — 1)|0%p|2 ay|0%v|? colag + 1)|0%T)|2
at,y[k]_’_((k )19"p| k|07 V| (ak )| |

Tak pkarQ Tak+1pbk Tak+2pbk ) 8tT

(b +2)[0Fp|2  bi|0Fv|? cybi|OFT |2 P 9 k! 0°T o0, T
+( TakflpkarB Takpkarl Tak+1pbk+l) tp — 2Cv Z J Tak“rlpbk

la|=k
k! 0%p0*Op k! 0%v;0%0pv;
_2|Zk ol Tar—1 bk+2 -2 1;71 al Taxpbs 0, (A1)
lal=k

and we use the governing equations in order to express 0,1, 0,p and 0,v in terms of spatial gradients

Op = —p0y-v — v-0,p, (A.2)
1 , 1

O = — Z 9;(ndjvi + ndiv; + (k — 2n)d,-vdi;) — =0;(pT) — v-0,v;, (A.3)
1<j<n p

— > 091+ a4 L@, = Lo, 0 — 00, T (A.4)
Y 1<j<n 2pcy pev “

We denote respectively by 77, 7°, T9T, T9 and 79, the five sums appearing in the governing
equation for 9;y¥], keeping in mind that the time derivative terms 9,p, d,v and 9,T have been replaced
by their expressions (A.2)—(A.4). We first examine separately higher order derivative contributions
associated with each sum 77, 7P, 79T 79 and T9”. The lower order derivative terms of convective
origin are examined all together at the end.

The term in 77 associated with |0%p|2AAT, which is not of the admissible form, is isolated in ELY]C]
whereas all terms associated with [0 p|?|0,T|?, |0 p|?|d|?, and |0%p|?|0,,-v|? are of the admissible form,
that is, in the form

> o T7 076 TLFHDIIED
ovpe

where cq,,4 are constants and the products ) and HLkH) are defined by

- 11 (2 (50)° (2

1< <k+1 P

The sums are over <Z5 € {Ank} 0< 0 <k v=(Va,V,Va)i1<lal<k+1s 1 = (Has oy Ho)1<|a|<k+1:
Vas Vs Vags s s Mo € Ny o € N, and pand v must be such that 35, <1 o (va+ra+14) = k+1,
Doi<jal<hir (o + g T pg) =k+1, 30 0 mp (Va t 1a) = 0,324 =1 (Ve V0 + 1o+ pg) < 1, so that
there is no derivative of order k + 1 of density and at most one derivative of order k+ 1 of temperature
or velocity components in the product H(kH)H(kH) In particular, one of the terms H( ) o H(kﬂ)
is always split between two or more derivative factors

Similarly, all terms of 77 in the form |0*T'|?|d|?, |0*T|2|0,-v|? |0%v|?|d|?, and |0¥v|2|0,-v|? are of the
admissible form. On the other hand, the terms associated with |0¥T'|20, - (A0, T) and |0¥T'|20,,- (A0, T)
are integrated by parts. They yield flux contributions and source terms in the form

Z ( (ar + 1)|0FT|? ar|0%v|? )x\@T

- 14,

G2 T2+ak pbk CUT1+U«k pbk

which are easily rewritten as sums of terms like c5,, T2~ *0F7A H,(,kH)HLkH) with at most one derivative

of (k + 1) order. All other contributions from 77 as well as all contributions from 77 and 79° are
of lower order type.
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We now consider the term 797 with each contribution at a time. The most important contribution
in 797 is that associated with

KoooeT /1
—2CU Z awa (pT’Ual()\alT))
1<l<n

|| =k

We then write ) ) \OTE
;81(/\311_') = (91(;/\81T) + l72lp

and the contributions associated with 9;(A9,T/pc,) are integrated by parts. This yields source terms

in the form K o9°T O, T
+2 Z al(T1+akpbk)aa( : )

1<i<n P
|| =k

After expanding the derivatives, using the differential identities of Section 4.1, the above sum can be
written

k! 8aalT (9O‘T(91T (9O‘Talp
2 Z (Tl+akpbk - (1 + ak) T2+ak pbk = by T1+akp1+bk )
1<i<n

lee|=k

~ —(Aao‘azT-i-ZCaauuT"@T)\H 8 T VgH 8 p Mﬁaa aaT)

avy

where the summations and products extend over 1 <! < n, |a| =k 0<a<a,a#0,1 <o < |al,
>pBvs+ps)=a 1 <|Bl <lal, and 3°5v5 = 0. We can now extract for ng] the term in the form

A(0%9,T)? which can be written

a' T1+akpbk al  Tltakpbe’

1<i<n
|| =k

|a|=k+1

thanks to the properties of multinomial coefficients[8, 41]. All other terms are of admissible form for
E[Vk], i.e., in the form cs,, T77*0F7A Hl(,kH)H,(fH) with at most one derivative of (k + 1) order since
> 5 1Blvs +1+|a—a| = k+1. More specifically, we can factorize T~ in the first factors, 7" in the
parenthesis, and all the terms involving derivatives of 0%\ are multiplied and divided by T thanks to
d.pvg=0.

The contributions associated with A9, T9;p/p? are integrated by parts thanks to a decomposition
in the form a = & + e;, where |a@| = k — 1, as well as the contributions in 797 associated with n|d|? +
k(0,-v)?, and only yield admissible source terms. More specifically, we decompose each multiindex «
with |a| = k into a = & + e;, where |&| = k — 1, i, is chosen arbitrarily with «;, # 0, and eq,..., e,
denotes the canonical basis of N, so that we have 9% = 9%0;_. We can then integrate these terms by
parts and obtain sources in the form

0T <
Z 6ioc (TlJrak pbk ) 9 (ndfj) :
1<i,j<n
|| =k

Upon expanding the derivatives with the help of the differential identities established in the Section
4.1, all these terms are of admissible form for Elyk].

We now consider the sum 79” and its most important contribution is that corresponding to
0%9,-(nd + k0,-vl) which reads

k! 0%, 1
-2 Z 2o 80‘(;(’91(1761%—#7781-@14-(&—%n)@x-véi[)),

] b
1<4,l<n al Tox p2
la|=k
where d; is the Kronecker symbol. We first consider the contribution associated with nd;v; using the
identity

1 a1 01p0;vy
;81(77611;1) =0 (;77(91’1)1) + —
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and focus on the contributions of the terms 9;(ndjv;/p). The contributions associated with 9;p0;v; are

of admissible form for Ziyk] after one integration by parts using a = & + e;, and the corresponding
details are omitted. After integration by parts we obtain sources in the form

k! 0%v; nalvi
L5 ()
IS;lSn al T\ Tk pbk p
|| =k

Expanding the derivatives, the sum is rewritten

k! 1 0%0v; 0%v,; 0T 0“v;01p
|| =k

X ;(T]aaalvz + anau#TdaTn H 8 T VB H Tp #B 80‘7&8”)1')7
B

avy

where the summations and products extend over 1 <, 1 <n, |a| =k 0<a<a,a#0,1 <0 <|al,
Y5 Bws +pp) =& 1 <|6| <lal, and Y- ;3 = 0. We can extract the term in the form 7(9*dv;)?
[k]

for m5" which is rewritten as

s K00 5 (k + 1)! (9%0;)?

al Tak pbe ol Taokpbr’

1<i,i<n 1<i<n
|| =k la|=k+1

thanks to the properties of multinomial coefficients. All the other terms are of admissible form for E[Vk],

that is, in the form ¢4, T7~*0%n Hl(,kH)H,(fH) with at most one derivative of (k + 1)*® order.
The contributions associated with 1n0;v; is treated in an analogous way with the identity

o) (77(91"01) = 8T77(91T3ﬂ)l + 0; (7781’01) — (9T7781'T8ﬂ)i,

and yields a source term for ng] in the form

| o
277 Z k! 88m

ol Takpbk
1<i<n

la|=k

Finally, the terms (k — %n)@m-v d;1 can be treated in a similar way and yields a source term for W»[Yk] in

the form M (600 )2
9 (0%
2(/4/_577) Z a Takpbk )
1<i<n
la|=k

as well as contributions of the admissible form.
Lower order convective terms first yield the contributions

(ap — 1)|0%p|2  arl0Fv]®>  c,(ar +1)0FT|? oT
- ( Takpbk+2 Tak-‘rlpbk + Tak+2pbk )U' x
(b +2)|0Fp|>  bel0Fv]® cubi|OFT)? 9
B ( Takflpbk+3 Takpkarl Tak+1pbk+1)v' 2P
k! 0°To*(v-0,T) k! 0% pd™(v-0, k' 0%v;0%(v-0,v;)
+2¢ Z Tax+1 pbr 2 Z ol Ta—1 bk+2 -2 Z T pbr ’
lal=k & || =k 1<i<n
lo|=F

and all terms proportional to v are easily recast in the form v-azw[k], so that the only remaining
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contributions are the sources
k! 0T
E E T /By, ale=B)
2¢y, Cap ol Tar 1 b OFP v, 0\e=P) T
|| =k 0<p<La

1<i<n 1<

80&
2 Z Z aﬁoﬂ Tak 1pbk+28 ’Ula alp
lal=k  0<f<a
1<i<n 1<)

k! 0%v;
2 ) > CaB o1 Tan pbr mar g0 0 o

la|=k 0<B<
1<4,l<n 1<18]

which are easily rewritten in the form cVMHE,k)HLk+1).

The remaining first order terms are then in the form
((ak —D)|0%p|?>  ax|0Fv|? cv(ak+1)|8kT|2)T8x-v

Cy

(br +2)[0%p|? | be|0F 0> cyby|0FT|? 5
_( Tllk—l br+3 Takpbk-‘rl Tak-l-l bk-'rl) ’

k! 0T
+2 Z ol Tatip bka (T0,v) +2 Z ol Tak 1 bk+28 (00 )
|| =k la|=k
kL 0%, 8p
1<i<n
|| =k

The two first sum are easily recast in the admissible form cVMH,(,k)HLkH). In the last three sums, it is

then important to separate admissible terms form unsplit ones, that is, to separate terms with three or
more derivatives—which are then of the admissible form—from quadratic terms. The third and fourth
terms yields the special source terms

+28’“T8’“(81-U) 28kp8k(8m-v)
Takpbk Takflpbk“rl :

(A.5)

In the last sum, the contributions associated with 0,7 are integrated by parts and yield admissible
terms plus the special term
_28’“T8k(8w-v)
Tok pbk
which compensates with the first term of (A.5). Finally, the special contributions associated with
TO;p/p = TO;log p are integrated by parts and yields the source term

- Tak—lpbk-'rl ’

)

which compensate with the second term of (A.5). This compensations of quadratic terms involving
hyperbolic variables are the consequence of the symmetric structure of the system of partial differential
equations.

Let now (p, v, T) be a smooth solution of the compressible Navier-Stokes equations (3.1)—(3.5) with
regularity (3.6)(3.7), and assume that 7" > Tii, and that p > pmin. The preceding derivation of the
~[¥ balance equation can then be justified for 0 < k < [ by using mollifiers and classical properties of
commutators|[25, 26, 43].

Moreover, from classical interpolation inequalities the following lemmas ensure that <p£¥ ], W»[Yk], E[Yk],

W e L1((0,8), wik1),

Lemma A.1 Leti > 1, o/, 1 < j < i, be multiindices such that |o?| > 1,1 < j <, and let k =

dicj<i @] Letun, ... uq, be such that there exist constants uj e with uj —uj o € W™2(R")NCH(R™)
and assume that 1 < k < m. There exists a constant ¢ = c(m,n) only depending on (m,n), such that
i
T 0% lyprnss < cllu = usclli= (10%ul 2 + -+ 97w 2), (A.6)
1<yl
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where

Ju—tsollzee = > luj = ujool L

1<j<i

lomullFe = > 0™z

1<5<i

and the derivatives of H1<j<l 8O‘juj can be evaluated by using Leibnitz’ formula.

Lemma A.2 Leti > 2, o/, 1 < j < i, be multiindices such that |o7| > 1,1 < j < i, and let k =
dicj<i o] Letun, ... uq, be such that there exist constants uj e with uj —uj o € W™2(R")NCH(R™)
and assume that 2 < k < m+ 1. There exists a constant ¢ = ¢(m,n) only depending on (m,n), such
that

F —1
I 1005 lymnes < e(llu = voollim + 10pulle ) (10"ullge + -+ 10™ull2), (A7)

1<5<1

where

10,ullz0e = > 10, o<,

1<j<i

and the derivatives of H1<j<l Bo‘juj can be evaluated by using Leibnitz’ formula.

These Lemmas can be established by using classical interpolation inequalities[43] or by using The-
orems 4.7 and 4.8 with a weight unity.

Lemma A.3 Let m >0, and a, b € W™2(R"). Then ab € W™ and there exists a constant c(m,n)
only depending on (m,n) such that

||ab||Wm,1 S C”a’”Wm’2 ||b||me27 (Ag)
and the derivatives of ab can be evaluated by using Leibnitz’ formula.

This Lemma is a direct consequence of Holder inequality.
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