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Abstract

We investigate the kinetic theory of partially ionized reactive gas mixtures in strong magnetic
fields following [Physica A 327 (2003) 313–348]. A new tensor basis is introduced for expanding the
perturbed distribution functions associated with the viscous tensor. New symmetry properties of
transport coefficients are established as well as simplified bracket expressions. A variational frame-
work is introduced for a direct evaluation of the thermal conductivity and the thermal diffusion
ratios. The transport linear systems corresponding to the usual Sonine/Wang-Chang Uhlenbeck
polynomial expansions are evaluated. The behavior of transport coefficients and transport fluxes
for vanishing magnetic fields is investigated using series expansions. Practical implementation of
iterative algorithms for solving the resulting complex symmetric constrained singular transport
linear systems are discussed as well as various aproximations of the transport coefficients.

1 Introduction

Ionized magnetized reactive gas mixtures have many practical applications such laboratory plasmas,
high-speed gas flows, lean flame stabilization or atmospheric phenomena [3, 7, 9, 11, 12, 21, 37]. Appli-
cation of the Chapman-Enskog theory to partially ionized mixtures of monatomic gases in the presence
of electric and magnetic fields has been discussed in particular by Chapman and Cowling [9] and
Ferziger and Kaper [21] in a regime where there is only one temperature in the mixture, assuming
that the electric field is not intense [10, 21, 25]. The proper collision operator to be used is then the
Boltzmann collision operator with shielded potentials [21]. Mixtures of monatomic gases at thermo-
dynamic nonequilibrium with multitemperature transport—arising from small electron/ion mass ratio
asymptotics—have also been investigated by Chmieleski and Ferziger [10], and in the fully ionized case
by Braginsky using Landau equation [3, 4]. Higher order evaluations of transport coefficients have been
performed by Kaneko and coworkers for binary neutral mixtures in uniform magnetic fields in a sim-
plified steady kinetic framework [31, 32]. Convergence properties of the Chapman-Enskog expansion
for transport coeffients of magnetized argon plasmas have been investigated by Bruno and coworkers
[5, 6, 7]. The degree of anisotropy of various transport coefficients introduced by the magnetic field
has been studied in terms of the electron Hall parameter. Bruno and coworkers have established in
particular the important influence of the Ramsauer mimimun in the electron-Argon cross sections [6, 7].

In a recent paper [25], the authors have investigated the kinetic theory of partially ionized magne-
tized polyatomic reactive gas mixtures. The macroscopic equations in the zeroth-order and first-order
regimes, together with expressions for the transport fluxes and the transport coefficients, have been ob-
tained. New bracket expressions have been established for the perpendicular and transverse diffusion,
thermal diffusion and partial thermal conductivity coefficients as well as for the shear viscosity coef-
ficients. A new definition of the thermal conductivity and of the thermal diffusion ratios—consistent
with the zero magnetic fields limit—has also been introduced. Positivity properties of multicompo-
nent diffusion matrices have been investigated and the mathematical structure of the transport linear
systems has also been addressed.

We further investigate in this paper the kinetic theory of partially ionized reactive gas mixtures in
the strong magnetic field regime. A new tensor basis is first introduced for expanding the anisotropic
perturbed species distribution functions associated with the viscous tensor which has better properties
than the linearly dependent generating family previously used [21, 25]. This new basis is constituted of
five independent traceless symmetric tensors constructed with the particle velocity vector and the mag-
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netic field pseudo vector. These five tensors are orthogonal to collisional invariants and the derivation
of the corresponding linearized integral equations and transport linear systems is clarified.

New simplified bracket expressions for diffusion, thermal diffusion and partial thermal conductiv-
ity coefficients are also obtained from which we deduce new symmetry properties of these transport
coefficients. These symmetry properties result from clever manipulations of the real and imaginary
parts of Boltzmann linearized complex integral equations. As a consequence, we also simplify the pos-
itivity properties of the resulting multicomponent diffusion matrices and heat-mass transport matrices
parallel, perpendicular and transverse to the magnetic field.

Generalizing previous work on non ionized species [15] we further introduce a variational framework
for a direct evaluation of the thermal conductivities and the thermal diffusion ratios without the
intermediate evaluation of the partial thermal conductivities and the thermal diffusion coefficients. The
resulting transport linear systems are of reduced size which is more interesting from a computational
point of view.

All transport linear systems corresponding to the first usual Sonine/Wang-Chang Uhlenbeck poly-
nomial expansions are evaluated, making use of previous work on neutral species mixtures [14]. The
mathematical structure of the transport linear systems is discussed as well as the evaluation of the
corresponding transport coefficients parallel, perpendicular and transverse to the magnetic field.

Since the size of the transport linear systems can be relatively large and since the transport coeffi-
cients have to be evaluated at each computational cell in space and time, transport property evaluation
may become computationally expensive, especially for multidimensional numerical simulations. In this
regard, the use of iterative techniques has been shown to be an interesting and appealing alterna-
tive [14, 16, 17]. We discuss practical implementation of iterative techniques for solving the resulting
complex symmetric constrained singular transport linear systems. The accuracy of various approxi-
mated transport coefficients is investigated and numerical tests are performed for weakly ionized air
at 10000 K.

The behavior of all transport coefficients and of anisotropic transport fluxes for vanishing magnetic
fields is finally investigated using series expansions in terms of the intensity of the magnetic field.
These series expansions show that, for vanishing magnetic field, the mass and heat fluxes as well as
the viscous tensor behave smoothly. Onsager reciprocal relations are also more closely investigated for
anisotropic transport fluxes in particular for the viscous tensor.

2 Theoretical framework

In this section, we summarize the theoretical kinetic framework for polyatomic reactive gas mixtures
in the presence of electric and magnetic fields.

2.1 Generalized Boltzmann equation

We consider a dilute reactive gas mixture composed of ns chemical species having internal degrees
of freedom. The Boltzmann equations for polyatomic gas mixtures are written in a semi-classical
framework with degeneracy averaged collision cross sections [38] and the chemical source terms is
taken from [33, 2, 18, 29].

The state of the mixture is described by the species distribution functions denoted by fi(t,x, ci, i),
where i is the index of the species, t the time, x the three-dimensional spatial coordinate, ci the velocity
and i the index for the internal energy state of the ith species. We denote by S the species indexing
set S = { 1, . . . , ns }, by mi, ei, and zi = ei/mi the molecular mass, charge, and charge per unit mass
of the ith species, and finally by Eii the internal energy of the ith species in the ith state. For a family
of functions ξi, i ∈ S, we will use the compact notation ξ = (ξi)i∈S .

The family of species distribution functions f = (fi)i∈S is the solution of the generalized Boltzmann
equations

D̃i(fi) +
1

ǫb
D̂i(fi) =

1

ǫ
Si(f) + ǫaCi(f), i ∈ S, (1)

where D̃i is the streaming operator D̃i(fi) = ∂tfi +ci·∂xfi + b̃i·∂ci
fi associated with the reduced force

b̃i = g + zi(E + v∧B), where g is a species independent external force, E the electric field, B the

magnetic field, and D̂i(fi) = zi

(
(ci−v)∧B

)
·∂ci

fi. The reactive source term Ci(f) and the nonreactive
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source term Si(f) are described in [38, 14, 18, 25] and are both compatible with the H-theorem [18].
In these equations, ǫ is the usual formal parameter associated with Enskog expansion, and a and b

are positive integers which depend on the regime under consideration. In this paper, we only consider
the strong magnetic field regime b = 1 and the Maxwellian reaction regime a = 1 and we refer to
[18, 24, 25] for more details on other regimes.

The scalar collisional invariants of the nonreactive collision operator S form a linear space spanned
by ψl, l ∈ {1, . . . , ns +4}, with ψl = (δli)i∈S , for l ∈ S, ψl = (miciν)i∈S , for l = ns + ν, ν = 1, 2, 3, and

ψl =
(

1
2mici·ci + Eii

)
i∈S

, for l = ns +4, where ciν is the component of ci in the νth spatial coordinate.

For two families ξ = (ξi)i∈S and ζ = (ζi)i∈S , we define the scalar product by

〈〈ξ, ζ〉〉 =
∑

i,i

∫
ξi ⊙ ζi dci,

where ξi⊙ζi denotes the maximum contracted product between the tensor ξi and the complex conjugate
tensor ζi. The scalar product is defined for families of complex tensors as such quantities naturally
arise in the solution of Boltzmann linearized equations in the presence of magnetic fields.

An approximate solution to the Boltzmann equations (1) is obtained by using Enskog expansion

fi = f0
i

(
1 + ǫφi + O(ǫ2)

)
, i ∈ S, (2)

where f0 yields the same local macroscopic properties as f

〈〈f0, ψl〉〉 = 〈〈f, ψl〉〉, l ∈ {1, . . . , ns + 4}. (3)

The family of zeroth-order species distribution functions f0 = (f0
i )i∈S is shown to be given by

generalized Maxwellian distributions [21, 25]

f0
i =

ni

βiiQi
exp
(
− mi

2kBT
Ci·Ci −

Eii

kBT

)
, i ∈ S, (4)

where ni is the number density of the ith species, kB the Boltzmann constant, Ci = ci − v the relative
velocity of the ith species, T the temperature, Qi the full partition function per unit volume of the ith

species Qi = Qint

i Qtr

i with Qint

i =
∑

i
αii exp

(
− Eii

kBT

)
and Qtr

i =
(

2πmikBT
h2

P

)3/2
, αii the degeneracy of the

ith species in the ith state, hP the Planck constant and βii = h3
P
/αiim

3
i .

The macroscopic conservation equations at zeroth order are obtained by taking the scalar product of
Boltzmann equations by collisional invariants and by only keeping the zeroth-order terms 〈〈D̃(f0), ψl〉〉+
〈〈D̂(f0φ), ψl〉〉 = 0, l ∈ {1, . . . , ns+4}, where D̃(f0) = (D̃i(f

0
i ))i∈S and D̂(f0φ) = (D̂i(f

0
i φi))i∈S . These

zeroth order equations, together with Maxwell’s equations, yield the magnetogasdynamic equations
[9, 21, 25].

2.2 Linearized Boltzmann equations

The linearized Boltzmann operator, FS =
(
FS

i

)
i∈S

, can be written

F
S

i (φ) =
∑

j∈S

∑

i
′
jj

′

∫
f0

j (φi + φj − φ′i − φ′j)W
iji

′
j
′

ij dcjdc′idc′j , i ∈ S, (5)

where φ = (φi)i∈S and W
iji

′
j
′

ij is the transition probability between colliding molecules [24, 33]. An
important property is that the linearized Boltzmann operator is isotropic, i.e., it converts a tensor
constructed from (ci)i∈S into another tensor of the same type as in the monatomic case [21]. The

bracket operator is defined by [[ξ, ζ]] = 〈〈f0ξ,FS(ζ)〉〉, where ξ = (ξi)i∈S , ζ = (ζi)i∈S , and ξi and ζi

depend on ci and i. This bracket operator is hermitian [[ξ, ζ]] = [[ζ, ξ]], positive semi-definite [[ξ, ξ]] ≥ 0,
and its kernel is spanned by the collisional invariants, that is, [[ξ, ξ]] = 0 implies that ξ is a (tensorial)
collisional invariants, so that all its tensorial components are scalar collisional invariants.

The first-order integro-differential equations governing φ = (φi)i∈S are easily obtained from (1)

and written FS
i (φ) = −zi(Ci∧B)·∂ci

φi − D̃i(log f0
i ), i ∈ S, with the scalar constraints 〈〈f0φ, ψl〉〉 = 0,

l ∈ {1, . . . , ns + 4}. By linearity and isotropy of the linearized Boltzmann operator FS, the solution
φ = (φi)i∈S is expanded in the form

φi = −φ
η
i :∂xv − 1

3φ
κ
i ∂x·v −

∑

j∈S

φ
Dj

i ·(∂xpj − ρj b̃j) − φ
bλ
i ·∂x

( 1

kBT

)
. (6)
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After some algebra, the tensorial functionals φµ, for µ ∈ {η, κ, (Dj)j∈S , λ̂}, are shown to satisfy the
integro-differential equations

F
S

i (φµ) + zi(Ci∧B)·∂ci
φµ

i +
∑

j,j

miej

ρkBT
Ci·
∫
f0

j Cj∧Bφµ
j dcj = Ψµ

i , i ∈ S, (7)

and the scalar constraints
〈〈f0φµ, ψl〉〉 = 0, l ∈ {1, . . . , ns + 4}, (8)

where Ψ
η
i = mi

kBT

(
Ci⊗Ci − 1

3Ci·CiI
)
, Ψκ

i = 2c
int

cvkBT

(
1
2miCi·Ci− 3

2kBT
)
+

2c
tr

v

cvkBT (Ei −Eii), Ψ
Dj

i = 1
pi

(
δij −

ρi

ρ

)
Ci, Ψ

bλ
i =

(
5
2kBT − 1

2miCi·Ci +Ei−Eii

)
Ci, for i ∈ S, where c

tr
v is the translational heat capacity per

molecule at constant volume, c
int the internal heat capacity per molecule of the mixture, cv = c

tr
v + c

int

the heat capacity at constant volume per molecule of the mixture, Ei =
∑

i
αiiEii exp

(
− Eii

kBT

)
/Qint

i the
averaged internal energy per molecule of the ith species, and pi the partial pressure of the ith species.

2.3 First-order conservation equations

The macroscopic conservation equations at first-order are obtained by taking the scalar product of
Boltzmann equations with collisional invariants and by keeping the zeroth and first order terms
〈〈D̃(f0 + f0φ), ψl〉〉+ 〈〈D̂(f0φ), ψl〉〉 = 〈〈C(f0), ψl〉〉, l ∈ {1, . . . , ns + 4}, where we have defined C(f0) =

(Ci(f
0))i∈S . Note that the terms 〈〈D̂(f0φ(2)), ψl〉〉 associated with second order currents have been

neglected [11, 25].
After some algebra, the species mass conservation equations, obtained for l = 1, . . . , ns, are in the

form
∂tρi + ∂x·(ρiv) + ∂x·(ρiVi) = miω

0
i , i ∈ S, (9)

where Vi = 1
ni

∑
i

∫
Cif

0
i φi dci is the diffusion velocities and ω0

i =
∑

i

∫
Ci(f

0)dci the chemical source
term of the ith species discussed in [24]. The momentum conservation equation, obtained from l =
ns + 1, ns + 2, and ns + 3, reads

∂t(ρv) + ∂x·(ρv⊗v + pI) + ∂x·Π = ρg + Q(E + v∧B) + j∧B, (10)

where Q =
∑

i∈S niei is the total charge per unit volume, j =
∑

i∈S nieiVi the conduction current
and Π =

∑
i,i

∫
miCi⊗Cif

0
i φi dci the viscous tensor. The energy conservation equation, obtained for

l = ns + 4, finally reads

∂t(
1
2ρv ·v + E) + ∂x·

(
(1
2ρv ·v + E + p)v

)
+ ∂x·(q + Π·v) =
(
ρg + Q(E + v∧B)

)
·v + j·E, (11)

where q =
∑

i,i

∫ (
1
2miCi·Ci + Eii

)
cif

0
i φi dci is the heat flux vector.

3 The shear viscosities

3.1 A new expansion for φη

The solution φη = (φη
i )i∈S of (7)(8) with µ = η is such that φ

η
i is composed from all symmetric

traceless second-order tensors created from the vector Ci =
√
mi/2kBT Ci and the pseudo-vector B

which form a space of dimension five [39]. In this paper, we introduce the new tensor expansion

φ
η
i = φ

η(1)
i T

(1)
i + φ

η(2)
i T

(2)
i + φ

η(3)
i T

(3)
i + φ

η(4)
i T

(4)
i + φ

η(5)
i T

(5)
i , (12)

where φ
η(l)
i , l = 1, . . . , 5, are scalar functions of Ci·Ci, (Ci·B)2 and B·B, for i ∈ S, in terms of the five

independent tensors T
(1)
i , . . . ,T

(5)
i , defined by

T
(1)
i = Ci⊗Ci − 1

3Ci·Ci I,

T
(2)
i = 1

2

[
Ci⊗(Ci∧B) + (Ci∧B)⊗Ci

]
,

T
(3)
i = (Ci∧B)⊗(Ci∧B) − 1

3Ci·Ci B·B I + (Ci·B)2 B⊗B/B·B,

T
(4)
i = 1

2Ci·B
[
Ci⊗B + B⊗Ci

]
− (Ci·B)2 B⊗B/B·B,

T
(5)
i = 1

2Ci·B
[
B⊗(Ci∧B) + (Ci∧B)⊗B

]
.
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The former generating family of six tensors T
[1]
i , . . . ,T

[6]
i is related to the new basis by T

[1]
i = T

(1)
i ,

T
[2]
i = T

(2)
i , T

[5]
i = T

(5)
i , T

[6]
i = (Ci·B)2B·B

Ci·Ci B·B−3(Ci·B)2

(
2T

(4)
i − T

(3)
i − B·B T

(1)
i

)
, T

[3]
i = T

(3)
i − 1

B·B T
[6]
i ,

T
[4]
i = T

(4)
i + 1

B·B T
[6]
i . These six tensors are linearly dependent and the linear relation Ci·CiT

[6]
i +

(Ci·B)2[T
[3]
i + B·BT

[1]
i − 2T

[4]
i ] = 0 holds [21]. After some algebra, it is established that the former

expansion φ
η
i =

∑6
l=1 φ

η[l]
i T

[l]
i and the new one are equally valid and that φ

η(l)
i = φ

η[l]
i , i ∈ S, l ∈

{1, . . . , 5}.

3.2 Properties of the new tensor basis

Substituting expansion (12) into equation (7) for µ = η, using the isotropy of the Boltzmann linearized
operator FS, and equating the corresponding terms, yield five equations, each one involving one tensor

T
(l)
i for l = 1, . . . , 5. An important properties of the new tensors, however, is that they are simple

linear transformations of the tensor T
(1)
i = Ci⊗Ci − 1

3Ci·Ci I with coefficients independent of the
particle velocities Ci, i ∈ S

T
(2)
i =

1

2

(
T

(1)
i R(B) − R(B)T

(1)
i

)
, (13)

T
(3)
i = −R(B)T

(1)
i R(B) +

1

B·B B⊗BT
(1)
i B⊗B, (14)

T
(4)
i =

1

2

(
T

(1)
i R(B) + R(B)T

(1)
i

)
− 1

B·B B⊗BT
(1)
i B⊗B, (15)

T
(5)
i =

1

2

(
B⊗BT

(1)
i R(B) − R(B)T

(1)
i B⊗B

)
, (16)

where B⊗B denotes the tensor product of the magnetic field B with itself and R(B) the rotation
matrix associated with B. For any vector Z, the rotation matrix R(Z) is defined by

R(Z) =




0 −Z3 Z2

Z3 0 −Z1

−Z2 Z1 0



 .

Using these relations and the linear equations associated with each tensor T
(l)
i we naturally obtain five

coupled equations between the family of tensors φη(l) =
(
φ

η(l)
i

)
i∈S

defined for l = 1, . . . , 5, by

φ
η(l)
i = φ

η(l)
i

(
Ci⊗Ci − 1

3Ci·Ci I
)
, i ∈ S.

The resulting equations are in the form

F
S

i (φη(1)) − ziB
2φ

η(2)
i = Ψ

η
i , i ∈ S, (17)

F
S

i (φη(2)) + 2zi(φ
η(1)
i −B2φ

η(3)
i ) = 0, i ∈ S, (18)

F
S

i (φη(3)) + ziφ
η(2)
i = 0, i ∈ S, (19)

F
S

i (φη(4)) + zi(φ
η(2)
i −B2φ

η(5)
i ) = 0, i ∈ S, (20)

F
S

i (φη(5)) + zi(2φ
η(3)
i + φ

η(4)
i ) = 0, i ∈ S, (21)

and the derivation of (17)–(21) is clear and direct at variance with the case of the former generating
family where the derivation of similar equations was somewhat obscure mainly because of the depen-

dence on particle velocities of the proportionality coefficients between T
[3]
i , T

[4]
i , T

[6]
i , and T

[1]
i . Upon

introducing the usual auxiliary complex quantities

ϕ
η(1)
i = φ

η(1)
i +B2φ

η(3)
i ,

ϕ
η(2)
i = φ

η(1)
i + iBφ

η(2)
i −B2φ

(3)
i ,

ϕ
η(3)
i = φ

η(1)
i + 1

2 iBφ
η(2)
i + 1

2B
2φ

η(4)
i + 1

2 iB3φ
η(5)
i ,

where i2 = −1, we recover the integral equations

F
S(ϕη(1)) = Ψη, (FS + 2iBF

z,m)(ϕη(2)) = Ψη, (FS + iBF
z,m)(ϕη(3)) = Ψη, (22)
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and the scalar constraints are automatically satisfied. Note that this was not the case for the former

tensor expansion since T
[3]
i , T

[4]
i , and T

[6]
i are not orthogonal to collisional invariant and the constraint

B·Bφ
η[6]
i = φ

η[3]
i − φ

η[4]
i was needed among the former expansion coefficients. The operator Fz,m =(

F
z,m
i

)
i∈S

is defined for u = (ui)i∈S by F
z,m
i (u) = ziui, i ∈ S, where ui is the product of Ci⊗Ci −

1
3Ci·Ci I by a complex scalar function of Ci·Ci, (Ci·B)2 and B·B. These systems are shown to be

well posed [25] and imply that the scalar function ϕ
η(l)
i such that ϕ

η(l)
i = ϕ

η(l)
i

(
Ci⊗Ci − 1

3Ci·Ci I
)

only
depends on Ci·Ci and B·B, for l ∈ {1, 2, 3} [21].

3.3 Expressions of the viscous stress tensor Π

From the relation Π = kBT 〈〈Ψη, f0φ〉〉 + 1
3kBT 〈〈Ψκ, f0φ〉〉 I and the expansion of φ it is obtained that

−Π = κ(∂x·v) I + η1S + η2(R(B)S − SR(B)) + η3(B
t
SBB⊗B − R(B)SR(B))

+ η4(SB⊗B + B⊗BS − 2B
t
SB B⊗B) + η5(B⊗BSR(B) − R(B)SB⊗B), (23)

where S = ∂xv + ∂xv t − 2
3 (∂x·v) I, κ = 1

9kBT [[φκ, φκ]] and the five shear viscosities η1, . . . , η5 are
given by

η1 = 1
20kBT

(
[[ϕη(1),ϕη(1)]] + [[ϕη(2),ϕη(2)]]

)
, (24)

η2 = − 1
10kBT ((ϕη(2),ϕη(2))) (25)

η3 = 1
20kBT

(
[[ϕη(1),ϕη(1)]] − [[ϕη(2),ϕη(2)]]

)
, (26)

η4 = 1
10kBT

(
[[ϕη(3),ϕη(3)]] − 1

2 [[ϕη(1),ϕη(1)]] − 1
2 [[ϕη(2),ϕη(2)]]

)
, (27)

η5 = 1
10kBT

(
((ϕη(2),ϕη(2))) − ((ϕη(3),ϕη(3)))

)
, (28)

where we have defined the scalar product

((ξ, ζ)) =
∑

k,K

zkB

∫
f0

kξk ⊙ ζk dck. (29)

The new tensor basis finally yields identical integral equations and bracket expressions for the five
shear viscosities but in a clear and straightforward way. After some algebra, denoting by ℜ(z) and
ℑ(z) the real and imaginary part of a complex quantity z = ℜ(z) + iℑ(z), it is further obtained that

η1 = 1
20kBT

(
〈〈f0ϕη(1),Ψη〉〉 + ℜ

(
〈〈f0ϕη(2),Ψη〉〉

))
, (30)

η2 = 1
20kBTℑ

(
〈〈f0ϕη(2),Ψη〉〉

)
, (31)

η3 = 1
20kBT

(
〈〈f0ϕη(1),Ψη〉〉 − ℜ

(
〈〈f0ϕη(2),Ψη〉〉

))
, (32)

η4 = 1
20kBT

(
2ℜ
(
〈〈f0ϕη(3),Ψη〉〉

)
− 〈〈f0ϕη(1),Ψη〉〉 − ℜ

(
〈〈f0ϕη(2),Ψη〉〉

))
, (33)

η5 = 1
20kBT

(
2ℑ
(
〈〈f0ϕη(3),Ψη〉〉

)
−ℑ

(
〈〈f0ϕη(2),Ψη〉〉

))
. (34)

These new linear relations between the viscosity coefficients and the solutions of the linearized Boltz-
mann equations will be used to evaluate the shear viscosities from Galerkin approximate solutions.
Finally note that the volume viscosity is not influenced by the magnetic field and its evaluation is
already discussed in [14, 25].

3.4 Expansion polynomials

The integral equations (22) are typically solved by a (hermitian) Galerkin procedure where the per-
turbed distribution functions are expanded into polynomials. We will use the traditional basis poly-
nomials φa0cdk defined by

φa0cdk(ck,K) =
(
Sc

a+ 1

2

(wk·wk)W d
k (ǫkK) ⊗awk δki

)

i∈S
,

where wk =
√
mk/2kBT (ck − v) is the reduced relative velocity of the molecules of the kth species

and ǫkK = Ekk/kBT is the reduced internal energy of the kth species in the kth state. In addition, a, c,
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and d are integers, Sc
a+1/2 is the Laguerre and Sonine polynomial of order c with parameter a+ 1/2,

W d
k is the Wang Chang and Uhlenbeck polynomial of order d for the kth species, and ⊗awk is a

tensor of rank a with respect to the three-dimensional space, given by ⊗0wk = 1, ⊗1wk = wk, and

⊗2wk = wk ⊗ wk − 1
3wk·wkI [38, 34, 14]. In the notation φabcdk, the first index a thus refers to

the tensorial rank with respect to R3, the second index b = 0 refers to the absence of polarization
effects [14], the third index c refers to the Laguerre and Sonine polynomial, the fourth index d refers
to the Wang Chang and Uhlenbeck polynomial, and the last index k refers to the species. These
functions have important orthogonality properties [38, 34] and various properties of the Laguerre and
Sonine polynomials, Wang Chang and Uhlenbeck polynomials, and functions φa0cdk are summarized
in [21, 34, 14].

3.5 Transport linear systems associated with the shear viscosities

The traceless matrix integral equations associated with the shear viscosities are in the form
(
FS +

(2δ2l + δ3l)iBFz,m
)
(ϕη(l)) = Ψη, l ∈ {1, 2, 3}, where Ψη = 2

∑
k∈S φ

2000k, and φ2000k =
(
(wk ⊗ wk −

1
3wk·wkI)δki

)
i∈S

[14]. By isotropy, the variational approximation space Aη to be considered in the

first place is the space spanned by φ2000k, k ∈ S [9, 14, 21, 38]. The simulations by Bruno and coworkers
have shown that the corresponding coefficients are sufficiently accurate so that higher order expansions
of ϕη(l), l ∈ {1, 2, 3} are not required [6, 7]. A (hermitian) Galerkin approach is used by requiring the
difference between the approximated

(
FS + (2δ2l + δ3l)iBFz,m

)
(ϕη(l)) and Ψ

η to be orthogonal to the
approximation space.

For convenience ϕη(l) is taken in the form

ϕη(l) = (2/p)
∑

k∈S

α
η(l)
k φ2000k, l ∈ {1, 2, 3}.

The matrix associated with the variational procedure is denoted by H and is rescaled such that Hkl =
(2/5np)[[φ2000k, φ2000l]], k, l ∈ S, where n denotes the mixture number density. We also rescale the
right member βη

k = (1/5n)〈〈f0φ2000k,Ψη〉〉, k ∈ S. We then have H ∈ Rn,n, βη ∈ Rn, and the linear
system for αη(1) ∈ R

n and αη(2), αη(3) ∈ C
n are in the form

Hαη(1) = X, (H + 2iHB)αη(2) = X, (H + iHB)αη(3) = X, (35)

where X = (X1, . . . , Xns)t and Xk is the mole fraction of the kth species. The coefficients of the matrix
H are given by [14]

Hkk =
∑

l∈S
l 6=k

16

5kBT

XkXlm
2
l

(mk +ml)2

[
10
3

mk

ml
Ω

(1,1)
kl + Ω

(2,2)
kl

]
+

8

5kBT
X2

kΩ
(2,2)
kk , k ∈ S, (36)

Hkl =
16

5kBT

XkXlmkml

(mk +ml)2

[
− 10

3 Ω
(1,1)
kl + Ω

(2,2)
kl

]
, k, l ∈ S, k 6= l, (37)

where the Ω
(i,j)
kl are the classical collision integrals [9, 21, 34] and HB is the diagonal matrix HB

kl =
δklBXkzk/p, k, l ∈ S.

The matrix H is symmetric positive definite [14] and from (30)-(34) the shear viscosities are finally
given by the scalar products

η1 = 1
2 〈α

η(1), X〉 + 1
2ℜ
(
〈αη(2), X〉

)
, (38)

η2 = 1
2ℑ
(
〈αη(2), X〉

)
, (39)

η3 = 1
2 〈α

η(1), X〉 − 1
2ℜ
(
〈αη(2), X〉

)
, (40)

η4 = ℜ
(
〈αη(3), X〉

)
− 1

2 〈α
η(1), X〉 − 1

2ℜ
(
〈αη(2), X〉

)
, (41)

η5 = ℑ
(
〈αη(3), X〉

)
− 1

2ℑ
(
〈αη(2), X〉

)
, (42)

where we have denoted by 〈x, y〉 =
∑

k∈S xkyk the Hermitian scalar product.
In the situation of nonionized and nonmagnetized mixtures, it has been shown that one step of the

conjugate gradient algorithm—preconditioned by the diagonal—already yields excellent accuracy for
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the shear viscosity [14, 16], much better than the Wilke formula. In the situation of ionized magnetized
mixtures, however, it is not anymore possible to use strictly speaking a conjugate gradient technique
since in general there does not exist short recurrence iterative algorithms which simultaneously corre-
sponds to a global minimization of some error norm over the corresponding Krylov subspaces spanned
by the successive residual error vectors [19]. Nevertheless, it is possible to introduce orthogonal error

techniques which guarantee that the successive residual error vectors are orthogonal [20, 22, 27]. These
techniques are especially suited to the linear systems arising from the Galerkin procedure since it has
been shown that—with a proper formulation—such systems are symmetric complex with a positive
semi-definite real part and for such systems orthogonal errors algorithms are proved to be convergent
[25, 27]. It is also more efficient to solve such systems by iterative techniques in their complex form
rather than in their equivalent real form [22].

Numerical test have been conducted with weakly ionized air at temperature 10000 K and pressure
p = 1 atm with collision integrals taken from [40] and thermodynamic properties taken from [30]. The
species associated with ionized air are the ns = 11 species N2, O2, NO, N, O, N+

2 , O+
2 , NO+, N+, O+

and E−. The choice of a particular temperature or pressure for weakly ionized air is not significant
since convergence properties would essentially be similar at other temperatures or pressures. The
numerical tests have first shown that the transport linear systems for ionized mixtures are usually
more difficult to solve than that for neutral species because of the greater disparity between collision
integrals. Nevertheless, the simulations have indicated that orthogonal error methods preconditioned
by the diagonal yield efficient algorithms which converge in a few iterates whatever the intensity of
the magnetic field. Relative errors of the order of 10−3 are typically obtained within three iterations.
Finally, as already shown by Bruno and coworkers for ionized Argon, the extra viscosities ηj , j =
2, 3, 4, 5 are generally much smaller than η1 even for large values of the electron Hall parameter [7].

4 Mass and heat transport coefficients

4.1 Equations associated with φ
bλ

The solution φ
bλ = (φ

bλ
i )i∈S of (7)(8) with µ = λ̂ is in the form

φ
bλ
i = φ

bλ(1)
i Ci + φ

bλ(2)
i Ci∧B + φ

bλ(3)
i Ci·B B,

where φ
bλ(1)
i , φ

bλ(2)
i and φ

bλ(3)
i are scalar functions of Ci·Ci, (Ci·B)2 and B·B. Substituting this ex-

pansion into the integro-differential equations associated with φ
bλ and using isotropy first yield three

scalar coupled integral equations. Further simplification is then obtained if, for each species i, instead

of three real quantities φ
bλ(1)
i , φ

bλ(2)
i and φ

bλ(3)
i , one real and one complex unknowns are introduced

ϕ
bλ(1)
i = φ

bλ(1)
i +B2φ

bλ(3)
i , ϕ

bλ(2)
i = φ

bλ(1)
i + iBφ

bλ(2)
i , i ∈ S.

Upon defining ϕ
bλ(1) = (ϕ

bλ(1)
i Ci)i∈S , ϕ

bλ(2) = (ϕ
bλ(2)
i Ci)i∈S , and introducing the operator F

z,v =(
F

z,v
i

)
i∈S

defined for u = (ui)i∈S by

F
z,v
i (u) = −miCi

∑

j,j

ej

3ρkBT

∫
f0

j uj ·Cj dCj + ziui, i ∈ S,

where ui is the product of Ci by a complex scalar function of Ci·Ci, (Ci·B)2 and B·B, it is easily
shown that

F
S(ϕ

bλ(1)) = Ψ
bλ, (FS + iBF

z,v)(ϕ
bλ(2)) = Ψ

bλ. (43)

Furthermore, the constraint equations (8) are easily rewritten in the form

〈〈f0ϕ
bλ(1), ψl〉〉 = 0, 〈〈f0ϕ

bλ(2), ψl〉〉 = 0, l ∈ {1, . . . , ns + 4}. (44)

The structure of the first integral equation in (43) is classical and the structure of second equation

is similar in a complex framework [25]. From the isotropy of the operator FS the functions ϕ
bλ(1) and

ϕ
bλ(2) cannot be functions of (C·B)2 [21].
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We define the unitary vector B by B = B/B and for any vector X, we introduce the associated
vectors

X‖ = (X·B)B, X⊥ = X − X‖, X⊙ = B∧X.

The vectors X‖, X⊥ and X⊙ are mutually orthogonal and obtained from X by applying the linear
operators M

‖ = B⊗B, M
⊥ = I − B⊗B and M

⊙ = R(B). It is then straightforward to obtain that

φ
bλ =

(
ϕ

bλ(1)
B⊗B + ℜ(ϕ

bλ(2)) (I − B⊗B) −ℑ(ϕ
bλ(2))R(B)

)
Ci, (45)

or equivalently that φ
bλ = ℜ

(
ϕ

bλ(1) C
‖
i + ϕ

bλ(2) (C⊥
i + iC⊙

i )
)
, where ℜ(z) and ℑ(z) denote the real and

imaginary part of a complex quantity z = ℜ(z) + iℑ(z).

4.2 Equations associated with φDj

The above development can be followed through for the solution φDj of (7)(8) with µ = Dj as well.

More specifically, the perturbed distribution function φDj = (φ
Dj

i )i∈S is expanded in the form

φ
Dj

i = φ
Dj(1)
i Ci + φ

Dj(2)
i Ci∧B + φ

Dj(3)
i Ci·B B,

and defining ϕ
Dj(1)
i = φ

Dj(1)
i + B2φ

Dj(3)
i , ϕ

Dj(2)
i = φ

Dj(1)
i + iBφ

Dj(2)
i , i, j ∈ S, and ϕDj(1) =

(ϕ
Dj(1)
i Ci)i∈S , ϕDj(2) = (ϕ

Dj(2)
i Ci)i∈S , j ∈ S, we obtain for all j ∈ S

F
S(ϕDj(1)) = ΨDj , (FS + iBF

z,v)(ϕDj(2)) = ΨDj , (46)

〈〈f0ϕDj(1), ψl〉〉 = 0, 〈〈f0ϕDj(2), ψl〉〉 = 0, l ∈ {1, . . . , ns + 4}. (47)

We can also write that

φDj =
(
ϕDj(1)

B⊗B + ℜ(ϕDj(2)) (I − B⊗B) −ℑ(ϕDj(2))R(B)
)
Ci, (48)

or equivalently that φDj = ℜ
(
ϕDj(1) C

‖
i + ϕDj(2) (C⊥

i + iC⊙
i )
)
.

4.3 New symmetry properties of the mass transport coefficients

Substituting the expansion (6) into the identity Vi = kBT 〈〈ΨDi , f0φ〉〉, only the terms in φDj , j ∈ S,

and φ
bλ, yield non-null contributions. Expanding φDj , j ∈ S, and φ

bλ, with (45) and (48), using

isotropy and denoting by dj = (∂xpj − ρj b̃j)/p the unconstrained diffusion driving force for the jth
species, we obtain

Vi = −
∑

j∈S

(
D

‖
ijd

‖
j +D⊥

ijd
⊥
j +D⊙

ijd
⊙
j

)

−
(
θ
‖
i (∂x logT )‖ + θ⊥i (∂x logT )⊥ + θ⊙i (∂x logT )⊙

)
, (49)

where we have defined D
‖
ij = (pkBT/3)〈〈f0ϕDj(1),ΨDi〉〉, D⊥

ij + iD⊙
ij = (pkBT/3)〈〈f0ϕDj(2),ΨDi〉〉, and

θ
‖
i = −(1/3)〈〈f0ϕ

bλ(1),ΨDi〉〉, θ⊥i +iθ⊙i = −(1/3)〈〈f0ϕ
bλ(2),ΨDi〉〉. These coefficients are easily rewritten

in the symmetrized form

D
‖
ij = 1

3pkBT [[ϕDi(1),ϕDj(1)]], (50)

D⊥
ij + iD⊙

ij = 1
3pkBT

(
[[ϕDi(2),ϕDj(2)]] − i((ϕDi(2),ϕDj(2)))

)
, (51)

θ
‖
i = − 1

3 [[ϕDi(1),ϕ
bλ(1)]], (52)

θ⊥i + iθ⊙i = − 1
3

(
[[ϕDi(2),ϕ

bλ(2)]] − i((ϕDi(2),ϕ
bλ(2)))

)
. (53)

Note the wrong sign in front of the bracket ((·, ·)) contributions of D⊥
ij + iD⊙

ij and θ⊥i + iθ⊙i overlooked
in expressions (5.11) and (5.13) of reference [25].
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The new symmetry properties of perpendicular and transverse transport coefficients can then be
written

D⊥
ij = 1

3pkBT [[ϕ
Di(2),ϕ

Dj(2)]] = 1
3pkBT ℜ[[ϕ

Di(2),ϕ
Dj(2)]], (54)

D⊙
ij = − 1

3pkBT ((ϕ
Di(2),ϕ

Dj(2))) = − 1
3pkBT ℜ((ϕ

Di(2),ϕ
Dj(2)

)), (55)

θ⊥i = − 1
3 [[ϕ

Di(2),ϕ
bλ(2)

]] = − 1
3 ℜ[[ϕ

Di(2),ϕ
bλ(2)

]], (56)

θ⊙i = 1
3 ((ϕ

Di(2),ϕ
bλ(2)

)) = 1
3 ℜ((ϕ

Di(2),ϕ
bλ(2)

)), (57)

where ℜ and ℑ denote the real and the imaginary parts. In order to establish (54)(55) for instance,
we note that

ℑ[[ϕ
Di(2),ϕ

Dj(2)]] = [[ℑϕ
Di(2),ℜϕ

Dj(2)
]] − [[ℜϕ

Di(2),ℑϕ
Dj(2)

]]. (58)

By using the imaginary part of the second equations in (46), however, we obtain that FS(ℑϕ
Di(2)) =

−BFz,v(ℜϕ
Di(2)), thanks to ℑΨDj = 0. Since FS is self-adjoint we next have

[[ℑϕ
Di(2),ℜϕ

Dj(2)
]] = 〈〈f0

F
Sℑϕ

Di(2),ℜϕ
Dj(2)〉〉 = −〈〈f0BF

z,vℜϕ
Di(2),ℜϕ

Dj(2)〉〉,

[[ℜϕ
Di(2),ℑϕ

Dj(2)
]] = 〈〈f0ℜϕ

Di(2),FSℑϕ
Dj(2)〉〉 = −〈〈f0ℜϕ

Di(2), BF
z,vℜϕ

Dj(2)〉〉,
so that [[ℑϕ

Di(2),ℜϕ
Dj(2)]] = [[ℜϕ

Di(2),ℑϕ
Dj(2)]] = −((ℜϕ

Di(2),ℜϕ
Dj(2)

)) since the integral operator
Fz,v is self-adjoint over the functionals orthogonal to collisional invariants. It is similarly established

that ℑ((ϕ
Di(2),ϕ

Dj(2))) = 0 so that both quantities [[ϕ
Di(2),ϕ

Dj(2)
]] and ((ϕ

Di(2),ϕ
Dj(2)

)) are real and
(51) completes the proof of (54)(55). The relations (56)(57) are established in a similar way. The new

symmetry relations (54)–(57) imply in particular that D⊥
ij = D⊥

ji, D
⊙
ij = D⊙

ji, θ
⊥
i = − 1

3 [[ϕ
bλ(2)

,ϕ
Di(2)]],

and θ⊙i = 1
3 ((ϕ

bλ(2)
,ϕ

Di(2))). Moreover, proceeding essentially as in [14], one can establish that the

nullspace of the real matrices D‖ and D⊥ is spanned by Y in Rns

and that their range is the (euclidean)
orthogonal complement of Y in Rns

, and similarly that the nullspace of the complex matrix D⊥ + iD⊙

is spanned by Y in C
ns

and that its range is the (hermitian) orthogonal complement of Y in C
ns

.
In addition, the thermal diffusion ratios satisfy the constraints 〈θ‖, Y 〉 = 〈θ⊥, Y 〉 = 〈θ⊙, Y 〉 = 0.

Finally, the usual constrained diffusion driving forces d̃i = di − Yi

∑
j∈S dj can equivalently be used

to formulate the mass fluxes thanks to the properties of transport coefficients.

4.4 New symmetry properties of the heat transport coefficients

From the relation q = −〈〈Ψbλ, f0φ〉〉+
∑

i∈S

(
5
2kBT + Ei

)
niVi and the expansion of φ it is obtained that

q = −
(
λ̂‖(∂xT )‖ + λ̂⊥(∂xT )⊥ + λ̂⊙(∂xT )⊙

)

− p
∑

i∈S

(
θ
‖
i d

‖
i + θ⊥i d⊥

i + θ⊙i d⊙
i

)
+
∑

i∈S

(
5
2kBT + Ei

)
niVi, (59)

where λ̂‖ = (1/3kBT
2)〈〈f0ϕ

bλ(1),Ψ
bλ〉〉 and λ̂⊥ + iλ̂⊙ = (1/3kBT

2)〈〈f0ϕ
bλ(2),Ψ

bλ〉〉. These coefficients are
easily rewritten in the symmetrized form

λ̂‖ =
1

3kBT 2
[[ϕ

bλ(1),ϕ
bλ(1)]], (60)

λ̂⊥ + iλ̂⊙ =
1

3kBT 2

(
[[ϕ

bλ(2),ϕ
bλ(2)]] − i((ϕ

bλ(2),ϕ
bλ(2)))

)
. (61)

The thermal diffusion coefficients involved in the expansion of 〈〈Ψbλ, f0φ〉〉 are first written in the form

θ̂
‖
i = −(1/3)〈〈f0ϕDi(1),Ψ

bλ〉〉 and θ̂⊥i +iθ̂⊙i = −(1/3)〈〈f0ϕDi(2),Ψ
bλ〉〉, but upon writing these coefficients

in a symmetric form θ̂
‖
i = − 1

3 [[ϕ
bλ(1),ϕDi(1)]], and θ̂⊥i + iθ̂⊙i = − 1

3

(
[[ϕ

bλ(2),ϕDi(2)]] − i((ϕ
bλ(2),ϕDi(2)))

)
,

we obtain from (52)(53) that θ̂
‖
i = θ

‖
i , θ̂⊥i = θ⊥i , and θ̂⊙i = θ⊙i , i ∈ S. The new symmetry properties

of perpendicular and transverse transport coefficients—established as for diffusion coefficients—then
reads

λ̂⊥ = 1
3kBT 2 [[ϕ

bλ(2)
,ϕ

bλ(2)
]] = 1

3kBT 2 ℜ[[ϕ
bλ(2)

,ϕ
bλ(2)

]], (62)

λ̂⊙ = − 1
3kBT 2 ((ϕ

bλ(2)
,ϕ

bλ(2)
)) = − 1

3kBT 2 ℜ((ϕ
bλ(2)

,ϕ
bλ(2)

)). (63)
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As a consequence, the heat-mass transport matrices

A‖ =

(
T
p λ̂

‖ θ‖t

θ‖ D‖

)
, A⊥ =

(
T
p λ̂

⊥ θ⊥t

θ⊥ D⊥

)
, A⊙ =

(
T
p λ̂

⊙ θ⊙t

θ⊙ D⊙

)

are real symmetric, A‖ and A⊥ are positive semi-definite, and their nullspace is one dimensional and
spanned by (0, Y1, . . . , Yns)t where Yk is the mass fraction of the kth species.

4.5 Entropy production due to heat and mass transfer

By using the new symmetry properties of transport coefficient, it is now much easier to establish that
the entropy production term associated with the heat flux and the diffusion velocities [25]

Υv = −
(
q −

∑

i∈S

ρihiVi

)
·∂xT

T 2
−
∑

i∈S

p

T
Vi·di, (64)

is nonnegative. By using the expressions of Vi and q, and the new symmetry properties we can indeed
write

Υv =
1

T 2
λ̂‖(∂xT )‖·(∂xT )‖ + 2

p

T 2

∑

i∈S

θ
‖
i d

‖
i ·(∂xT )‖ +

p

T

∑

i,j∈S

D
‖
ijd

‖
j ·d

‖
i

+
1

T 2
λ̂⊥(∂xT )⊥·(∂xT )⊥ + 2

p

T 2

∑

i∈S

θ⊥i d⊥
i ·(∂xT )⊥ +

p

T

∑

i,j∈S

D⊥
ijd

⊥
j ·d⊥

i ,

so that
Υv =

p

T

(
〈A‖x‖, x‖〉 + 〈A⊥x⊥, x⊥〉

)
,

with x
‖
0 = (∂x logT )‖, x

‖
i = (di)

‖, x⊥0 = (∂x logT )⊥, and x⊥i = (di)
⊥. Note in particular that the

terms
∑

i∈S θ̂
⊙
i d⊙

i ·(∂xT )⊥+
∑

i∈S θ
⊙
i (∂xT )⊙·d⊥

i and
∑

i,j∈S D
⊙
ijd

⊥
i ·d⊙

j appearing in the expression of

Υv in reference [25] all vanish since θ̂ = θ, D⊙ is symmetric, and x⊙ ·y⊥ +x⊥ ·y⊙ = 0 for any vectors
x and y. The term

∑
i,j∈S D

⊙
ijd

⊥
i ·d⊙

j was erroneously typed
∑

i,j∈S D
⊙
ijd

⊥
i ·d⊥

j in reference [25].

4.6 First order transport linear systems associated with D

The vector integral equations associated with multicomponent diffusion coefficients are in the form
(FS + δ2liBFz,v)(ϕDj(l)) = ΨDj , with l ∈ {1, 2}, j ∈ S, and

Ψ
Dj =

∑

k∈S

√
2/mkkBT (δjk − Yk)/nkφ

1000k,

where φ1000k =
(
wkδki

)
i∈S

[14]. By isotropy, the variational approximation space AD
[00] to be considered

in the first place is the space spanned by φ1000k, k ∈ S, and we will denote by ϕ
Dj(l)

[00] the corresponding
approximation.

For convenience, ϕ
Dj(l)

[00] is taken in the form

ϕ
Dj(l)

[00] =

√
2

p
√
kBT

∑

k∈S

√
mkα

00Dj(l)

[00]k φ1000k, l ∈ {1, 2}, j ∈ S.

The matrix associated with the variational procedure is denoted by ∆[00] and is rescaled such that

∆[00]kl = (2
√
mkml/3p)[[φ

1000k, φ1000l]], k, l ∈ S. We also rescale the right member β
00Dj

[00]k by defining

β
00Dj

[00]k = (
√

2mkkBT/3)〈〈f0φ1000k,ΨDj〉〉, k ∈ S. We then have ∆[00],∆
B
[00] ∈ Rns,ns

, β
Dj

[00], α
Dj(1)

[00] ∈ Rns

,

α
Dj(2)

[00] ∈ Cns

, and the linear systems for α
Dj(1)

[00] =
(
α

00Dj(1)

[00]k

)
k∈S

and α
Dj(2)

[00] =
(
α

00Dj(2)

[00]k

)
k∈S

are in

the form 



∆[00] α

Dj(1)

[00] = β
Dj

[00],

〈αDj(1)

[00] , Y 〉 = 0,





(∆[00] + i∆B

[00])α
Dj(2)

[00] = β
Dj

[00],

〈αDj(2)

[00] , Y 〉 = 0.
(65)
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The coefficients of the matrix ∆[00] are given by

∆[00]kk =
∑

l∈S
l 6=k

XkXl

Dkl
, k ∈ S, ∆[00]kl = −XkXl

Dkl
, k, l ∈ S, k 6= l,

where Dkl is the binary diffusion coefficient of the species pair (k, l), and the right members β
Dj

[00] =
(
β

00Dj

[00]k

)
k∈S

are given by

β
00Dj

[00]k = δjk − Yk, k, j ∈ S.

The constraint vector is Y = (Y1, . . . , Yns)t where Yk is the mass fraction of the kth species and we
have denoted by 〈x, y〉 =

∑
k∈S xkyk the Hermitian scalar product. The binary diffusion coefficient

Dkl can also be written Dkl = 3kBT/16nmklΩ
(1,1)
kl where mkl = mkml/(mk +ml) is the reduced mass

of the species pair (k, l). Moreover, we have

∆B
[00] = (I − Y⊗U)D

B(I − U⊗Y ),

where DB is the diagonal matrix DB
kl = δklnkekB/p and U = (1, . . . , 1)t ∈ Rns

.
The real matrix ∆[00] is symmetric positive definite, N(∆[00]) = RU , R(∆[00]) = U⊥ in Rns

[14],

whereas the complex matrix ∆[00] +i∆B
[00] is such that N(∆[00] +i∆B

[00]) = CU , R(∆[00] +i∆B
[00]) = U⊥

in Cns

, where the nullspace and range of a matrix A are denoted by N(A) and R(A), respectively. The

resulting approximated diffusion coefficients are denoted by D
‖
[00], D

⊥
[00], D

⊙
[00], and are given by

D
‖
[00]ij = 〈αDj(1)

[00] , βDi

[00]〉 = α
00Dj(1)

[00]i = α
00Di(1)
[00]j , (66)

D⊥
[00]ij + iD⊙

[00]ij = 〈αDj(2)

[00] , βDi

[00]〉 = α
00Dj(2)

[00]i = α
00Di(2)
[00]j . (67)

In addition, for all a > 0 we have D
‖
[00] = (∆[00] + aY⊗Y )−1 − (1/a)U⊗U and also D⊥

[00] + iD⊙
[00] =

(∆[00] + i∆B
[00] + aY⊗Y )−1 − (1/a)U⊗U .

Projected standard iterative techniques as well as projected generalized conjugate gradient methods
can be used to solve the constrained singular systems associated with the first order diffusion coefficients

(65). Iterative techniques for the real transport linear system associated with the real matrix D
‖
[00] are

similar to that of non-ionized mixtures which have been investigated comprehensively [23, 14]. We thus
only discuss in the following the evaluation by iterative techniques of the complex matrix D⊥

[00] +iD⊙
[00],

by solving (∆[00] + i∆B
[00])(D

⊥
[00] + iD⊙

[00]) = I − Y⊗U with the constraint (D⊥
[00] + iD⊙

[00])Y = 0. In

this situation, it is generally more efficient to solve iteratively the linear systems in their complex form
rather than in their equivalent real form [22].

When only the diffusion velocities are required—and not the diffusion coefficients—a complex form
of the Stefan-Maxwell equations can be solved by using orthogonal errors algorithms [20, 27]. In the
absence of Soret effect, these generalized complex Stefan-Maxwell equations are in the form

(∆[00] + i∆B
[00])(V

⊥ − iV ⊙) = d⊥ − id⊙ − Y
∑

l∈S

(d⊥
l − id⊙

l ), (68)

where V ⋄ = (V ⋄
1 , . . . ,V

⋄
ns)t, d⋄ = (d⋄

1, . . . ,d
⋄
ns)t, ⋄ ∈ {‖,⊥,⊙} and Y = (Y1, . . . , Yns)t. The proper

modification of the complex Stefan-Maxwell equations in the presence of Soret effect are discussed in
Section 5. The vectors d⋄ = (d⋄

i )i∈S , ⋄ ∈ { ‖,⊥,⊙}, are the unconstrained diffusion driving forces and

d̃
⋄

i = d⋄
i −Yi

∑
j∈S d⋄

j , d̃
⋄

= (d̃
⋄

i )i∈S , ⋄ ∈ { ‖,⊥,⊙}, are the corresponding constrained diffusion driving
forces which sum up to zero. Only the diffusion velocities are required when an explicit time marching
technique is use to compute a multicomponent flow for instance. More generally, when fractional steps
are used, the diffusion velocities are also sufficient—that is, the diffusion coefficient matrices are not
needed—if the ‘diffusion time step’ is taken to be explicit.

On the other hand, when the diffusion coefficients are to be evaluated, as is typically the case if an
implicit time marching method is used, it is first possible to use a direct inversion method by forming
D⊥

[00] + iD⊙
[00] = (∆[00] + i∆B

[00] + aY⊗Y )−1 − (1/a)U⊗U where a > 0. The (ns)2 coefficients are then

evaluated within O
(
(ns)3

)
operations. It is nevertheless possible to evaluate approximate coefficients

within O
(
(ns)2

)
operations by using standard iterative techniques. These techniques maintain a linear
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relation between the right members and the diffusion coefficients so that the resulting algorithms can
directly be rewritten in terms of diffusion matrices. More specifically, in order to solve iteratively
(∆[00] + i∆B

[00])(D
⊥
[00] + iD⊙

[00]) = I − Y⊗U with the constraint (D⊥
[00] + iD⊙

[00])Y = 0, we introduce

the splitting ∆[00] + i∆B
[00] = M − Z where M = D + i∆B

[00] and D is a diagonal matrix such that

Dkk = ∆[00]kk/(1− Yk). Denoting by T the iteration matrix T = M−1Z, we then have the convergent
asymptotic expansion

D⊥
[00] + iD⊙

[00] =
∞∑

j=0

(PT )jPM−1P t,

where P = I−U⊗Y denotes the projector matrix onto Y ⊥ parallel to U . This expansion can be shown
to be convergent with a spectral radius of the product PT = PM−1Z strictly lower than unity, and this
spectral radius is always lower in the magnetized case than in the unmagnetized case where the matrix
∆B

[00] vanishes [27]. Furthermore, since ∆B
[00] = (I−Y⊗U)DB(I−U⊗Y ), the inverse of M = D+i∆B

[00]

can easily be expressed in terms of the inverse of the diagonal matrix D + iDB in such a way that
the iterates are easily evaluated [27]. Various approximations can then be obtained by truncating

this convergent series. The first approximation
(
D⊥

[00] + iD⊙
[00]

)[1]
generalizes the Hirschfelder-Curtiss

approximation with a mass corrector [36, 23, 24] to the magnetized case

(
D⊥

[00] + iD⊙
[00]

)[1]
= M +

MDU ⊗ MDU

〈DU − DMDU,U〉 , (69)

where

M = (D + iDB)−1 − (D + iDB)−1Y ⊗ (D + iDB)−1Y

〈(D + iDB)−1Y, Y 〉 . (70)

The second order approximation can further be written

(
D⊥

[00] + iD⊙
[00]

)[2]
=
(
D⊥

[00] + iD⊙
[00]

)[1]
+
(
D⊥

[00] + iD⊙
[00]

)[1](
D − ∆[00]

)(
D⊥

[00] + iD⊙
[00]

)[1]
, (71)

and yields a more accurate approximation. Since M is a rank one perturbation of the diagonal matrix
(D + iDB)−1, the first iterate is also a rank two perturbation of the matrix (D + iDB)−1 so that both

iterates
(
D⊥

[00] +iD⊙
[00]

)[1]
and

(
D⊥

[00] +iD⊙
[00]

)[2]
are evaluated within O((ns)2) operations. The interest

of these algorithms is that they perform well whatever the intensity of the magnetic field since the
complete matrix i∆B

[00] has been taken into account in the splitting matrix M = D + i∆B
[00]. They do

not perform well, however, independently of the ionization degree and convergence rates deteriorate as
ionization levels increase as investigated by Garcia Muñoz [35] in the unmagnetized case.

The numerical tests conducted with weakly ionized air at temperature 10000 K have shown that the
second iterate is generally within one percent of the exact corresponding first order matrix D⊥

[00]+iD⊙
[00]

for usual matrix norms provided the ionization level is below 10−2. When the ionization level increases,
it becomes more and more difficult to evaluate the diffusion coefficients matrices by using standard
iterative techniques and in this situation, we recommend a direct inversion method.

Remark : Taking into account the electron/heavy particles coefficients in the splitting matrix M =
D′ + i∆B

[00] with D′
kl = Dkl, if k 6= ns and l 6= ns, and D′

kl = ∆[00]kl otherwise, assuming that the
electron is the last species k = ns, only slightly improves the convergence rates. Similarly, defining
D̂[00] = D[00] −D[00]z⊗D[00]z/〈z,D[00]z〉, ∆̂[00] = ∆[00] − z∗⊗z∗/〈D[00]z, z〉, where z∗ = z − 〈z, U〉Y ,

one can establish that D̂[00] is the generalized inverse of ∆̂[00] with prescribed nullspace RY ⊕ Rz and

range span(Y, z∗)⊥. In the asymptotic limit of vanishing electron mass, the matrix D̂[00] has a finite
limit at variance with D[00] of which the coefficient D[00]nsns is exploding [26]. It is then possible to

define an iterative technique by first evaluating D[00]z and then D̂[00] instead of D[00], but, once again,
it only slightly improves the convergence rates.

4.7 Higher order linear systems associated with D and electrical conduc-

tivities

Higher order approximations of the diffusion matrices, also accounting for the energy of the molecules,
require to consider larger linear systems of size 2ns + np where np denotes the number of polyatomic
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species of the mixture, that is, the number of species with at least two different internal energy states.
The corresponding systems can be written in the form

{
LαDj(1) = βDj ,

〈αDj(1),Y〉 = 0,

{
(L+ iLB)αDj(2) = βDj ,

〈αDj(2),Y〉 = 0,
(72)

where the matrices L,LB ∈ R2ns+np,2ns+np

are detailed in the next section and the vectors βDj ,Y ∈
R2ns+np

are given by βDj =
(
β

Dj

[00], (0)k∈S , (0)k∈P

)t
, j ∈ S, and by Y =

(
Y, (0)k∈S , (0)k∈P

)t
. The

higher order coefficients are given by

D
‖
ij = 〈αDj(1), βDi〉 = α

00Dj(1)
i = α

00Di(1)
j , (73)

D⊥
ij + iD⊙

ij = 〈αDj(2), βDi〉 = α
00Dj(2)
i = α

00Di(2)
j . (74)

Defining V‖ =
∑

j∈S α
Dj(1)d

‖
j and V⊥ − iV⊙ =

∑
j∈S α

Dj(2)(d⊥
j − id⊙

j ) the associated complex gener-
alized Stefan-Maxwell equations are in the form

(L+ iLB)(V⊥ − iV⊙) =
∑

j∈S

βDj (d⊥
j − id⊙

j ), (75)

where V⋄ = (V⋄
1 , . . . ,V⋄

ns)t, and V00⋄
k = V ⋄

k , ⋄ ∈ {‖,⊥,⊙}. The corresponding modifications required
in order to take into account thermal diffusion are discussed in Section 5.

The same general strategy can be used to evaluate higher order diffusion mass fluxes as for first
order fluxes investigated in the preceding section. When only the diffusion velocities are required, an
orthogonal error method can be used to solve the generalized Stefan-Maxwell equations. When the
diffusion matrices are also required, either standard iterative algorithms or direct methods can be used
to solve the corresponding transport linear systems. The same standard iterative algorithms can be
used for instance by using splittings in the form L + iLB = M − Z with M = D + iLB where D is a
diagonal matrix or a block diagonal matrix as described in [14]. Denoting by T the iteration matrix
T = M−1Z, we then have the convergent asymptotic expansion

D⊥ + iD⊙ = Π
( ∞∑

j=0

(PT)jPM
−1

P
t
)
Πt,

where M = I − U⊗Y denotes the projector matrix onto Y⊥ parallel to U where U is defined by

U =
(
U, (0)k∈S , (0)k∈P

)t
and Π ∈ Rns,2ns+np

is the rectangular matrix Π = [I, 0, 0]. This expansion
can be shown to be convergent with a spectral radius of the product PT = PM−1Z strictly lower than
unity. The second order iterate (D⊥ + iD⊙)[2] is a good trade off between precision and computional
costs.

The higher order effects usually have a minor impact on the diffusion matrix of neutral species
mixtures [14]. They have a more important impact, however, on ionized mixtures. Our numerical

test for high temperature air have shown that the relative error in matrix norms ‖D‖ −D
‖
[00]‖/‖D‖‖,

‖D⊥−D⊥
[00]‖/‖D⊥‖, and ‖D⊙−D⊙

[00]‖/‖D‖‖, can be large for ionization rates above 10−2 and remain

below 10−2 only when the ionization rate is below 10−3. The same is true for ‖D⊙−D⊙
[00]‖/‖D⊙‖, unless

B is small but then both D⊙ and D⊙
[00] are small. Above the ionization level 10−3, it is recommended

to use the higher order approximations diffusion matrices D and to use direct methods.
Higher order effects due to the energy of the molecules are always important, however, even for

weakly ionized mixtures, in order to evaluate the electrical conductivities [21, 3, 6, 7]. The electrical
conductivities σ‖, σ⊥, and σ⊙, are defined by

p σ‖ =
∑

i,j∈S

D
‖
ijnieinjej , p σ⊥ =

∑

i,j∈S

D⊥
ijnieinjej , p σ⊙ =

∑

i,j∈S

D⊙
ijnieinjej,

and since the species charge ei, i ∈ S, can be of different sign, cancellation of significating digits may
arise so that using only the first order diffusion coefficients may lead to large errors in the conductivities,
as shown in particular by Bruno and coworkers in the monatomic approximation [3, 6, 7]. In the
numerical simulations by Bruno and coworkers, the errors are even amplified because of the Ramsauer
minimum in the Argon-electron collision cross sections [6, 7].

In order to improve the accuracy of the electrical conductivities, a first possibility is to compute
the higher order diffusion coefficients D and then the corresponding electrical conductivities. A second
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possibility, however, is to use the first order diffusion coefficients D[00] in the species equations—when

they are sufficiently accurate—and to only evaluate the solutions ζ(1) and ζ(2) of the linear systems





L ζ(1) =
∑

j∈S

njejβ
Dj ,

〈ζ(1),Y〉 = 0,






(L+ iLB) ζ(2) =
∑

j∈S

njejβ
Dj ,

〈ζ(2),Y〉 = 0.

(76)

Once the vectors ζ(1) and ζ(2) are evaluated, the electrical conductivities are then be obtained from

p σ‖ =
∑

j∈S

njejζ
(1)
j , p (σ⊥ + iσ⊙) =

∑

j∈S

njejζ
(2)
j .

The systems (76) can be solved by using a generalized conjugate gradient procedure like an othogonal
error algorithm which converge within a few iterations independently of the magnetic field.

4.8 Transport linear systems associated with λ̂ and θ

The vector integral equations associated with the partial thermal conductivity are in the form (FS +

δ2liBFz,v)(ϕ
bλ(l)) = Ψ

bλ, with l = 1, 2, and

Ψ
bλ =

∑

k∈S

√
2(kBT )3/mk φ

1010k +
∑

k∈P

√
2(kBT )3/mk φ

1001k,

where φ1010k =
(
(5
2 − wk·wk)wkδki

)
i∈S

, k ∈ S, φ1001k =
(
(ǭk − ǫkK)wkδki

)
i∈S

, k ∈ P , P denotes the

set of polyatomic species, and np the number of polyatomic species [14]. The variational approximation

space Abλ to be considered in the first place is the space spanned by φ1000k, k ∈ S, φ1010k, k ∈ S, and

φ1001k, k ∈ P , and we will denote by ϕ
bλ(l) the corresponding approximation.

For convenience, ϕ
bλ(l) is taken in the form

ϕ
bλ(l) =

√
2kBT

(∑

k∈S

√
mk(α

00bλ(l)
k φ1000k + α

10bλ(l)
k φ1010k) +

∑

k∈P

√
mkα

01bλ(l)
k φ1001k

)
, l = 1, 2.

The matrix associated with the variational procedure is denoted by L and is rescaled such that Lkl =
(2
√
mkml/3p)[[φ

10rk, φ10sl]], (r, k), (s, l) ∈ {00}×S ∪ {10}×S ∪ {01}×P . We also rescale the right

member βrbλ
k =

√
2mk/kBT/3p〈〈f0φ1000k, λ̂〉〉, (r, k) ∈ {00}×S ∪ {10}×S ∪ {01}×P . We then have

L ∈ R2ns+np,2ns+np

, β
bλ ∈ R2ns+np

, and the linear system for α
bλ(1) ∈ R2ns+np

and α
bλ(2) ∈ C2ns+np

are in the form {
Lα

bλ(1) = β
bλ,

〈αbλ(1),Y〉 = 0,

{
(L+ iLB)α

bλ(2) = β
bλ,

〈αbλ(2),Y〉 = 0.

The coefficients of the matrix L are given in reference [14] and are summarized in Section 5.3, the

constraint vector Y ∈ R2ns+np

is given by Y =
(
Y, (0)k∈S , (0)k∈P

)t
, and the right member β

bλ is such

that βrbλ
k = 0, (r, k) ∈ {00}×S, βrbλ

k = 5
2Xk, (r, k) ∈ {10}×S, and βrbλ

k = c
int

k Xk/kB, (r, k) ∈ {01}×P ,
where c

int

k is the internal heat capacity of the kth species per molecule. On the other hand, the matrix
LB is in the form

LB = (I − Y⊗U) L
B(I − U⊗Y),

where L
B is the diagonal matrix (LB)rs

kl = δklδrsnkekB/p, if (r, k) ∈ {00}×S, (LB)rs
kl = δklδrs

5
2nkekB/p,

if (r, k) ∈ {10}×S, (LB)rs
kl = δklδrsc

int

k nkekB/kBp, if (r, k) ∈ {00}×P , and U =
(
U, (0)k∈S , (0)k∈P

)t
.

The matrix L is symmetric positive semi definite [14], the partial thermal conductivities are given by
the scalar products

λ̂‖ =
p

T
〈αbλ(1), β

bλ〉 =
p

T

(
〈α10bλ(1), β10bλ〉 + 〈α01bλ(1), β01bλ〉

)
, (77)

λ̂⊥ + iλ̂⊙ =
p

T
〈αbλ(2), β

bλ〉 =
p

T

(
〈α10bλ(2), β10bλ〉 + 〈α01bλ(2), β01bλ〉

)
, (78)

and, the thermal diffusion coefficients are given by

θ
‖
i = −〈αbλ(1), βDi〉 = −α00bλ(1)

i , (79)

θ⊥i + iθ⊙i = −〈αbλ(2), βDi〉 = −α00bλ(2)
i . (80)
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Note, however, that it is computationally more interesting to directly evaluate the thermal con-
ductivities λ‖, λ⊥, λ⊙ and the thermal diffusion ratios χ‖, χ⊥, χ⊙ rather than the partial thermal
conductivities λ̂‖, λ̂⊥, λ̂⊙ and the thermal diffusion coefficients θ‖, θ⊥, θ⊙, as described in the next
section.

5 Thermal conductivity and thermal diffusion ratios

We first present the usual definition of the thermal conductivities λ‖, λ⊥, λ⊙ and the thermal diffusion
ratios χ‖, χ⊥, χ⊙. We then introduce a variational framework which allows a direct evaluation of these
coefficients without the intermediate evaluations of the partial thermal conductivities λ̂‖, λ̂⊥, λ̂⊙ and
the thermal diffusion coefficients θ‖, θ⊥, θ⊙.

5.1 First definition of the thermal conductivities and the thermal diffusion

ratios

The thermal diffusion ratios χ‖ = (χ
‖
i )i∈S , χ⊥ = (χ⊥

i )i∈S , and χ⊙ = (χ⊙
i )i∈S , are defined from the

linear systems [25]

{
D‖χ‖ = θ‖,

〈χ‖, U〉 = 0,

{
(D⊥ + iD⊙)(χ⊥ + iχ⊙) = θ⊥ + iθ⊙,
〈χ⊥ + iχ⊙, U〉 = 0,

(81)

where U is the vector of length ns with unit components U = (1, . . . , 1)t. Thanks to the symmetry of
D‖, D⊥ and D⊙, transposing these systems yields that the thermal diffusion ratios coincide with the
modified thermal diffusion ratios χ̂‖ = χ‖, χ̂⊥ = χ⊥ and χ̂⊙ = χ⊙ also introduced in [25]. We next
define the thermal conductivities from [25]

λ‖ = λ̂‖ − (p/T )
∑

i,j∈S

D
‖
jiχ

‖
jχ

‖
i ,

λ⊥ + iλ⊙ = λ̂⊥ + iλ̂⊙ − (p/T )
∑

i,j∈S

(D⊥
ji + iD⊙

ji)(χ
⊥
j + iχ⊥

j )(χ⊥
i + iχ⊙

i ).

The diffusion velocities and the heat flux can then be written

Vi = −
∑

j∈S

D
‖
ij

(
d
‖
j + χ

‖
j (∂x logT )‖

)

−
∑

j∈S

D⊥
ij

(
d⊥

j + χ⊥
j (∂x logT )⊥ + χ⊙

j (∂x logT )⊙
)

−
∑

j∈S

D⊙
ij

(
d⊙

j + χ⊥
j (∂x logT )⊙ − χ⊙

j (∂x logT )⊥
)
, (82)

q = −
(
λ‖(∂xT )‖ + λ⊥(∂xT )⊥ + λ⊙(∂xT )⊙

)

+ p
∑

i∈S

(χ
‖
i Vi

‖ + χ⊥
i Vi

⊥ + χ⊙
i Vi

⊙) +
∑

i∈S

(5
2kBT + Ei)niVi. (83)

5.2 A variational framework for λ and χ

A variational framework for a direct evaluation of the thermal conductivity and the thermal diffusion
ratios in a nonionized gas has been introduced in [14, 15]. This framework can readily be used for
the transport properties parallel to the magnetic field λ‖ and χ‖. In this paper, we generalize this
framework to the complex magnetized case for the perpendicular and transverse components λ⊥ + iλ⊙

and χ⊥ + iχ⊙. To this aim, we define

ϕλ(1) = ϕ
bλ(1) + pkBT

∑

j∈S

χ
‖
jϕ

Dj(1), ϕλ(2) = ϕ
bλ(2) + pkBT

∑

j∈S

(χ⊥
j + iχ⊙)ϕDj(2), (84)
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Ψ
λ
‖ = Ψ

bλ + pkBT
∑

j∈S

χ
‖
jΨ

Dj , Ψ
λ
⊥⊙ = Ψ

bλ + pkBT
∑

j∈S

(χ⊥
j + iχ⊙)ΨDj , (85)

and it is easily shown that

F
S(ϕλ(1)) = Ψλ

‖ , (FS + iBF
z,v)(ϕλ(2)) = Ψλ

⊥⊙, (86)

〈〈f0ϕλ(1), ψl〉〉 = 0, 〈〈f0ϕλ(2), ψl〉〉 = 0, l ∈ {1, . . . , ns + 4}. (87)

From the definition of thermal diffusion ratios, it is straightforward to check that 〈〈f0ϕλ(1),ΨDj 〉〉 =
0 and 〈〈f0ϕλ(2),ΨDj 〉〉 = 0 for j ∈ S. However, the basis function φ1000j is a linear combination
of ΨDj and of the vector collisional invariant (mkCk)k∈S =

(
(mk(ck − v)

)
k∈S

in such a way that

〈〈f0ϕλ(1), φ1000j〉〉 = 0 and 〈〈f0ϕλ(2), φ1000j〉〉 = 0 for j ∈ S. One may thus use a Galerkin vari-
ational approximation space orthogonal to the φ1000j , j ∈ S, in order to to solve (86)(87). It is
important to observe then that for any basis function φ10rk orthogonal to φ1000j , j ∈ S, we have

the relations 〈〈f0Ψλ
‖ , φ

10rk〉〉 = 〈〈f0Ψ
bλ, φ10rk〉〉 and 〈〈f0Ψλ

⊥⊙, φ
10rk〉〉 = 〈〈f0Ψ

bλ, φ10rk〉〉 so that the
transport linear systems associated with a Galerkin approximation of (86)(87) can readily be eval-
uated even though the thermal diffusion ratios are unknown. These orthogonality properties also

imply that λ‖ = 1
3kBT 2 〈〈f0ϕλ(1),Ψλ

‖ 〉〉 = 1
3kBT 2 〈〈f0ϕλ(1),Ψ

bλ〉〉, λ⊥ + iλ⊙ = 1
3kBT 2 〈〈f0ϕλ(2),Ψλ

⊥⊙〉〉 =

1
3kBT 2 〈〈f0ϕλ(2),Ψ

bλ〉〉, χ‖
k = mk

3pkBT 〈〈f0Ψ
λ
‖ ,Ck〉〉, χ⊥

k +iχ⊙
k = mk

3pkBT 〈〈f0Ψ
λ
⊥⊙,Ck〉〉, where Ck = (Ckδik)i∈S ,

so that

λ‖ =
1

3kBT 2
[[ϕλ(1),ϕλ(1)]], λ⊥ + iλ⊙ =

1

3kBT 2

(
[[ϕλ(2),ϕλ(2)]] − ((ϕλ(2),ϕλ(2)))

)
, (88)

χ
‖
k =

mk

3pkBT
[[ϕλ(1),Ck]], χ⊥

k + iχ⊙
k =

mk

3pkBT
[[ϕλ(2),Ck]]. (89)

5.3 Transport linear systems associated with λ, χ

The vector integral equations associated with the thermal conductivity and the thermal diffusion ratios
coefficients are in the form (FS + δ2liBFz,v)(ϕλ(l)) = Ψλ(l), with l = 1, 2. Since we already know that
ϕλ(l), l = 1, 2, are orthogonal to φ1000k, k ∈ S, the variational approximation space Aλ to be considered
in the first place is the space spanned by φ1010k, k ∈ S, and φ1001k, k ∈ P .

For convenience, ϕλ(l) is taken in the form

ϕλ(l) =
√

2kBT
( ∑

k∈S

√
mkα

10λ(l)
k φ1010k +

∑

k∈P

√
mkα

01λ(l)
k φ1001k

)
, l = 1, 2.

The matrix associated with the variational procedure is denoted by Λ and is rescaled such that Λrs
kl =

(2
√
mkml/3p)[[φ

10rk, φ10sl]], (r, k), (s, l) ∈ {10}×S ∪ {01}×P . It is then important to observe that

βrλ
k =

√
2mk/kBT/3p〈〈f0φ10rk,Ψ

bλ〉〉, so that βrλ
k = βrbλ

k for (r, k) ∈ {10}×S ∪ {01}×P . We then have
Λ ∈ Rns+np,ns+np

, βλ ∈ Rns+np

, and the linear systems for αλ(1) ∈ Rns+np

and αλ(2) ∈ Cns+np

are in
the form

Λαλ(1) = βλ, (Λ + iΛB)αη(2) = βλ,

where ΛB is the diagonal matrix given by (ΛB)rs
kl = δklδrs

5
2nkekB/p, for (r, k) ∈ {10}×S and (ΛB)rs

kl =
δklδrsc

int

k nkekB/kBp, for (r, k) ∈ {01}×P . The coefficients of the matrix Λ are intricated expressions
that can be written in the form [14]

Λ1010
kk =

∑

l∈S
l 6=k

XkXl

Dkl

mkml

(mk+ml)2

[
15
2

mk

ml
+ 25

4

ml

mk
− 3

ml

mk
Bkl + 4Akl

+ 25
12

⌊⌊
(∆ǫkl)

2
⌋⌋

kl

Ω
(1,1)
kl

]
+

X2
k

2Dkk

[
4Akk + 25

12

⌊⌊
(∆ǫkk)2

⌋⌋
kk

Ω
(1,1)
kk

]
, k ∈ S,

Λ1010
kl = −XkXl

Dkl

mkml

(mk+ml)2

[
55
4 − 3Bkl − 4Akl − 25

12

⌊⌊
(∆ǫkl)

2
⌋⌋

kl

Ω
(1,1)
kl

]
, k, l ∈ S, k 6= l,
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Λ1001
kk = −

∑

l∈S
l 6=k

XkXl

Dkl

mk

mk+ml

[
5
4

⌊⌊
∆ǫk∆ǫkl

⌋⌋
kl

Ω
(1,1)
kl

+ 5
2

ml

mk

⌊⌊
ǫ0kK

(γ2 − γγ′ cosχ)
⌋⌋

kl

Ω
(1,1)
kl

−ml

mk

⌊⌊
ǫ0kK

(γ4 − γγ′3 cosχ)
⌋⌋

kl

Ω
(1,1)
kl

]
− 5

8

X2
k

Dkk

⌊⌊
(∆ǫkk)2

⌋⌋
kk

Ω
(1,1)
kk

, k ∈ P ,

Λ1001
kl =

XkXl

Dkl

ml

mk +ml

[
−5

4

⌊⌊
∆̃ǫl∆ǫkl

⌋⌋
kl

Ω
(1,1)
kl

+
5

2

⌊⌊
ǫ0lL(γ2 − γγ′ cosχ)

⌋⌋
kl

Ω
(1,1)
kl

−
⌊⌊
ǫ0lL(γ4 − γγ′3 cosχ)

⌋⌋
kl

Ω
(1,1)
kl

]
, k ∈ S, l ∈ P , k 6= l,

Λ0101
kk =

∑

l∈S
l 6=k

XkXl

[
c
int
k

kBDk int,l
+ 3

4

mk

ml

⌊⌊
(∆ǫk)2

⌋⌋
kl

Ω
(1,1)
kl Dkl

]

+X2
k

[
c
int
k

kBDk int,k
+ 3

8

⌊⌊
(∆ǫkk)2

⌋⌋
kk

Ω
(1,1)
kk Dkk

]
, k ∈ P ,

Λ0101
kl = −XkXl

[⌊⌊ǫ0kK
(ǫ0lLγ

2 − ǫ0lL′γγ′ cosχ)
⌋⌋

kl

Ω
(1,1)
kl Dkl

− 3
4

⌊⌊
∆ǫk∆̃ǫl

⌋⌋
kl

Ω
(1,1)
kl Dkl

]
, k, l ∈ P , k 6= l,

where
⌊⌊
·
⌋⌋

kl
is an averaging operator associated with collisions between the species pair (k, l). The

details of the corresponding collision integrals are omitted for brevity and we refer to [14] for more
details. The matrix Λ is symmetric positive definite [14] and the thermal conductivities are given by
the following scalar products

λ‖ =
p

T
〈αλ(1), βλ〉 =

p

T

(
〈α10λ(1), β10λ〉 + 〈α01λ(1), β01λ〉

)
, (90)

λ⊥ + iλ⊙ =
p

T
〈αλ(2), βλ〉 =

p

T

(
〈α10λ(2), β10λ〉 + 〈α01λ(2), β01λ〉

)
, (91)

and the thermal diffusion ratios by

χ‖ = L00λα
bλ(1), χ⊥ + iχ⊙ = L00λα

00bλ(2)
i , (92)

where L00λ is the upper right block of L of size ns × (ns + np) in such a way that the matrix L has
the bloc decomposition

L =

(
L0000 L00λ

Lλ00 Lλλ

)
=

(
∆[00] L00λ

Lλ00 Λ

)
. (93)

The matrix L00λ can be written L00λ =
(
L0010, L0001

)
where the blocks L0010 and L0001 are given by

L0010
kk = −

∑

l∈S
l 6=k

XkXl

2Dkl

ml

mk +ml
(6Ckl − 5), k ∈ S, (94)

L0010
kl =

XkXl

2Dkl

mk

mk +ml
(6Ckl − 5), k, l ∈ S, k 6= l,

L0001
kk = −

∑

l∈S
l 6=k

XkXl

⌊⌊
ǫ0kK

(γ2 − γγ′ cosχ)
⌋⌋

kl

Ω
(1,1)
kl Dkl

, k ∈ P ,

L0001
kl = XkXl

⌊⌊
ǫ0lL(γ2 − γγ′ cosχ)

⌋⌋
kl

Ω
(1,1)
kl Dkl

, k ∈ S, l ∈ P , k 6= l.
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From the expression of the matricies L, Λ, or L00λ, we note that, in addition to the classical Ω
(i,j)
kl

integrals, many collision integrals associated with internal energy exchanges are required for the eval-
uation of transport properties of polyatomic species mixtures. These collision integrals are discussed
in particular in [5, 14, 34] as well as some typical approximations like those of Mason and Monchick in
terms of relaxation times. In order to solve the transport linear systems associated with the thermal
conductivity we recommend a few step of an orthogonal error method preconditioned by the diagonal
matrix diag(Λ) + iΛB [14, 16]. The thermal diffusion ratios are then readily evaluated from (92).

In our numerical simulations for air at 10000 K, the relaxation times for internal energy of the
polyatomic neutral molecules have been estimated as described in [14] whereas the the rotational
relaxation times for internal energy of the polyatomic ionized molecules have been approximated as
the relaxation time of the corresponding neutral molecules [1]. Our numerical simulations with weakly
ionized air have shown that three iterations are generally required in order to evaluate the thermal
diffusion ratios with a good accuracy, whereas two iterates are generally sufficient for the thermal
conductivities.

It is also possible to use a reduced linear system associated with the total energy vector functionals
φ10ek, k ∈ S, defined by φ10ek = φ1010k + φ1001k if k ∈ P , and φ10ek = φ1010k for monatomic species
k ∈ S\P . The corresponding reduced linear systems of size ns are associated with the matrices Λ[e]

and Λ[e] + iΛB
[e], where Λ[e] is explicited in [14, 15] and where ΛB

[e] is the diagonal matrix defined by

ΛB
[e]kk = cpknkekB/p, k ∈ S. These reduced linear systems generally yield accurate results at lower

computational costs. For weakly ionized air at high temperature we have found that the reduced
thermal conductivities are usually within one percent of the more accurate conductivity whereas the
thermal diffusion ratios are only accurate within ten percents.

5.4 Stefan-Maxwell equations with Soret effect

Stefan-Maxwell equations associated with the real vector V‖ whose ns first components are the diffusion
velocities parallel to the magnetic field V ‖ = V00‖ = ΠV‖ are similar to that of non-ionized mixtures
already investigated in [23, 14]. We thus only discuss in the following the generalized Stefan-Maxwell
equations associated with the complex vector V⊥ − iV⊙ defined by

V⊥ − iV⊙ =
∑

j∈S

αDj(2)
(
(d⊥

j − id⊙
j ) + (χ⊥

j + iχ⊙
j )
(
(∂x logT )⊥ − i(∂x logT )⊙

))
,

whose ns first components are the diffusion velocities perpendicular and transverse to the magnetic
field V ⊥ − iV ⊙ = V00⊥ − iV00⊙ = Π(V⊥ − iV⊙).

The Stefan-Maxwell equations in the presence of Soret effect are more conveniently written in terms
of thermal diffusion ratios [38, 21, 9, 24]. Multiplying the transport linear system (72) for αDj(2) by
the vector d⊥

j −d⊙
j +(χ⊥

j + iχ⊙
j )
(
(∂x log t)⊥ − i(∂x log t)⊙

)
we obtain the proper generalization to the

complex framework of the Stefan-Maxwell equations with Soret effect

(L+ iLB)(V⊥ − iV⊙) =
∑

j∈S

βDj
(
(d⊥

j − id⊙
j ) + (χ⊥

j + iχ⊙
j )
(
(∂x logT )⊥ − i(∂x logT )⊙

))
. (95)

Upon introducing the Schur complement

∆ + i∆B = ∆[00] + i∆B
[00] − L00λ(Lλλ + iΛB)−1Lλ00,

the Stefan-Maxwell equations can also be rewritten in the form

(∆ + i∆B)(V ⊥ − iV ⊙) = d̃
⊥ − id̃

⊙
+ (χ⊥ + iχ⊙)

(
(∂x logT )⊥ − i(∂x log T )⊙

)
, (96)

where V ⋄ = V00⋄ = ΠV⋄, χ⋄ = (χ⋄
1, . . . , χ

⋄
ns)t, ⋄ ∈ {‖,⊥,⊙}, and

d̃
⊥ − id̃

⊙
=
∑

j∈S

β00Dj (d⊥
j − id⊙

j ) = d⊥ − id⊙ − Y
∑

j∈S

(d⊥
j − id⊙

j ), (97)

are the unconstrained diffusion driving forces. These equations may be approximated as

(∆[00] + i∆B
[00])(V

⊥ − iV ⊙) = d̃
⊥ − id̃

⊙
+ (χ⊥ + iχ⊙)

(
(∂x logT )⊥ − i(∂x logT )⊙

)
, (98)

depending on the accuracy of the first order diffusion matrices. Projected standard iterative techniques
as well as projected generalized conjugate gradient methods can be used to solve the Stefan-Maxwell
equations with or without Soret effect and with or without magnetic field effects [14, 17, 27].
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6 Dependence of transport coefficients on the magnetic field

From a theoretical and computational point of view, it is important to investigate the behavior of
transport coefficients and transport fluxes for vanishing magnetic fields. In this section we establish
the proper structural properties of the transport coefficients which guarantee that all transport fluxes
behave smoothly as B goes to zero.

6.1 Heat and mass transport coefficients

The operators FS and Fz,v do not depend on the magnetic field B so that the functions ϕ
bλ(1)
i , i ∈ S,

and ϕ
Dj(1)
i , i, j ∈ S, are independent of B. On the other hand, in order to investigate the dependence

on the magnetic field B of the perpendicular and transverse transport coefficients we expand the

functions ϕ
bλ(2)

, and ϕ
Dj(2)

, j ∈ S, in series of the intensity of the magnetic field B = ‖B‖. More
specifically, we write

ϕ
bλ(2)
i =

∑

n∈N

(iB)nϕ
bλ
i,n, ϕ

Dj(2)
i =

∑

n∈N

(iB)nϕ
Dj

i,n, i, j ∈ S, (99)

where the functions ϕ
bλ
·,n = (ϕ

bλ
i,n)i∈S , ϕ

Dj

·,n = (ϕ
Dj

i,n)i∈S , j ∈ S, n ∈ N, do not depend on the magnetic
field and satisfy the integro-differential equations

F
S(ϕ

bλ
·,0) = Ψ

bλ, F
S(ϕ

bλ
·,n+1) = −F

z,v(ϕ
bλ
·,n), n ≥ 0, (100)

F
S(ϕ

Dj

·,0 ) = ΨDj , F
S(ϕ

Dj

·,n+1) = −F
z,v(ϕ

Dj

·,n), n ≥ 0, j ∈ S, (101)

and the scalar constraints

〈〈f0ϕ
bλ
.,n, ψ

l〉〉 = 0, 〈〈f0ϕ
Dj

·,n , ψ
l〉〉 = 0, n ≥ 0, l ∈ {0, . . . , ns+4}. (102)

These equations yield existence and uniqueness for ϕ
bλ
i,n, ϕ

Dj

i,n, i, j ∈ S, n ∈ N. From the well posedness
of the integral operator, the radius of convergence of these series is nonzero and we also remark that

ϕ
bλ
i,0 = ϕ

bλ(1)
i and ϕ

Dj

i,0 = ϕ
Dj(1)
i , i, j ∈ S. From these series expansions, we can further expand the

transport coefficients D
‖
ij , D

⊥
ij and D⊙

ij , i, j ∈ S, in the form

D
‖
ij = D0

ij , D⊥
ij =

∑
N∈N

B2ND2N
ij , D⊙

ij =
∑

N∈N

B2N+1D2N+1
ij , (103)

where the coefficients DM
ij , i, j ∈ S, M ∈ N, do not depend on the magnetic field and are given by

DM
ij = (−1)[

M
2

] 1
3pkBT

( ∑

n+m=M

(−1)n[[ϕDi

.,n,ϕ
Dj

.,m]] −
∑

n+m=M−1

(−1)n((ϕDi

.,n,ϕ
Dj

.,m))
)
.

We then deduce the existence of regular functions denoted by φ⊥ij , φ
⊙
ij , i, j ∈ S, so that

D⊥
ij −D

‖
ij = B2φ⊥ij(B

2), D⊙
ij = Bφ⊙ij(B

2). (104)

The above expansion can be followed through for the coefficients θ
‖
i , θ⊥i , and θ⊙i , i ∈ S, by using

expansions (99) for the functions ϕ
bλ(2)
i , i ∈ S. More specifically, we obtain

θ
‖
i = θ0i , θ⊥i =

∑
N∈N

B2Nθ2N
i , θ⊙i =

∑
N∈N

B2N+1θ2N+1
i , (105)

where the coefficients θN
i , i ∈ S, N ∈ N, do not depend on the magnetic field and are defined by

θ2N
i = 1

3 (−1)[
M
2

]+1
( ∑

n+m=M

(−1)n[[ϕDi

.,n,ϕ
bλ
.,m]] −

∑

n+m=M−1

(−1)n((ϕDi

.,n,ϕ
bλ
.,m))

)
,

and we then deduce the existence of regular functions denoted by ϑ⊥i , ϑ⊙i , i ∈ S, so that

θ⊥i − θ
‖
i = B2ϑ⊥i (B2), θ⊙i = Bϑ⊙i (B2). (106)
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By using expansions (99) for the functions ϕ
bλ(2)
i , i ∈ S, we expand the transport coefficients λ̂‖,

λ̂⊥, λ̂⊙, in the form

λ̂‖ = λ̂0, λ̂⊥ =
∑

N∈N

B2N λ̂2N , λ̂⊙ =
∑

N∈N

B2N+1λ̂2N+1, (107)

where the coefficients λ̂M , M ∈ N, do not depend on the magnetic field and are given by

λ̂M = (−1)[
M
2

] 1
3kBT 2

( ∑

n+m=M

(−1)n[[ϕ
bλ
.,n,ϕ

bλ
.,m]] −

∑

n+m=M−1

(−1)n((ϕ
bλ
.,n,ϕ

bλ
.,m))

)
.

We then deduce the existence of regular functions denoted by ς̂⊥, ς̂⊙, so that

λ̂⊥ − λ̂‖ = B2ς̂⊥(B2), λ̂⊙ = Bς̂⊙(B2). (108)

An expanded form for coefficients χ
‖
i , χ

⊥
i , χ⊙

i , i ∈ S, can be deduced from expressions (103) and
(105)

χ
‖
i = χ0

i , χ⊥
i =

∑
N∈N

B2Nχ2N
i , χ⊙

i =
∑

N∈N

B2N+1χ2N+1
i , (109)

where the coefficients χi, i ∈ S, N ∈ N, are defined by the recursive systems

∑

j∈S

D0
ijχ

N
j = θN

i −
N−1∑

n=0

(−1)n(N+1)
∑

j∈S

DN−n
ij χn

j , i ∈ S,
∑

j∈S

χN
j = 0.

We thus deduce the existence of regular functions denoted by ψ⊥
i , ψ⊙

i , i ∈ S, so that

χ⊥
i − χ

‖
i = B2ψ⊥

i (B2), χ⊙
i = Bψ⊙

i (B2). (110)

Finally, the coefficients λ‖, λ⊥ and λ⊙ are easily shown to satisfy properties identical to that of the
coefficients λ̂‖, λ̂⊥ and λ̂⊙.

On the other hand, upon introducing the tensorial transport coefficients Dij , i, j ∈ S, θi, i ∈ S,

and λ̂ defined by

Dij = D
‖
ij M

‖ +D⊥
ij M

⊥ +D⊙
ij M

⊙,

θi = θ
‖
i M

‖ + θ⊥i M
⊥ + θ⊙i M

⊙,

λ̂ = λ̂‖M‖ + λ̂⊥M
⊥ + λ̂⊙M

⊙,

where M
‖ = B⊗B, M

⊥ = I −B⊗B, and M
⊙ = R(B), we obtain a compact formulation for diffusion

velocities and heat flux

Vi = −
∑

j∈S

Dij dj − θi ∂xlogT, (111)

q = −λ̂∂xT − p
∑

i∈S

θidi +
∑

i∈S

(
5
2kBT + Ei

)
niVi. (112)

However, for any set of coefficients µ‖, µ⊥, and µ⊙, such that µ‖ is independent of B, µ⊥ − µ‖ =
B2ψ⊥

µ (B2) and µ⊙ = Bψ⊙
µ (B2), where the functions ψ⊥

µ and ψ⊙
µ are smooth, we directly obtain that

the tensorial coefficient µ‖M
‖ + µ⊥M

⊥ + µ⊙M
⊙ can be written

µ‖
M

‖ + µ⊥
M

⊥ + µ⊙
M

⊙ = µ‖I + ψ⊥
µ (B2) (B2

I − B⊗B) + ψ⊙
µ (B2) R(B),

since B = BB so that µ‖M
‖ + µ⊥M

⊥ + µ⊙M
⊙ is smooth for any B and converges towards µ‖I as

B → 0. As a consequence, the heat and mass diffusion fluxes are smooth functions of the magnetic
field and we obtain in the limit case B → 0 the same contributions as with a zero magnetic field.

21



6.2 Momentum transport coefficients

We first note that the volume viscosity κ does not depend on the magnetic field. Similarly, since the

operators FS and Fz,m do not depend on B, the function ϕ
η[1]
i does not depend on the magnetic field.

On the other hand, in order to study the dependence on the magnetic field of the shear viscosities, we

expand the functions ϕ
η[2]

and ϕ
η[3]

in the form

ϕ
η[2]
i =

∑

n∈N

(2iB)nϕ
η
i,n, ϕ

η[3]
i =

∑

n∈N

(iB)nϕ
η
i,n, (113)

where the functions ϕη
.,n = (ϕη

i,n)
i∈S

, n ∈ N, do not depend on the magnetic field and satisfy the

integro-differential equations

F
S(ϕη

.,0) = Ψη, F
S(ϕη

.,n+1) = −F
z,m(ϕη

.,n), n ≥ 0, (114)

〈〈f0ϕη
.,n, ψ

l〉〉 = 0, l ∈ {0, . . . , ns+4}. (115)

These equations yield existence and uniqueness of ϕ
η
i,n, i ∈ S, n ∈ N, and we have the relations

ϕ
η[1]
i = ϕ

η
i,0, i ∈ S. Relations (113) yield the following expansions for the shear viscosities

η1 = 1
10kBT [[ϕη

.,0,ϕ
η
.,0]] + 1

20kBT
∑

N∈N∗

(−1)N22NB2N
∑

n+m=2N

(−1)m[[ϕη
.,n,ϕ

η
.,m]], (116)

η2 = − 1
10kBT

∑

N∈N

(−1)N22NB2N+1
∑

n+m=2N

(−1)m((ϕη
.,n,ϕ

η
.,m)), (117)

η3 = − 1
20kBT

∑

N∈N∗

(−1)N22NB2N
∑

n+m=2N

(−1)m[[ϕη
.,n,ϕ

η
.,m]], (118)

η4 = − 1
20kBT

∑

N∈N∗

(−1)N (22N − 2)B2N
∑

n+m=2N

(−1)m[[ϕη
.,n,ϕ

η
.,m]], (119)

η5 = 1
10kBT

∑

N∈N∗

(−1)N (22N − 1)B2N+1
∑

n+m=2N

(−1)m((ϕη
.,n,ϕ

η
.,m)). (120)

As a consequence, there exist smooth functions ζ1, ζ2, ζ3, ζ4, ζ5, ζ6, of B2 such that

η1 = ζ1(B
2), η2 = Bζ2(B

2), η3 = B2ζ3(B
2), η4 = B2ζ4(B

2), (121)

η5 = B3ζ5(B
2), 2η4 − η3 = B4ζ6(B

2). (122)

Note in particular the relation 2η4 − η3 = B4ϕ6(B
2) which is not straightforward to devise intuitively.

It is then possible to rewrite the viscous tensor as a smooth function of the magnetic field in the form

−Π = κ(∂x·v) I + ζ1(B
2)S + ζ2(B

2)
(
R(B)S − SR(B)

)
− ζ3(B

2)R(B)SR(B)

− ζ6(B
2)Bt

SB B⊗B + ζ4(B
2)(SB⊗B + B⊗B S)

+ ζ5(B
2)(B⊗B SR(B) − R(B)SB⊗B),

using B = BB so that Π is a smooth function of B. Hence we obtain in the limit case the
same contribution as with a zero magnetic field for the viscous stress tensor since ζ1(0) = η1(0) =
1
10kBT [[ϕη(1),ϕη(1)]].

7 Onsager reciprocal relations

Onsager relations are symmetry properties which must hold between the transport coefficients. These
constraints express the invariance of phenomena by time reversal transformation. In the framework
of the kinetic theroy of gases, these symmetry properties can directly be deduced from the symmetry
properties of the linearized collision operator [3, 13, 21, 24].

Using the tensorial relations (111)(112), Onsager reciprocal relations require that

Dij(−B) = Dji(B)t, θi(−B) = θi(B)t, λ̂(−B) = λ̂(B)t,
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and these equalities are easily estalished since the matrices M
‖ and M

⊥ are symmetric, the matrix M
⊙

is antisymmetric, the matrices M
‖ and M

⊥ are even functions of B the matrix M
⊙ is odd function of

B, the transport coefficients D
‖
ij , D

⊥
ij , D

⊙
ij , i, j ∈ S, θ

‖
i , θ⊥i , θ⊙i , i ∈ S, λ̂‖, λ̂⊥, λ̂⊙ are even functions

of B because they only depend on the norm B of the magnetic field, and the transport coefficients

satisfy D
‖
ij = D

‖
ji, D

⊥
ij = D⊥

ji, D
⊙
ij = D⊙

ji, i, j ∈ S, as a result of (50), (54), and (55).
In order to express Onsager relations for viscosity coefficients, we rewrite the three columns of the

viscous stress tensor in the form

Πi = −
3∑

j=1

(
κMκ

ij + η1M
η1

ij + η2M
η2

ij + η3M
η3

ij + η4M
η4

ij + η5M
η5

ij

)
∂iv , i ∈ {1, 2, 3},

where Πi is the ith column of Π, i ∈ {1, 2, 3} and the matrices M
κ
ij , M

ηα

ij , i, j ∈ {1, 2, 3}, α ∈
{1, 2, 3, 4, 5}, are defined by

M
κ
ij = ei⊗ej ,

M
η1

ij = δij I + ej⊗ei − 2
3ei⊗ej ,

M
η2

ij = 2δijR(B) + R(ei)R(B)R(ej) + 2ei
tR(B)ej I,

M
η3

ij = 2BiBj B⊗B − 2
3ei⊗ej + 2R(B)ej⊗ei R(B) − R(B)ei⊗ej R(B),

M
η4

ij = −4BiBj B⊗B + BiBj I + δijB⊗B + Bi ej⊗B + Bj B⊗ei,

M
η5

ij = −2BiBjR(B) − R(ei)R(B)R(ej) − 2ei
tR(B)ej B⊗B,

with (e1, e2, e3) the canonical basis. Onsager relations require that

(
κMκ

ij + η1M
η1

ij + η2M
η2

ij + η3M
η3

ij + η4M
η4

ij + η5M
η5

ij

)
(−B) =

(
κMκ

ji + η1M
η1

ji + η2M
η2

ji + η3M
η3

ji + η4M
η4

ji + η5M
η5

ji

)t
(B), i, j ∈ {1, 2, 3},

but these equalities are easily established since the matrix R(X) is antisymmetric for any vector X,
the matrix R(B) is odd function of B, the viscosities κ, ηα, α ∈ {1, 2, 3, 4, 5}, are even functions of B

because they only depend on the norm of the magnetic field.
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Appendix Erratum for ‘Kinetic theory of partially ionized reactive gas mixtures’, published in Physica
A 327 (2003) pp. 313–348

In this appendix, we report a number of misprints and errors overlooked in our previous publication
on the kinetic theory of partially ionized gas mixtures. The authors are very grateful to Doctor
Domenico Bruno from Istituto di Metodologie Inorganiche e dei Plasmi del CNR in Bari for first
spotting the sign error in the transverse coefficients bracket expressions. Note also that the transverse
components are denoted with the superscript t in [Physica A 327 (2003) pp. 313–348] instead of ⊙ in
this report.

Section 5.2

• On page 332, below Equation (5.9), the formulas for the transport coefficients should be

D
‖
ij = (pkBT/3)〈〈f0ϕDj(1),ΨDi〉〉, D⊥

ij + iDt
ij = (pkBT/3)〈〈f0ϕDj(2),ΨDi〉〉, and

θ
‖
i = −(1/3)〈〈f0ϕ

bλ(1),ΨDi〉〉, θ⊥i + iθt
i = −(1/3)〈〈f0ϕ

bλ(2),ΨDi〉〉.

• On page 332, Equations (5.11) and (5.13) should be

D⊥
ij + iDt

ij = 1
3pkBT

(
[[ϕDi(2),ϕDj(2)]] − i((ϕDi(2),ϕDj(2)))

)
, (5.11)

θ⊥i + iθt
i = − 1

3

(
[[ϕDi(2),ϕ

bλ(2)]] − i((ϕDi(2),ϕ
bλ(2)))

)
. (5.13)
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• On page 333, after the second paragraph, D⊥
ij and Dt

ij should be

D⊥
ij = 1

3pkBT
(
ℜ[[ϕDi(2),ϕDj(2)]] −ℑ((ϕDi(2),ϕDj(2)))

)
= 1

3pkBTℜ[[ϕDi(2),ϕDj(2)]],

Dt
ij = − 1

3pkBT
(
ℑ[[ϕDi(2),ϕDj(2)]] + ℜ((ϕDi(2),ϕDj(2))) = − 1

3pkBTℜ((ϕDi(2),ϕDj(2))).

We also have seen that ℑ[[ϕDi(2),ϕDj(2)]] = 0 and ℑ((ϕDi(2),ϕDj(2))) = 0, in such a way
that [[ϕDi(2),ϕDj(2)]] = ℜ[[ϕDi(2),ϕDj(2)]] and ((ϕDi(2),ϕDj(2))) = ℜ((ϕDi(2),ϕDj(2))).

• On page 334, the last line should be

p σ‖ =
∑

i,j∈S

D
‖
ijnieinjej, p σ⊥ =

∑

i,j∈S

D⊥
ijnieinjej, p σt =

∑

i,j∈S

Dt
ijnieinjej ,

Section 5.3

• On page 335, after Equation (5.21), the formulas defining the transport coefficients should

be λ̂‖ = (1/3kBT
2)〈〈f0ϕ

bλ(1),Ψ
bλ〉〉, λ̂⊥ + iλ̂t = (1/3kBT

2)〈〈f0ϕ
bλ(2),Ψ

bλ〉〉, and

θ̂
‖
i = −(1/3)〈〈f0ϕDi(1),Ψ

bλ〉〉, θ̂⊥i +iθ̂t
i = −(1/3)〈〈f0ϕDi(2),Ψ

bλ〉〉. We have also seen, however,

thanks to the new symmetry properties of the transport coefficients, that θ̂
‖
i = θ

‖
i , θ̂⊥i = θ⊥i ,

and θ̂t
i = θt

i , i ∈ S.

• On page 335, before the last paragrpah, the expressions for λ̂⊥ + iλ̂t and θ̂⊥i + iθ̂t
i should be

λ̂⊥ + iλ̂t =
1

3kBT 2

(
[[ϕ

bλ(2),ϕ
bλ(2)]] − i((ϕ

bλ(2),ϕ
bλ(2)))

)
,

θ̂⊥i + iθ̂t
i = − 1

3

(
[[ϕ

bλ(2),ϕDi(2)]] − i((ϕ
bλ(2),ϕDi(2)))

)
.

Section 5.7

• On page 340, before the last paragraph, the last term in the expression of Υv should be∑
i,j∈S D

t
ijd

⊥
i ·dt

j , and this term vanishes thanks to the symmetry properties of transport

coefficients and since d⊥
i ·dt

j = −dt
i·d⊥

j .

• On page 340, in the last line, the second term should be 〈Atx⊥, xt〉, x0 should be x0 =
(∂α logT )⊥ and y0 should be y0 = (∂α logT )t.

Section 5.8

• The discussion about Onsager reciprocal relations is not fully satisfactory. It should be
replaced by the detailed discussion presented in Section 7 of this paper which includes a
discussion of the viscous tensor.

Section 6.1

• On page 343, after Equation (6.4), the definition of βr
k should be

βr
k = 〈〈f0ψµ, ξrk〉〉.

• On page 343, in the middle of the page, the constraint vectors Grlν
k should be

Grlν
k = 〈〈f0ξrk, Tν ψ

l〉〉, l ∈ {1, . . . , ns+4}, ν ∈ {1, . . . , nτ}.
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