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Abstract

Supercritical multicomponent fluid thermodynamics are often built from equations of state. We

investigate mathematically such a construction of a Gibbsian thermodynamics compatible at low

density with that of ideal gas mixtures starting from a pressure law. We further study the struc-

ture of chemical production rates obtained from nonequilibrium statistical thermodynamics. As a

typical application, we consider the Soave-Redlich-Kwong cubic equation of state and investigate

mathematically the corresponding thermodynamics. This thermodynamics is then used to study

the stability of H2-O2-N2 mixtures at high pressure and low temperature as well as to illustrate

the rôle of nonidealities in a transcritical H2-O2-N2 flame.

1 Introduction

Supercritical reactive fluids arise in laboratory experiments and engineering applications as for instance
Ariane’s rocket engines [1, 2, 3]. This is a strong motivation for investigating the mathematical structure
of supercritical multicomponent fluid thermodynamics as well as the corresponding nonideal chemical
kinetics. Although the mathematical structure of multicomponent fluid thermodynamics and chemical
kinetics has already been investigated [5, 4, 6, 7], notably for perfect gas mixtures and chemical kinetics
of mass action type, it neither seems to be the case for thermodynamics built from equations of state
nor for supercritical reactive fluids. A second motivation is that thermodynamic studies are requisites
prior to analyze the mathematical structure of hyperbolic-parabolic symmetrizable systems of partial
differential equations modeling fluids [8, 11, 12, 13, 14, 15].

We first discuss the mathematical structure and properties of thermodynamic functions in terms
of intensive variables as required for fluid models. We discuss smoothness properties, homogeneity,
Gibbs’ relation, thermodynamic stability, as well as compatibility with perfect gases at low density.
Letting ζ = (T, v, y1, . . . , yn) where T denotes the absolute temperature, v the volume per unit mass,
y1, . . . , yn the species mass fractions supposed to be independent, and n the number of species, ther-
modynamic models are specified as e(ζ), p(ζ), and s(ζ), where e denotes the energy per unit mass,
p the pressure, and s the entropy per unit mass. We also address a different mathematical structure
obtained with the thermodynamic variable (T, ρ1, . . . , ρn) where ρ1, . . . , ρn denote the species mass per
unit volume. Considering the state variable ζ = (T, v, y1, . . . , yn) leads to Gibbsian thermodynamics
with singular entropy Hessian matrices whereas using the state variable (T, ρ1, . . . , ρn) leads to nonho-
mogeneous thermodynamic functions and nonsingular entropy Hessian matrices. Both formalisms are
useful—depending on the context—and have been investigated in the literature generally for perfect
gas mixtures [4, 5, 6, 7, 13, 16]. We establish the mathematical equivalence between these thermody-
namic formalisms under proper transformation rules. In comparison with other fluid thermodynamic
studies, the thermodynamic functions are not defined for all states because of real gas effects and ther-
modynamic instabilities at low temperature and high pressure [17]. We also specify the compatibility
with perfect gases at low density and give a complete mathematical description of both Gibbsian and
non Gibbsian formalisms,

We then present the mathematical construction of thermodynamics from an equation of state. Such
a procedure is often used to model supercritical fluids starting typically from the Soave-Redlich-Kwong
or the Peng-Robinson equation of state [17, 18, 19, 20, 21, 22]. We investigate when an equation of state
may define a Gibbsian thermodynamics compatible at low density with that of perfect gas mixtures
under natural structural assumptions on the pressure law. The structural assumptions are notably 0-
homogeneity of the pressure p(ζ) with respect to (v, y1, . . . , yn) as well as a quadratic estimate of p−ppg
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at low density where ppg denotes the perfect gas pressure. We first identify the energy and entropy
per unit mass and next investigate necessary and sufficient conditions. These conditions are essentially
bounds on p−ppg insuring that entropy has the required concavity properties insuring thermodynamic
stability. Among the stability conditions, chemical thermodynamic stability may indeed decrease the
domain of validity of the resulting thermodynamics because of possible unstable states. We further
give mathematically equivalent formulations of stability conditions involving matrices which behave
more smoothly for vanishing mass fractions than entropy Hessian matrices and allow to investigate
thermodynamic stability for all mixtures. To the Authors’ knowledge, it is the first time that such a
construction of a thermodynamics from an equation of state is analyzed mathematically.

We next specify the mathematical assumptions concerning the nonideal chemical production rates
deduced from statistical physics [23, 24, 25]. These rates are compatible with the symmetric forms
of rates of progress derived from the kinetic theory of dilute reactive gases [7, 26]. We establish that
entropy production due to chemical reactions is nonnegative and investigate chemical equilibrium states
in atom conservation manifolds. Assuming that thermodynamic stability holds, equilibrium states are
obtained by a minimization technique and detailed balance is obtained at equilibrium as for ideal
mixtures [4, 7]. We further discuss inconsistent chemical production rates often used to model high
pressure reactions.

We then specifically investigate the Soave-Redlich-Kwong equation of state and discuss the cor-
responding Gibbsian thermodynamics compatible with that of perfect gases. This equation of state
gives accurate results over the range of pressures, temperatures and mixture states of interest for su-
percritical combustion [17, 20, 22]. All the required conditions to define a thermodynamics are easily
established except for thermodynamic stability. Thermal and mechanical thermodynamic stability are
first discussed for such a cubic equation of state and generally hold at supercritical conditions which
are precisely defined mathematically. On the other hand, chemical thermodynamic stability generally
not holds at low temperature and high pressure. The domain of validity of the resulting thermodynam-
ics may thus have a complex shape which depends on the mixture under consideration and must be
investigated numerically. To the best of Authors’ knowledge, it is also the first time that supercritical
multicomponent thermodynamics are investigated mathematically.

In order to illustrate the applicability of the resulting supercritical thermodynamics and nonideal
chemical kinetics, we investigate H2-O2-N2 mixtures. At sufficiently low temperature and high pressure,
fresh mixtures of H2-O2-N2 may be chemically unstable. These mixtures may split between a hydrogen-
rich gaseous-like phase and a hydrogen-poor liquid-like phase in agreement with experimental results
[17, 27, 28]. We also present the structure of a typical transcritical H2-N2-O2 flames with complex
kinetics and nonideal transport. We finally analyze the rôle of nonidealities in such a such a transcritical
H2-N2-O2 flame, by studying the repulsive and attractive contributions to pressure, the species activity
coefficients and the nonideal high pressure chemical production rates.

Thermodynamics in terms of intensive variables is investigated in Section 2. The construction of a
thermodynamics starting from a pressure law is discussed in Section 3 and chemical production rates
are analyzed in Section 4. The Soave-Redlich-Kwong equation of state is investigated in Section 5.
Finally, H2-N2-O2 mixtures as well as transcritical H2-N2-O2 flames are considered in Section 6.

2 Thermodynamics with intensive variables

We investigate in this section the mathematical structure of multicomponent fluid thermodynamics
compatible at low density with that of perfect gases. Since we are interested in spatially non ho-
mogeneous fluids, we only investigate thermodynamics in terms of intensive variables. Both Gibb-
sian and non Gibbsian formalisms, which are useful for applications and can be found in the litera-
ture [4, 5, 6, 7, 16], are considered.

The origin of these multiple formalisms is that, in nonhomogeneous flows, extensivity is associated
with volume integration and state variables can only be intensive variables or densities, either volu-
metric, molar, or per unit mass [7]. As a consequence, any set of n+2 intensive state variables—which
are associated with independent extensive state variables after volume integration in homogeneous
flows—are now a priori dependent variables. Considering then the a priori dependent mass fractions as
formally independent lead to homogeneous Gibbsian thermodynamics investigated in the Section 2.1.
On the other hand, eliminating one of these intensive state variables leads to n+1 independent intensive
state variables and to negative definite entropy Hessians as investigated in Section 2.2.
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2.1 Gibbsian thermodynamics

We investigate in Section 2.1.1 a Gibbsian thermodynamics for multicomponent fluids in terms of the
natural variable ζ = (T, v, y1, . . . , yn)

t and the thermodynamic variable ξ = (e, v, y1, . . . , yn)
t. We

next address in Section 2.1.2 the case of the pressure variable π = (T, p, y1, . . . , yn)
t which is useful

in constant pressure frameworks. We finally address the situation of perfect gas mixtures and discuss
molar properties in Sections 2.1.3 and 2.1.4 respectively.

2.1.1 The natural and thermodynamic variables

We investigate thermodynamics in terms of the variable ζ = (T, v, y1, . . . , yn)
t where T denotes the

absolute temperature, v the volume per unit mass, y1, . . . , yn the species mass fractions, n > 1 the
number of species andS the species indexing setS = {1, . . . , n}. The thermodynamic model is specified
as e(ζ), p(ζ), and s(ζ), where e denotes the energy per unit mass, p the pressure, and s the entropy
per unit mass, In the discussion, we also use the thermodynamic variable ξ = (e, v, y1, . . . , yn)

t and
the pressure based variable π = (T, p, y1, . . . , yn)

t. In order to avoid notational complexities, we often
commit the traditional abuse of notation of denoting by the same symbol a given quantity as function
of different state variables. The superscript pg is also associated with thermodynamic properties of
perfect gas mixtures.

We denote by ∂ the derivation operator with respect to the variable ξ = (e, v, y1, . . . , yn)
t, by

∂̃ the derivation operator with respect to the variable ζ = (T, v, y1, . . . , yn)
t, and by d the total

differential operator. For any λ > 0, we define for convenience ξλ = (λe, λv, λy1, . . . , λyn)
t and ζλ =

(T, λv, λy1, . . . , λyn)
t. We denote by y the mass fraction vector y = (y1, . . . , yn)

t, u the vector with unity
components u = (1, . . . , 1)t, 〈, 〉 the Euclidean scalar product, and define Σ = {y ∈ (0,∞)n; 〈y, u〉 = 1}.
Physically, the mass fraction vector is such that y ∈ Σ. However, as usual in the modeling of reactive
flows, we assume that the mass fractions are independent and the mass constraint 〈y, u〉 = 1 then
results from the governing equations and boundary conditions [7, 16]. We denote by κ ∈ N, κ > 2,
the regularity of thermodynamics functions and by fe, fv, f1, . . . , fn the natural basis vector of R2+n.

Definition 2.1. Let e, p, and s, be Cκ functions of the natural variable ζ = (T, v, y1, . . . , yn)
t, defined

on an open set Oζ ⊂ (0,∞)2+n. These functions are said to define a thermodynamics if they satisfy
Properties (T1-T4).

(T1) The maps ζ → ξ and ζ → π are Cκ diffeomorphisms from the open set Oζ ⊂ (0,+∞)2+n

onto open sets Oξ and Oπ respectively. For any (λ, ζ) ∈ (0,∞)×Oζ , we have ζλ ∈ Oζ , and
e(ζλ) = λe(ζ), p(ζλ) = p(ζ), s(ζλ) = λs(ζ).

(T2) For any ζ ∈ Oζ , defining gk = ∂̃yk
e − T ∂̃yk

s, k ∈ S, we have Gibbs’ relation

Tds = de+ pdv −
∑

k∈S

gkdyk. (2.1)

(T3) For any ζ ∈ Oζ , the Hessian matrix ∂2ξξs is negative semi-definite with nullspace Rξ.

(T4) For any (T, y1 . . . , yn)
t ∈ (0,∞)1+n there exists vm such that (T, v, y1 . . . , yn)

t ∈ Oζ for v > vm
and

lim
v→∞

(e− epg) = 0, lim
v→∞

v(p− ppg) = 0, lim
v→∞

(s− spg) = 0. (2.2)

Property (T1) is associated with the natural changes of variables traditionally encountered in ther-
modynamics as well as with homogeneity properties. Temperature is naturally assumed to be positive
in the model since Oζ ⊂ (0,+∞)2+n but not the pressure which may be negative for fluids [29]. Prop-
erty (T2) is Gibbs’ relation for mixtures with a simplified definition of the species Gibbs functions
gk, k ∈ S, and Property (T3) is the natural thermodynamic stability condition. From the second
principle of thermodynamics, the evolution of an isolated system indeed tends to maximize its entropy.
The entropy of a stable isolated system should thus be a concave function of its volume, composition
variables, and internal energy. Whenever it is not the case, the system loses its homogeneity and splits
between two or more phases in order to reach equilibrium. In particular, the open set Oζ may have
a complex shape because of real gas effects and thermodynamic instabilities at high pressure and low
temparture. Property (T4) is finally the compatibility condition with perfect gases since for large v we
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must recover the perfect gas regime. Note that the multiplication by v is required for the pressure since
as v → ∞ both p and ppg goes to zero. Moreover, the compatibility with perfect gases must naturally
be written in term of densities. It is mathematically absurd to formulate such compatibility it in terms
of extensive absolute quantities with a volume going to infinity, since then all thermodynamic extensive
functions are exploding.

Since ζ → ξ and ζ → π are diffeomorphisms, we may equally define the thermodynamics with
T (ξ), p(ξ) and s(ξ) such that (T1-T4) are satisfied, or with e(π), v(π), and s(π), such that (T1-T4)
hold. These three variables are practical and useful since ξ is associated with Gibbs’ relation, ζ to the
natural form for equations of state or for compatibility conditions with perfect gases and π is useful in
constant pressure frameworks. In the following proposition, we establish that homogeneity properties
may equivalently be written in terms of the thermodynamic variable ξ and we next obtain an expression
of the mixture Gibbs function per unit mass g.

Lemma 2.2. Assume that the map ζ → ξ is a Cκ diffeomorphism from the open set Oζ onto an open
set Oξ. Then the following properties are equivalent

(i) ∀(λ, ζ) ∈ (0,∞)×Oζ , ζλ ∈ Oζ , e(ζλ) = λe(ζ), p(ζλ) = p(ζ), s(ζλ) = λs(ζ).

(ii) ∀(λ, ξ) ∈ (0,∞)×Oξ, ξλ ∈ Oξ, T (ξλ) = T (ξ), p(ξλ) = p(ξ), s(ξλ) = λs(ξ).

Corollary 2.3. Assuming (T1-T2) and defining the mixture Gibbs function by g = e + pv − Ts we
have g =

∑
k∈S

ykgk.

Proof. Assume that (i) holds and denote by σ : Oζ → Oξ the diffeomorphism such that ξ = σ(ζ). In
more precise terms we have to establish that when (λ, ξ) ∈ (0,∞)×Oξ, then ξλ ∈ Oξ and T ◦σ−1(ξλ) =
T ◦ σ−1(ξ), p ◦ σ−1(ξλ) = p ◦ σ−1(ξ), and s ◦ σ−1(ξλ) = λs ◦ σ−1(ξ). Consider thus (λ, ξ) ∈ (0,∞)×Oξ

and let ζ = σ−1(ξ) ∈ Oζ . We know from (i) that ζλ ∈ Oζ and that e is 1-homogeneous, so that
e(ζλ) = λe(ζ). Therefore, we deduce that σ(ζλ) = (e(ζλ), λv, λy1, . . . , λyn)

t is simply σ(ζλ) = ξλ so that
ζλ = σ−1(ξλ). This establishes that ξλ ∈ Oξ since σ is a diffeomorphism from Oζ onto Oξ. In addition,
since T (ζλ) = T (ζ), p(ζλ) = p(ζ), and s(ζλ) = λs(ζ), we directly obtain that T ◦σ−1(ξλ) = T ◦σ−1(ξ),
p◦σ−1(ξλ) = p◦σ−1(ξ), and s◦σ−1(ξλ) = λs◦σ−1(ξ) and (ii) is established. The proof that (ii) implies
(i) is similar and omitted and Lemma 2.2 is established. Corollary 2.3 is then a consequence of Gibbs’
relation (2.1) and Euler equation for homogeneous functionals since s is 1-homogeneous in ξ.

We now establish a few technical statements in order to recast (T1-T4) into a more practical form
involving the single variable ζ = (T, v, y1, . . . , yn)

t. In the following proposition, we establish an
equivalent formulation of (T3) which is very useful in practice.

Proposition 2.4. Assume that (T1-T2) are satisfied and denote by Λ the matrix of size n with coeffi-

cients Λkl = ∂̃yk
gl/T = ∂̃yl

gk/T . Then, for any ζ ∈ Oζ , the following statements are equivalent :

(i) ∂2ξξs is negative semi-definite with nullspace N(∂2ξξs) = Rξ.

(ii) ∂̃T e > 0 and Λ is positive definite.

Moreover, denoting by y the mass fraction vector y = (y1, . . . , yn)
t, we have the relations

Λy = − v

T
(∂̃vg1, . . . , ∂̃vgn)

t, (2.3)

〈Λy, y〉 = −v
2

T
∂̃vp. (2.4)

Proof. We first derive some useful differential relations. From Gibbs’ relation (2.1) we have

∂es =
1

T
, ∂vs =

p

T
, ∂yk

s = −gk
T
,

and this implies the compatibility relations

∂e
( p
T

)
= ∂v

( 1
T

)
, ∂e

(−gk
T

)
= ∂yk

( 1
T

)
, ∂v

(−gk
T

)
= ∂yk

( p
T

)
. (2.5)

Similarly, from Gibbs’ relation written in term of the variables (T, v, y1, . . . , yn) we obtain that

∂̃T s =
∂̃T e

T
, ∂̃vs =

∂̃ve+ p

T
, ∂̃yk

s =
∂̃yk

e− gk

T
,
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and this implies after some algebra the compatibility relations

∂̃T
( p
T

)
=
∂̃ve

T 2
, ∂̃T

(−gk
T

)
=
∂̃yk

e

T 2
, −∂̃vgk = ∂̃yk

p. (2.6)

The matrix Λ is symmetric since ∂̃yl
gk = −T ∂̃2ykyl

s and in order to establish (2.3) and (2.4),

we note that gk(ζ) is 0-homogeneous in (v, y1, . . . , yn) since gk = T ∂̃yk
s, T is 0-homogeneous, and

s is 1-homogeneous. This implies the relation
∑

l∈S
yl∂̃yl

gk = −v∂̃vgk and thus
∑

k∈S
Λklyl =

−v∂̃vgk/T and (2.3) is established. Upon multiplying by yk and summing over k we next obtain that

T 〈Λy, y〉 = −v∑k∈S
yk∂̃vgk. However, from the compatibility relation (2.6) we get ∂̃vgk = −∂̃yk

p and

thanks to the 0-homogeneity of p(ζ) with respect to (v, y1, . . . , yn) we conclude that
∑

k∈S
yk∂̃vgk =

−∑k∈S
yk∂̃yk

p = v∂̃vp and (2.4) is established.
We next evaluate the coefficients of the entropy Hessian matrix ∂2ξξs. From ∂es = 1/T we obtain

that T 2∂2ees = −∂eT and T 2∂2evs = −∂vT . Moreover, for any function χ we have the differential
relations

∂eχ = ∂̃Tχ ∂eT, ∂̃Tχ = ∂eχ ∂̃T e, (2.7)

∂vχ = ∂̃vχ+ ∂̃Tχ ∂vT, ∂̃vχ = ∂vχ+ ∂eχ ∂̃ve, (2.8)

∂yk
χ = ∂̃yk

χ+ ∂̃Tχ ∂yk
T, ∂̃yk

χ = ∂yk
χ+ ∂eχ ∂̃yk

e, (2.9)

and upon letting χ = T in (2.8) we obtain that ∂vT = −(∂eT )∂̃ve and finally T 2∂2evs = (∂eT )∂̃ve.

Similarly, we have T 2∂2eyk
s = −∂yk

T , and letting χ = T in (2.9) we obtain ∂yk
T = −(∂eT )∂̃yk

e

so that T 2∂2eyk
s = (∂eT )∂̃yk

e. Furthermore, we have ∂2vvs = ∂v
(
p
T

)
, and thanks to (2.8), we have

∂v
(
p
T

)
= ∂̃v

(
p
T

)
+ ∂̃T

(
p
T

)
∂vT . From the compatibility conditions (2.6) and ∂vT = −(∂eT )∂̃ve, we thus

obtain

∂2vvs = ∂̃v
( p
T

)
− (∂eT )

(∂̃ve)
2

T 2
.

Similarly, ∂2vyk
s = ∂yk

(
p
T

)
, and thanks to (2.9) we have ∂yk

(
p
T

)
= ∂̃yk

(
p
T

)
+ ∂̃T

(
p
T

)
∂yk

T . From the

compatibility conditions (2.6) and ∂yk
T = −(∂eT )∂̃yk

e and we get

∂2vyk
s = ∂̃v

(−gk
T

)
− (∂eT )

(∂̃ve)(∂̃yk
e)

T 2
.

Since ∂2ykyl
s = ∂yl

(
−gk
T

)
and letting χ = −gk

T in (2.9) we also obtain that

∂2ykyl
s = ∂̃yl

(−gk
T

)
− (∂eT )

(∂̃yk
e)(∂̃yl

e)

T 2
.

Defining

f̂
e =

(
1,−∂̃ve,−∂̃y1

e, . . . ,−∂̃yn
e
)t
, (2.10)

we have established that for any x = (xe, xv, x1, . . . , xn)
t ∈ R

2+n

〈
(∂2ξξs)x, x

〉
= −∂eT

T 2
〈 f̂e, x〉2 + ∂̃vp

T
x
2
v − 2

∑

k∈S

∂̃v
(gk
T

)
xvxk −

∑

k,l∈S

∂̃yl

(gk
T

)
xkxl. (2.11)

We now establish that (i) implies (ii). Since ξ = efe+ vfv +
∑

i∈S
yif

yi and fe are not proportional

we deduce that
〈
(∂2ξξs)f

e, fe
〉
< 0 so that ∂eT = −T 2

〈
(∂2ξξs)f

e, fe
〉
> 0, and this implies ∂̃T e > 0 since

∂eT ∂̃T e = 1. Letting then f = f
v + (∂̃ve)f

e, we have 〈 f̂e, f〉 = 0, and f = f
v + (∂̃ve)f

e and ξ cannot

be proportional since the mass fractions are positive. Therefore ∂̃vp/T =
〈
(∂2ξξs)f, f

〉
< 0 and we have

established that ∂̃vp < 0. Similarly, assume that x1, . . . , xn are arbitrary with (x1, . . . , xn) 6= (0, . . . , 0),

consider f =
∑

i∈S
xif

i + xef
e and select xe such that 〈 f̂e, f〉 = 0, that is, xe =

∑
i∈S

xi∂̃yi
e. Then f

and ξ cannot be proportional since the volume per unit mass is positive, so that
〈
(∂2ξξs)f, f

〉
< 0. This

shows that
∑

k,l∈S
∂̃yl

(
gk
T

)
xkxl = −

〈
(∂2ξξs)f, f

〉
> 0 so that the matrix Λ is positive definite.
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We now establish that (ii) implies (i). From the identity (2.4), we first obtain that ∂̃vp < 0. We
may thus introduce

f̂
v =

(
0, 1,− ∂̃vg1

∂̃vp
, . . . ,− ∂̃vgn

∂̃vp

)t
, (2.12)

and using (2.11) we easily obtain that for x = (xe, xv, x1, . . . , xn)
t

〈
(∂2ξξs)x, x

〉
= −∂eT

〈 f̂e, x〉2
T 2

+ ∂̃vp
〈 f̂v, x〉2
T

−
∑

k,l∈S

(
∂̃yl

(gk
T

)
+
∂̃vgk ∂̃vgl

T ∂̃vp

)
xkxl. (2.13)

Thanks to (2.3) and (2.4), this identity is rewritten in the form

〈
(∂2ξξs)x, x

〉
= −∂eT

〈 f̂e, x〉2
T 2

+ ∂̃vp
〈 f̂v, x〉2
T

−
〈(

Λ− Λy⊗Λy

〈Λy, y〉
)
xy, xy

〉
, (2.14)

where xy = (x1, . . . , xn)
t. Since Λ is positive definite, we first note that Λ − Λy⊗Λy

〈Λy,y〉 is positive semi-

definite with nullspace Ry since for any xy = (x1, . . . , xn)
t we have

〈(
Λ− Λy⊗Λy

〈Λy, y〉
)
xy, xy

〉
=
〈
Λ
(
xy − 〈Λxy,y〉

〈Λy,y〉 y
)
,
(
xy − 〈Λxy ,y〉

〈Λy,y〉 y
)〉
.

Since ∂̃T e > 0, ∂̃vp < 0, and Λ − Λy⊗Λy
〈Λy,y〉 is positive semi-definite with nullspace Ry, we deduce from

(2.14) that ∂2ξξs is negative semi-definite. Moreover, any vector x in the nullspace of ∂2ξξs is such that

〈 f̂e, x〉 = 0, 〈 f̂v, x〉 = 0, (Λ − Λy⊗Λy
〈Λy,y〉

)
xy = 0. Since xy = (x1, . . . , xn)

t is in the nullspace of Λ − Λy⊗Λy
〈Λy,y〉

we first deduce that xy = λy for some λ ∈ R. From the expression (2.12) of f̂v, we first obtain that

xv =
∑

i∈S
xi∂̃vgi/∂̃vp so that xv = λ

∑
i∈S

yi∂̃vgi/∂̃vp. Using then the compatibility relations (2.6) we

have −∂̃vgi = ∂̃yi
p so that xv = −λ∑i∈S

yi∂̃yi
p/∂̃vp and finally xv = λv thanks to the 0-homogeneity

of p. Moreover, from the expression (2.10) of f̂e, we now obtain that xe = xv∂̃ve+
∑

i∈S
xi∂̃yi

ei so that

xe = λv∂̃ve + λ
∑

i∈S
yi∂̃yi

ei and xe = λe thanks to the 1-homogeneity of e. We thus conclude that x
is proportional to ξ so that N(∂2ξξs) = Rξ and the proof is complete.

From a practical point of view we now deduce from Proposition 2.4 that (T1-T3) are globally
equivalent to a simplified set of assumptions involving only the variable ζ = (T, v, y1, . . . , yn)

t.

Proposition 2.5. Properties (T1-T3) are globally equivalent to the simplified Properties (T′
1-T

′
3).

(T′
1) ∀(λ, ζ) ∈ (0,∞)×Oζ , ζλ ∈ Oζ , e(ζλ) = λe(ζ), p(ζλ) = p(ζ), and s(ζλ) = λs(ζ).

(T′
2) For any ζ ∈ Oζ , we have T ∂̃T s = ∂̃T e and T ∂̃vs = ∂̃ve + p.

(T′
3) For any ζ ∈ Oζ , ∂̃T e > 0 and the matrix Λ is positive definite.

Proof. From Proposition 2.4, we deduce that (T1-T3) implies (T′
1-T

′
3). Conversely, from (T′

3) and

Equation (2.4) we obtain that ∂̃T e > 0 and ∂̃vp < 0 so that ζ → ξ and ζ → π are one to one. From
the inverse function theorem, these functions are Cκ diffeomorphisms onto open sets Oξ and Oπ and
(T1) is established. On the other hand, (T2) is a direct consequence of (T′

2
) thanks to the definition

gk = ∂̃yk
e−T ∂̃yk

s, k ∈ S. Finally, (T3) is also a consequence of (T′
3) thanks from Proposition 2.4 and

the proof is complete.

Remark 2.6. As will be seen in Section 5, it is sometimes the case that the thermodynamic functions
e, p, and s, are defined over an open set O′

ζ such that (T′
1
-T′

2
) and (T4) hold. It is then necessary

to consider an open subset Oζ ⊂ O′
ζ such that (T′

3
) holds in order to obtain a thermodynamic in the

sense of Definition 2.1 such that (T1-T4) hold.
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2.1.2 The pressure variable

We discuss in this section how thermodynamic functions may be expressed in terms of the pressure
variable π = (T, p, y1, . . . , yn)

t where the mass fractions are independent. We denote by ∂̂ the derivation
operator with respect to the variable π = (T, p, y1, . . . , yn)

t and for any λ > 0 we define for convenience
πλ = (T, p, λy1, . . . , λyn)

t.

Lemma 2.7. Assume that the map ζ → π is a Cκ diffeomorphism from the open set Oζ onto an open
set Oπ. Then the following properties are equivalent

(i) ∀(λ, ζ) ∈ (0,∞)×Oζ , ζλ ∈ Oζ , e(ζλ) = λe(ζ), p(ζλ) = p(ζ), s(ζλ) = λs(ζ).

(ii) ∀(λ, π) ∈ (0,∞)×Oπ, πλ ∈ Oπ, e(πλ) = λe(π), v(πλ) = λv(π), s(πλ) = λs(π).

Proof. The proof is similar to that of Lemma 2.2 and is omitted.

Proposition 2.8. Assume that (T1-T2) are satisfied and define g = e + pv − Ts. Then we have the

differential relations gk = ∂̂yk
g, k ∈ S, and

dg = −sdT + vdp+
∑

k∈S

gkdyk. (2.15)

Proof. For any smooth function χ we have the following differential relations associated with the
variables π and ζ

∂̂Tχ = ∂̃Tχ+ ∂̃vχ ∂̂T v, ∂̃Tχ = ∂̂Tχ+ ∂̂pχ ∂̃T p, (2.16)

∂̂pχ = ∂̃vχ ∂̂pv, ∂̃vχ = ∂̂pχ ∂̃vp, (2.17)

∂̂yk
χ = ∂̃yk

χ+ ∂̃vχ ∂̂yk
v, ∂̃yk

χ = ∂̂yk
χ+ ∂̂pχ∂̃yk

p. (2.18)

Letting g = e + pv − Ts, we first obtain that ∂̂T g = ∂̂T e + p∂̂T v − s − T ∂̂T s and from (2.16) we

obtain the relations ∂̂T s = ∂̃T s+ ∂̃vs ∂̂T v and ∂̂T e = ∂̃T e + ∂̃ve ∂̂T v. However, Property (T2) implies

Property (T′
2
). We thus get that ∂̂T e + p∂̂T v − T ∂̂T s = 0 since the ∂̃T derivative contribution is

∂̃T e − T ∂̃T s = 0 from (T′
2
) and since the terms (∂̃ve + p − T ∂̃vs)∂̂T v associated with ∂̂T v also vanish

from (T′
2
). We have thus established that ∂̂T g = −s. Similarly, we have ∂̂pg = ∂̂pe+ v + p∂̂pv − T ∂̂ps

and from (2.17) the relations ∂̂pe = ∂̃ve ∂̂pv and ∂̂ps = ∂̃vs ∂̂pv. Regrouping the ∂̂pv factors we

get (∂̃ve + p − T ∂̃vs)∂̂pv which vanishes from (T′
2
) and we have established that ∂̂pg = v. Finally,

we have ∂̂yk
g = ∂̂yk

e + p∂̂yk
v − T ∂̂yk

s and from (2.18) the relations ∂̂yk
e = ∂̃yk

e + ∂̃ve ∂̂yk
v and

∂̂yk
s = ∂̃yk

s + ∂̃vs ∂̂yk
v. Regrouping the ∂̂yk

v factors we get (∂̃ve + p − T ∂̃vs)∂̂yk
v which vanishes

thanks to (T′
2
) and we have established that ∂̂yk

g = ∂̃yk
e − T ∂̃yk

s so that ∂̂yk
g = gk from (T2) and

(2.15) is established.

Proposition 2.9. Assume that (T1-T2) hold. Then for any ζ ∈ Oζ , the following statements are
equivalent :

(i) ∂2ξξs is negative semi-definite with nullspace N(∂2ξξs) = Rξ.

(ii) ∂̃T e > 0, ∂̃vp < 0, and ∂̂2yyg is positive semidefinite with nullspace N(∂̂2yyg) = Ry.

In this situation, we have the matrix identity

∂̂2yyg = T
(
Λ− Λy⊗Λy

〈Λy, y〉
)
. (2.19)

Proof. We first derive useful differential relations. From (2.15) we deduce that

∂̂T g = −s, ∂̂pg = v, ∂̂yk
g = gk,

and this implies the compatibility relations

∂̂T v = −∂̂ps, ∂̂T gk = −∂̂yk
s, ∂̂pgk = ∂̂yk

v. (2.20)

Assume now that (i) holds. Upon letting χ = gl in (2.18) we obtain that ∂̂2ykyl
g = ∂̂yk

gl = ∂̂yl
gk

can be written ∂̂yk
gl = ∂̃yk

gl − ∂̂pgl∂̃yk
p so that from (2.6) and (2.17) ∂̂yk

gl = ∂̃yk
gl + ∂̃vgk∂̃vgl∂̂pv.
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This implies the identity (2.19) thanks to ∂̃vp ∂̂pv = 1, (2.3) and (2.4). From (2.19) we then obtain

that ∂̂yyg is positive semi-definite with nullspace Ry.
Conversely, assuming that (ii) holds, we only have to establish that Λ is positive definite from

Proposition 2.4. However, upon letting χ = gl in (2.18) and thanks to (2.20) and (2.17) we obtain

that ∂̂yk
gl = ∂̃yk

gl + ∂̂pgk∂̂pgl∂̃vp. This implies that Λkl = (∂̂ykyl
g − ∂̂pgl∂̂pgk∂̃vp)/T . From (ii)

we thus deduce that Λ is positive semi-definite and if xy is in the nullspace of Λ, we must have

(∂̂yyg)xy = 0 and
∑

k∈S
(∂̂pgk)xk = 0. Since the nullspace of ∂̂yyg is Ry, we have xy = λy for λ ∈ R

and thus λ
∑

k∈S
yk∂̂pgk = 0. Using then the compatibility relation ∂̂pgk = ∂̂yk

v and the Euler

relation
∑

k∈S
yk∂̂yk

v = v, we obtain λv = 0 and λ = 0 so that Λ is positive definite and the proof is
complete.

Remark 2.10. The property ∂̃T e > 0 is usually the thermodynamic thermal stability condition, the

property ∂̃vp < 0 the thermodynamic mechanical stability condition, and the condition that ∂̂2yyg is pos-

itive semidefinite with nullspace N(∂̂2yyg) = Ry is usually termed the thermodynamic chemical stability
condition. In particular, the property that Λ is positive definite encompasses both the mechanical and
chemical stability conditions.

2.1.3 Ideal gas mixtures

As a typical example, and for completeness, we present in this section the situation of ideal gas mixtures.
The corresponding thermodynamic properties are denoted with the superscript pg. In terms of the state
variables ζ = (T, v, y1, . . . , yn)

t, the pressure of an ideal gas mixture can be written

ppg =
RT

v

∑

k∈S

yk
mk

. (2.21)

The energy per unit mass of an ideal gas mixture can be written

epg =
∑

k∈S

yke
pg

k , epgk = estk +

∫ T

T st

cpgvk(θ) dθ, (2.22)

where epgk denotes the internal energy per unit mass of the kth species and cpgvk the specific heat per
unit mass of the k species. The quantity estk is the formation energy of the kth species per unit mass
at the standard temperature T st. The entropy per unit mass is given by

spg =
∑

k∈S

yks
pg

k , spgk = sstk +

∫ T

T st

cpgvk(θ)

θ
dθ − R

mk
log

yk
vmkγst

, (2.23)

where sstk is the formation entropy of the kth species per unit mass at the standard temperature T st and
standard pressure pst, and γst = pst/RT is the standard concentration. The enthalpy hpg = epg+ppg/v,
Gibbs function gpg = epg + ppg/v − Tspg, and free energy fpg = epg − Tspg are then easily evaluated.
The perfect gas specific heat and the formation energies and entropies satisfy the following assumptions.

(PG) The formation energies esti , i ∈ S, and entropies ssti , i ∈ S, are real constants. The species
mass per unit mole mi, i ∈ S, and the gas constant R are positive constants. The species heat
per unit mass cpgvi , i ∈ S, are C∞ functions over [0,∞), and there exist constants cv and cv
such that 0 < cv 6 cpgvi 6 cv for all T > 0 and i ∈ S.

We assume throughout the paper that Property (PG) holds. The extension up to zero temperature
of specific heats, energies and enthalpies is commonly used in thermodynamics. The specific heats that
are considered remain bounded away from zero since we consider perfect gases governed by Boltzmann
statistics [7]. In the following Proposition, we investigate the mathematical properties of ideal gas
mixture thermodynamics. Of course (T4) is trivial in the situation of perfect gas mixtures.

Proposition 2.11. The energy par unit mass epg, the ideal gas mixture pressure ppg, and the entropy
per unit mass spg, are C∞ functions defined on the open set Opg

ζ = (0,∞)2+n which satisfy (T1-T4).

Moreover we have Oπ = (0,∞)2+n and

Oξ = {ξ = (ξe, ξv, ξ1, . . . , ξn)
t with ξv > 0, ξ1 > 0, . . . , ξn > 0, ξe >

∑

i∈S

ξie
0
i },

where e0i denotes the energy of the ith species at zero temperature e0k = estk −
∫ T st

0
cpgvk(θ) dθ, k ∈ S.

Proof. The proof is straightforward and we refer to Giovangigli [7].
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2.1.4 Molar framework

We essentially consider in this paper thermodynamics properties per unit mass or per unit volume gen-
erally used to model multicomponent fluids. Indeed, the equations governing fluid mixtures notably
express the conservation of mass and momentum so that mass based variables are often practical.
Nevertheless, thermodynamic properties may equivalently be expressed per unit mole and the trans-
formation from molar properties to properties per unit mass is easily performed mutatis mutandis.

The species mole fractions x1, . . . , xn are first defined by

xi =
yim

mi
, i ∈ S,

∑
i∈S

yi

m
=
∑

i∈S

yi
mi

, (2.24)

where m is the molar mass of the mixture. The factor
∑

i∈S
yi in the definition of the mixture molar

mass m insures that the mole/mass relations are invertible and that m is 0-homogeneous [7]. It is
easily established in particular that

∑
i∈S

yi =
∑

i∈S
xi and that

(∑
i∈S

xi
)
m =

∑
i∈S

ximi.
Considering the case of Gibbs functions as a typical example, we then define the mixture Gibbs

function per unit mole g and the species Gibbs function per unit mole gi, i ∈ S, from

g = mg, gi = migi, i ∈ S. (2.25)

Using the relation g =
∑

i∈S
giyi, it is then easily deduced that g =

∑
i∈S

xigi. All thermodynamic
properties per unit mass may similarly be rewritten as molar properties. In an analogous way, the
molar variables (e,v, x1, . . . , xn)

t, (T,v, x1, . . . , xn)
t, or (T, p, x1, . . . , xn)

t may also be used, instead of
ξ, ζ or π, where e denotes the energy per unit mole and v the volume per unit mole, and the details
are omitted.

2.2 Non Gibbsian thermodynamics

Beside the natural intensive variable ζ = (T, v, y1, . . . , yn)
t, where the mass fractions are independent,

it is also customary in multicomponent fluid models to use the variables Z = (T, ρ1, . . . , ρn)
t, where

ρ1, . . . , ρn denotes the species mass per unit volume, also termed species partial densities. We discuss
in this section the mathematical properties of the thermodynamics in the Z variable.

We generally denote with calligraphic letters the properties per unit volume. In particular, we
denote by S the entropy per unit volume, E the energy per unit volume, P the pressure as function
of Z and will use the volumetric variable X = (E , ρ1, . . . , ρn)t. We also denote by d the derivation
operator with respect to the variable X and by d̃ the derivation operator with respect to the variable
Z . We remind that κ ∈ N, κ > 2, is the regularity class of thermodynamic functionals.

2.2.1 From (T, v, y1, . . . , yn) to (T, ρ1, . . . , ρn)

We assume that a thermodynamics is available in terms of the natural variable ζ = (T, v, y1, . . . , yn)
t

and we investigate the definition and properties of thermodynamic functions in terms of the variable
Z = (T, ρ1, . . . , ρn)

t.

Theorem 2.12. Assume that e, p, and s satisfy Properties (T1-T4). Let E, P, and S, be given by

E(T, ρ1, . . . , ρn) = (
∑

i∈S

ρi) e
(
T,

1∑
i∈S

ρi
,

ρ1∑
i∈S

ρi
, . . . ,

ρn∑
i∈S

ρi

)
, (2.26)

P(T, ρ1, . . . , ρn) = p
(
T,

1∑
i∈S

ρi
,

ρ1∑
i∈S

ρi
, . . . ,

ρn∑
i∈S

ρi

)
, (2.27)

S(T, ρ1, . . . , ρn) = (
∑

i∈S

ρi) s
(
T,

1∑
i∈S

ρi
,

ρ1∑
i∈S

ρi
, . . . ,

ρn∑
i∈S

ρi

)
, (2.28)

and defined on the open set

OZ = { (T, ρ1, . . . , ρn) ∈ (0,∞)1+n;
(
T,

1∑
i∈S

ρi
,

ρ1∑
i∈S

ρi
, . . . ,

ρn∑
i∈S

ρi

)
∈ Oζ }. (2.29)

Then E, P, and S are Cκ functions of the variable Z = (T, ρ1, . . . , ρn)
t on the open set OZ ⊂ (0,∞)1+n

and satisfy Properties (T1-T4).
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(T 1) The applications Z → X is a Cκ diffeomorphism from the set OZ onto an open set OX .

(T 2) For any Z ∈ OZ , defining Gk = d̃ρk
E − T d̃ρk

S k ∈ S, we have Gibbs’ relation for volumetric
functionals

TdS = dE −
∑

k∈S

Gkdρk. (2.30)

and the constraint
∑

k∈S
ρkGk = E + P − TS.

(T 3) For any Z ∈ OZ , the Hessian matrix d2
XX
S is negative definite.

(T 4) For any (T, y1, . . . , yn) ∈ (0,∞)1+n, these exists vm > 0 such that (T, y1/v, . . . , yn/v)
t ∈ OZ

for v > vm. Moreover, letting v = 1/
∑

i∈S
ρi, and for fixed temperature and species mass

fractions yi = ρi v, i ∈ S, we have the compatibility conditions

lim
v→∞

v(E − Epg) = 0, lim
v→∞

v(P − Ppg) = 0, lim
v→∞

v(S − Spg) = 0. (2.31)

Note that there are not anymore homogeneity properties for thermodynamic functionals in terms
of the variable Z in (T1). There is also a constraint associated with Gibbs’ relation (2.30) in terms of
S, E , and ρ1, . . . , ρn, which is essentially the second relation of (T′

2
). The entropy Hessian matrix d2

XX
S

is invertible with (T3) unlike in the homogeneous case where N(∂2ξξs) = Rξ. Finally, the compatibility
with perfect gases (T4) must be written at fixed temperature and mass fractions yk = ρk/ρ, k ∈ S.

Proof. We define ρ =
∑

k∈S
ρk, v = 1/ρ and yk = ρk/ρ, k ∈ S, and all functions per unit mass are

evaluated at ζ = (T, v, y1, . . . , yn). The fact that OZ is an open set is a direct consequence of the
continuity of Z → ζ and the smoothness of S, E , and P is straightforward. After some algebra, thanks
to the 1-homogeneity of e(ζ) in (v, y1, . . . , yn), it is established that

dE = ρ ∂̃T e dT +
∑

k∈S

∂̃yk
e dρk. (2.32)

This implies that d̃TE = ρ ∂̃T e > 0 from (T3) and Proposition 2.4 so that Z → X is one to one, and
thanks to the inverse function theorem, it is easily obtained that Z → X is a Cκ diffeormorphism and
that OX is open and (T1) is established.

As for the energy per unit volume, we also have

dS = ρ ∂̃T s dT +
∑

k∈S

∂̃yk
s dρk. (2.33)

However, thanks to (T2), we know that T ∂̃T s = ∂̃T e, and T ∂̃yk
s = ∂̃yk

e−gk and this now implies Gibbs’
relation for volumetric densities (2.30) with gk = Gk, k ∈ S. In addition, the relation

∑
k∈S

ρkGk =
E + P − TS is a consequence of Corollary 2.3 and (T2) is established.

From Gibbs’ relation (2.30) we obtain that

dES =
1

T
, dρk

S = −gk
T

= −Gk

T
,

and this implies the compatibility relations

dE
(−Gk

T

)
= dρk

( 1
T

)
. (2.34)

Moreover, for any function χ we have the differential relations

dEχ = d̃Tχ dET, d̃Tχ = dEχ d̃T E , (2.35)

dρk
χ = d̃ρk

χ+ d̃Tχ dρk
T, d̃ρk

χ = dρk
χ+ dEχ d̃ρk

E . (2.36)

We can now evaluate the volumetric entropy Hessian matrix. We first note that d2EES = dE(
1

T ) so
that d2EES = −dET/T

2. Similarly, we have d2Eρk
S = dρk

( 1

T ) so that d2Eρk
S = −dρk

T/T 2. Upon letting

χ = T in (2.36) we obtain that dρk
T = −dET d̃ρk

E and since d̃ρk
E = ∂̃yk

e we have established that

d2Eρk
S = dET ∂̃yk

e/T 2. In addition, from d2ρkρl
S = −dρk

(Gl

T ) = −dρk
( glT ) and from (2.36) we deduce
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that d2ρkρl
S = −d̃ρk

( glT ) − d̃T (
gl
T ) dρk

T so that d2ρkρl
S = − ∂̃yk

gl

ρ T − dET ∂̃yk
e ∂̃yl

e

T 2 , k, l ∈ S. We have thus
established that

d2EES = −dET

T 2
, d2Eρk

S =
dET ∂̃yk

e

T 2
, k ∈ S, (2.37)

d2ρkρl
S = −

∂̃yk
gl

T
−

dET ∂̃yk
e ∂̃yl

e

T 2
, k, l ∈ S. (2.38)

Denoting fE = (1,−∂̃y1
e, . . . ,−∂̃y1

e)t we obtain that for any x = (xE , x1, . . . , xn)
t ∈ R

1+n

〈
(d2
XX
S) x, x

〉
= −dET

〈fE , x〉2
T 2

− 1

ρ

〈
Λxy, xy

〉
, (2.39)

where Λkl = ∂̃yk
gl/T , k, l ∈ S and xy = (x1, . . . , xn)

t. As a consequence, since Λ is positive definite
from Proposition 2.4, we deduce that d2S is negative definite and (T3) is established. Finally, (T4) is a
simple rewritting of (T4) with e, p, and s evaluated at T, v, y1, . . . , yn and the proof is complete.

Proposition 2.13. Assume that (T1-T2) are satisfied and denote by Λ the matrix of size n with coef-
ficients Λkl = ρd̃ρk

Gl/T = ρd̃ρl
Gk/T . Then, for any Z ∈ OZ , the following statements are equivalent :

(i) ∂2
ZZ
S is negative definite.

(ii) d̃TE > 0 and Λ is positive definite.

Proof. This proposition is a straighforward consequence of Equation (2.39).

Remark 2.14. The functions E, P, and S, may also be defined by

E(T, ρ1, . . . , ρn) = e
(
T, 1, ρ1, . . . , ρn

)
, (2.40)

P(T, ρ1, . . . , ρn) = p
(
T, 1, ρ1, . . . , ρn

)
, (2.41)

S(T, ρ1, . . . , ρn) = s
(
T, 1, ρ1, . . . , ρn

)
, (2.42)

on the open set
OZ = { (T, ρ1, . . . , ρn) ∈ (0,∞)1+n;

(
T, 1, ρ1, . . . , ρn

)
∈ Oζ }. (2.43)

Thanks to the homogeneity properties of e, s, p, and Oζ , it is easily established that these definitions
coincide with the natural definitions of Proposition 2.12.

2.2.2 From (T, ρ1, . . . , ρn) to (T, v, y1, . . . , yn)

We assume that a thermodynamics is available in terms of the variable Z = (T, ρ1, . . . , ρn)
t and we

investigate the definition and properties of thermodynamic functions in terms of ζ = (T, v, y1, . . . , yn)
t.

Theorem 2.15. Assume that E, P, and S, satisfy Properties (T1-T4). Let the functions e, p, and s,
be given by

e(T, v, y1, . . . , yn) = v E
(
T,
y1
v
, . . . ,

yn
v

)
, (2.44)

p(T, v, y1, . . . , yn) = P
(
T,
y1
v
, . . . ,

yn
v

)
, (2.45)

s(T, v, y1, . . . , yn) = v S
(
T,
y1
v
, . . . ,

yn
v

)
, (2.46)

and defined on the open set

Oζ = { (T, v, y1, . . . , yn) ∈ (0,∞)2+n;
(
T,
y1
v
, . . . ,

yn
v

)
∈ OZ }. (2.47)

Then e, p, and s are Cκ functions of the variable ζ = (T, v, y1, . . . , yn)
t on the open set Oζ ⊂ (0,∞)2+n

and satisfy the properties (T1-T4).
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Proof. The fact that Oζ is open and that e, p, and s are smooth if straightforward to establish. The
homogeneity properties of Oζ , e, p, and s are also a direct consequence of their definition and (T1) is
established.

In order to establish Gibbs relation (2.1) we note that

ds = vd̃TS dT +
(
S −

∑

k∈S

ρkd̃ρk
S
)
dv +

∑

k∈S

d̃ρk
S dyk,

de = vd̃TE dT +
(
E −

∑

k∈S

ρkd̃ρk
E
)
dv +

∑

k∈S

d̃ρk
E dyk,

However, from Gibbs’ relation in (T2) we obtain that T d̃TS = d̃TE , from the definition of Gk =
d̃ρk

E − T d̃ρk
S, k ∈ S, and from the natural constraint

∑
k∈S

ρkGk = E + P − TS we obtain that

T (S −
∑

k∈S

ρkd̃ρk
Sk)− (E −

∑

k∈S

ρkd̃ρk
Ek) = P , T d̃ρk

S − d̃ρk
E = −Gk,

so that forming Tds− de we directly obtain (T2).

In Proposition 2.13 we have established that (T3) is equivalent to d̃TE = ρ ∂̃T e > 0 and the matrix
Λ is positive definite so that (T3) is established thanks to Proposition 2.4. Finally, (T4) is a simple
transformation of (T4) and the proof is complete.

2.2.3 Ideal gas mixtures

As a typical example of non Gibbsian thermochemistry, we address in this section the situation of
perfect gas mixtures in terms of the variables Z = (T, ρ1, . . . , ρn)

t [7]. The state law then reads

Ppg = RT
∑

k∈S

ρk
mk

, (2.48)

and the energy per unit volume

Epg =
∑

k∈S

ρkEpg

k , Epg

k = est +

∫ T

T st

cpgvk(θ) dθ, (2.49)

where Ek denotes the internal energy per unit mass of the kth species and cvk the specific heat per unit
mass of the k species. Similarly, the entropy per unit volume is given by

Spg =
∑

k∈S

ρkSpg

k , Spg

k = sst +

∫ T

T st

cpgvk(θ)

θ
dθ − RT

mk
log

ρk
mkγst

. (2.50)

The enthalpy Hpg = Epg + Ppg, Gibbs function Gpg = Epg + Ppg − TSpg, and free energy Fpg =
Epg − TSpg are then easily evaluated. The assumptions required for perfect gas in such a volumetric
framework are still Property (PG).

3 Thermodynamics from equations of state

We investigate in this section when an equation of state may define a Gibbsian thermodynamics
compatible with that of perfect gas mixtures at low density under natural structural assumptions.
The structural assumptions are essentially 0-homogeneity of pressure as well as a quadratic estimate
p− ppg = O(ρ2) valid for small densities ρ or large volume per unit mass v = 1/ρ. We first identify the
energy and entropy per unit mass in Section 3.1 and next investigate necessary and sufficient conditions
in Section 3.2. According to Beattie [30], the matching with perfect gases is due to Van der Waals and
Gillespie [31].

3.1 Construction of the thermodynamics

We investigate in this section the energy, entropy, and species Gibbs functions associated with an
equation of state in the framework of a Gibbsian thermodynamics compatible at low density with that
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of perfect gases. We consider a pressure law p(ζ) as function of ζ = (T, v, y1, . . . , yn)
t defined of an

open set O′
ζ ⊂ (0,∞)n+2 and write for convenience

p = ppg + φ, (3.1)

so that φ denotes the pressure corrector φ(ζ) = p(ζ) − ppg(ζ). We make the following structural
assumptions concerning the pressure law (3.1).

(P0) The open set O′
ζ ⊂ (0,∞)n+2 is such that for any (T, v, y1, . . . , yn) ∈ O′

ζ and any v′ > v we

have (T, v′, y1, . . . , yn) ∈ O′
ζ , and the function φ is Cκ+1 over the open set O′

ζ . There exist

v > 0 such that for any (T, y1, . . . , yn) ∈ (0,∞)1+n with
∑

i∈S
yi = 1, and any v > v, we have

ζ = (T, v, y1, . . . , yn)
t ∈ O′

ζ . In addition, the function φ and all its partial derivatives ∂̃βζ φ of
order |β| 6 1 + κ admits a smooth extension to the set T > 0, v > v, yi > 0, 〈y, u〉 = 1.
There exist positive continuous functions of temperature c(β, T ) depending on the multiindex
β ∈ N

2+n, |β| 6 1 + κ, such that for any T > 0, v > v, and yi > 0, i ∈ S, 〈y, u〉 = 1, we have
the estimates

|∂̃βζ φ| 6
c(β, T )

vβv+2
. (3.2)

(P1) The open set O′
ζ is such that for any ζ = (T, v, y1, . . . , yn) ∈ O′

ζ and any λ ∈ (0,∞) we have
ζλ = (T, λv, λy1, . . . , λyn) ∈ O′

ζ and p is 0-homogeneous in the sense that p(ζλ) = p(ζ).

We have used here the traditional notation ∂̃β = ∂̃βT

T ∂̃βv
v ∂̃β1

y1
· · · ∂̃βn

yn
where β is a multiindex and

β = (βT , βv, β1, . . . , βn) ∈ N
2+n. The condition (P0) guarantees that φ and its partial derivatives

of order lower or equal to 1 + κ decrease at least quadratically with respect to v at ∞ insuring
convergence of various integrals. The estimates (3.2) are easily extended by homogeneity and the
resulting inequalities are omitted for the sake of simplicity. The quadratic estimates (3.2) are naturally
obtained by expanding the pressure law in a series in ρ = 1/v in the neighborhood of the origin,
keeping in mind that the linear term is associated with the perfect gas contribution ppg in p and by
deriving. The structure of the open set O′

ζ is also required in order to integrate with respect to the
volume per unit mass v and to recover the compatibility at low density with perfect gases. Finally, the
homogeneity property (P1) is also natural since we seek to obtain a thermodynamics such that (T1)
holds.

Proposition 3.1. Let p be a pressure law in the form (3.1) with φ satisfying (P0) and assume that
there exists a corresponding Gibbsian thermodynamics as in Definition 2.1. Then the energy e, entropy
s, and species Gibbs functions gk, k ∈ S, are given by

e = epg −
∫ ∞

v

T 2∂̃T
( φ
T

)
dv′, (3.3)

s = spg −
∫ ∞

v

∂̃Tφdv
′, (3.4)

gk = gpgk −
∫ ∞

v

∂̃yk
φdv′, k ∈ S, (3.5)

where the integrands are evaluated at (T, v′, y1, . . . , yn). Moreover, e, s, and gk, k ∈ S, are Cκ

functions over O′
ζ , and if Property (P1) also holds, then e and s are 1-homogeneous and gk, k ∈ S,

are 0-homogeneous over O′
ζ in the sense that e(ζλ) = λe(ζ), s(ζλ) = λs(ζ), and gk(ζλ) = gk(ζ), k ∈ S

for any ζ ∈ O′
ζ and any λ ∈ (0,∞).

Proof. We first obtain from the compatibility relations (2.6) that ∂̃ve = T 2∂̃T
(
p
T

)
so that ∂̃ve =

T 2∂̃T
(
φ
T

)
since ∂̃T

(
ppg/T

)
= 0 from (2.21). Integrating with respect to v′ over [v, v′′], thanks to the

structure of O′
ζ , we obtain that

e(T, v, y1, . . . , yn)− e(T, v′′, y1, . . . , yn) = −
∫ v′′

v

T 2∂̃T
( φ
T

)
(T, v′, y1, . . . , yn) dv

′.

Using then the integrability properties (3.2) from (P0) and noting that

lim
v′′→∞

e(T, v′′, y1, . . . , yn) = epg(T, y1, . . . , yn),
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from (T4) and (2.22) we may let v′′ → ∞ and deduce that (3.3) holds.

Similarly, from Gibbs’ relation, we obtain that ∂̃v(Ts− e) = p and since ∂̃v(Ts
pg − epg) = ppg we

deduce that ∂̃v(Ts− e)− ∂̃v(Ts
pg − epg) = φ. Integrating with respect to v′ over [v, v′′] we obtain that

(
Ts− Tspg−e+ epg

)
(T, v, y1, . . . , yn)

−
(
Ts− Tspg − e+ epg

)
(T, v′′, y1, . . . , yn) = −

∫ v′′

v

φ(T, v′, y1, . . . , yn) dv
′. (3.6)

Letting v′′ → ∞, thanks to the estimates (3.2) of (P0) and the compatibility condition (T4), we obtain
that

(
Ts−Tspg−e+epg

)
(T, v′′, y1, . . . , yn) goes to zero as v′′ → ∞, and we deduce after some algebra

that (3.4) holds.
The regularity assumptions on φ and the estimates (3.2) then allow to differentiate the identities

(3.3) and (3.4) with respect to T , v, and yk, k ∈ S, and it is easily established that e and s are Cκ

functions over O′
ζ . Upon deriving with respect to yk, we can evaluate gk = ∂̃yk

e−T ∂̃yk
s to obtain that

gk = gpgk −
∫ ∞

v

∂̃yk
φdv,

and it is easily established that gk, k ∈ S, are Cκ−1 functions over O′
ζ . Moreover, taking into account

the homogeneity properties of epg, spg, and gpgk , k ∈ S, and assuming (P1), we easily deduce that e and
s are 1-homogeneous over O′

ζ and gk, k ∈ S, are 0-homogeneous over O′
ζ . Indeed the pressure corrector

φ is 0-homogeneous, so that ∂̃Tφ and T ∂̃Tφ − φ are 0-homogeneous, and the corresponding integrals∫∞

v
∂̃Tφdv

′ and
∫∞

v
(T ∂̃φ−φ) dv′ are then 1-homogeneous. Similarly, ∂̃yk

φ is (-1)-homogeneous so that∫∞

v
∂̃yk

φdv′ is 0-homogeneous and the proof is complete.

3.2 Necessary and sufficient conditions

The open set O′
ζ where the pressure p, the energy per unit mass e, and the entropy per unit mass

s are defined and smooth enough, may be too large for the thermodynamic stability condition (T3).
This open set O′

ζ will contain as a subset the domain Oζ where the thermodynamic functions satisfy
(T1-T4) as established in the following theorem.

Theorem 3.2. Assume that the structural conditions (P0-P1) hold. If there exists a thermodynamics
compatible with p and satisfying (T1-T4) over the open set Oζ ⊂ O′

ζ then the following Properties
(P2-P3) hold.

(P2) For any ζ ∈ Oζ , we have

T

∫ ∞

v

∂̃2Tφdv
′ <

∑

k∈S

ykc
pg

vk. (3.7)

(P3) For any ζ ∈ Oζ , the matrix Λ with coefficients

Λkl =
R

ykmk
δkl +

1

T

∫ ∞

v

∂̃2ykyl
φdv′, k, l ∈ S, (3.8)

is positive definite.

Conversely, define the open set Oζ as the subset of O′
ζ such that (P2-P3) hold. Then the energy per

unit mass e given by (3.3), the pressure p given by (5.1), and the entropy per unit mass s given by
(3.4), satisfy (T1-T4) over Oζ , and the species Gibbs functions are also given by (3.5).

Proof. Assume first that there exists a thermodynamics compatible with p satisfying (T1-T4) over an
open setOζ ⊂ O′

ζ . From Propostion 3.1 we know that the energy e, the entropy s and the species Gibbs
functions gk, k ∈ S, are given by (3.3), (3.4), and (3.5) and that the proper homogeneity properties
(P1) hold.

Deriving the energy e with respect to temperature we further obtain that

∂̃T e = ∂̃T e
pg − T

∫ ∞

v

∂̃2Tφdv
′. (3.9)
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Then (P2) is a consequence of Proposition 2.4 and of the expression of ∂̃T e
pg. Similarly, deriving (3.5),

it is easily checked that the matrix Λ with coefficients Λkl = ∂̃yl
gk/T is given by (3.8) so that (P3) is

a consequence of Proposition 2.4.
Conversely, define the open set Oζ as the subset of O′

ζ such that (P2-P3) hold. We know from
Proposition 3.1 that the energy e is given by (3.3) and the entropy s is given by (3.4), and we have to
establish that Properties (T1-T4) hold, or, equivalently, that (T

′
1
-T′

3
) and (T4) hold.

The 1-homogeneity properties of e and s have been established in Proposition 3.1 as well as the
regularity properties e, s ∈ Cκ(O′

ζ). Moreover, it is easily checked that for any ζ ∈ Oζ , we have ζλ ∈ Oζ

by homogeneity. Similarly p is 0-homogeneous and p ∈ C1+κ(O′
ζ), and we obtain that (T′

1
) holds since

Oζ is an open subset of O′
ζ .

In order to establish Gibbs relation, we have to establish (T′
2). From (3.3)(3.4), and the estimates

(3.2), we first obtain that

∂̃T e = ∂̃T e
pg − T

∫ ∞

v

∂̃2Tφdv
′, ∂̃T s = ∂̃T s

pg −
∫ ∞

v

∂̃2Tφdv
′,

and since ∂̃T e
pg = T ∂̃T s

pg we obtain that ∂̃T e = T ∂̃T s. Similarly, from (3.3), (3.4), and the estimates
(3.2), we have

∂̃ve = ∂̃ve
pg + T ∂̃Tφ− φ, ∂̃vs = ∂̃vs

pg + ∂̃Tφ.

Using now ∂̃ve
pg = T ∂̃vs

pg−ppg, we deduce that ∂̃ve = T ∂̃vs
pg−ppg+T ∂̃Tφ−φ, and thus ∂̃ve = T ∂̃vs−p

and (T′
2
) is established. Properties (T′

3
) is then a direct consequence of (P2) and (P3) and of the

relations (3.3) and (3.5) derived with respect to temperature and species mass fractions. Finally, (T4)
is guaranteed by construction of the thermodynamics (5.1)(3.3)(3.4) and from the estimates (3.2) which
implies in particular that (T, v, y1, . . . , yn)

t belongs to Oζ for v large enough.

In practice, once a pressure law is available, we first have to check that (P0-P1) are satisfied. We
may then calculate the energy, entropy and species Gibbs functions per unit mass according to the
expressions (3.3), (3.4), and (3.5). We finally have to investigate the open set Oζ where thermodynamic
stability holds. This may be the most difficult part in practice since thermodynamic stability may not
hold at high pressure and low temperature [17].

Remark 3.3. The inequalities associated with (P2-P3) are homogeneous with respect to (v, y1, . . . , yn)
so that it is sufficient in practice to solely the physical case 〈y, u〉 = 1.

3.3 More on thermodynamic stability

From Theorem 3.2 the thermodynamic stability domain, where the mixture is locally stable, is the
domain where ∂̃T e > 0 and the matrix Λ is positive definite. The mixture is also globally stable on
every convex set—with respect to the variable ξ—included in this stability domain. The condition
∂̃T e > 0 is the thermal stability condition whereas the positive definiteness of the matrix Λ includes

both the mechanical stability condition ∂̃vp < 0 and the chemical stability condition that ∂̂2yyg is

positive semi-definite with nullspace Ry. The mechanical stability condition ∂̃vp < 0 is generally
satisfied above a critical pressure as discussed in Section 5. We establish in this section a few result
about the matrix Λ which have practical implications for the determination of the stability domain.

We first relate the spectrum of the matrix Λ to that of matrices Λ, Λ̂r, and Λ̂l, which behave more
regularly for zero mass fractions. For any diagonalizable matrix A, we denote by d+(A), d0(A), and
d−(A), the number of positive, zero and negative eigenvalues of A, respectively.

Proposition 3.4. Assume that Properties (P0-P1) hold. For any ζ ∈ O′
ζ , let Λ be defined as in (P3)

and Π be the diagonal matrix Π = diag
(√
m1y1, . . . ,

√
m1yn

)
/
√
R. The matrices Λ, Λ̂r, and Λ̂l, defined

by
Λ = Π Λ Π, Λ̂r = ΛΠ2, Λ̂l = Π2 Λ,

are then Cκ−1 function of ζ ∈ O′
ζ . Furthermore, if we assume that v > v, then Λ admits a continuous

extension to nonnegative mass fractions whereas Λ̂r and Λ̂l admit Cκ−1 extensions to nonnegative mass
fractions. Finally, for any ζ ∈ O′

ζ , we have d+(Λ) = d+(Λ), d0(Λ) = d0(Λ), d−(Λ) = d−(Λ), and the

matrices Λ, Λ̂r, and Λ̂l, have the same spectrum.
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Proof. The coefficients of the matrix Λ are given by

Λkl = δkl +
√
ykyl

√
mkml

RT

∫ ∞

v

∂̃2ykyl
φdv′, (3.10)

so that Λ is Cκ−1 function of ζ ∈ O′
ζ , keeping in mind that the mass fractions remain positive when

ζ ∈ O′
ζ and that the estimates associated with (P0) allow to differentiate under the integral sign.

Similarly, we have

Λ̂r kl = δkl + yl
ml

RT

∫ ∞

v

∂̃2ykyl
φdv′, (3.11)

and

Λ̂l kl = δkl + yk
mk

RT

∫ ∞

v

∂̃2ykyl
φdv′, (3.12)

so that Λ̂r and Λ̂l are also Cκ−1 function of ζ ∈ O′
ζ . These formulas shows that, whenever v > v, the

matrix Λ admits a continuous extension for nonnegative mass fractions, and similarly that Λ̂r and Λ̂l

admit Cκ−1 extensions to nonnegative mass fractions, since φ admits a Cκ+1 extension to nonnegative
mass fractions when v > v.

Since the mass fractions are positive if ζ ∈ O′
ζ , the matrix Π is then invertible. From Sylvester’s

law of inertia we thus deduce that d+(Λ) = d+(Λ), d0(Λ) = d0(Λ), and d−(Λ) = d−(Λ). Finally, we

have Π−1Λ̂lΠ = Λ and ΠΛ̂rΠ
−1 = Λ so that the matrices Λ, Λ̂r, and Λ̂l, are similar and have the

same spectrum.

We deduce from Proposition 3.4 that d+(Λ) = d+(Λ) = d+(Λ̂r) = d+(Λ̂l), d0(Λ) = d0(Λ) =

d0(Λ̂r) = d0(Λ̂l), and d−(Λ) = d−(Λ) = d−(Λ̂r) = d−(Λ̂l), in such a way that any of the matrices Λ, Λ,

Λ̂r, or Λ̂l, may be used over O′
ζ to determine the stability domain.

We now consider the limiting situation where some mass fractions vanish. For simplicity, we assume
that, for some 1 6 n+ < n, the positive mass fractions are the n+ first components of y. The general
case is easily reduced to this situation upon introducing permutation matrices [7]. We thus have
yk > 0 for 1 6 k 6 n+ and yk = 0 for n+ + 1 6 k 6 n. We denote by n0 = n − n+ the number of
zero mass fractions, y+ the vector of positive mass fractions and y0 the vector of zero mass fractions.
The indexing set of positive mass fractions is also denoted by S+ and that of zero mass fractions
by S0. The decomposition R

n = R
n+× R

n0

induces a partitionning of vectors and any x ∈ R
n can

be written in the form x = (x+, x0) and we have for instance u+ ∈ R
n+

and u+ = (1, . . . , 1)t. This
partitionning of vectors induces a partitionning of matrices and for any matrix A ∈ R

n,n, we denote
by A++, A+0, A0+, A00, the corresponding blocks, in such a way that (A x)+ = A++x+ +A+0x0, and
(A x)0 = A0+x++A00x0. From the relations (3.8), only the blocks Λ++, Λ+0, and Λ0+, of the matrix Λ

are defined for nonnegative mass fractions. This is in contrast with the matrices Λ, Λ̂r, and Λ̂l, which
are well defined for nonnegative mass fractions. In addition, the ++ blocks are associated with the
S+ submixture, that is, would be obtained by solely considering the species subset indexed by S+.

Proposition 3.5. Assume that Properties (P0-P1) hold. Assume that T > 0, v > v, and that the

mass fraction vector is in the form y = (y+, y0), where y+ ∈ R
n+

, y0 ∈ R
n0

, y+ = (y1, . . . , yn+)t,
y0 = (0, . . . , 0)t, yi > 0, 1 6 i 6 n+, and 〈y, u〉 = 〈y+, u+〉 = 1. Then we have the block decompositions

Λ =

(
Λ
++

0

0 I

)
, Λ̂r =

(
Λ̂++
r

0

Λ̂0+
r I

)
, Λ̂l =

(
Λ̂++
l

Λ̂+0
l

0 I

)
,

where I denotes the identity matrix of size n0 and the symbol 0 denotes various rectangular matrices

with zero entries so that Λ
+0

= 0, Λ
0+

= 0, Λ̂+0
r

= 0, and Λ̂0+

l
= 0. Moreover, denoting by Π++ =

diag(
√
m1y1, . . . ,

√
mn+yn+)/

√
R the upper left block of the matrix Π we have the relations

Λ
++

= Π++Λ++Π++, Λ̂++
r

= Λ++(Π++)2, Λ̂0+
r

= Λ0+(Π++)2,

Λ̂++
l

= (Π++)2Λ++, Λ̂+0
l

= (Π++)2Λ+0.

In particular, we have d+(Λ++) = d+(Λ
++

), d0(Λ++) = d0(Λ
++

), and d−(Λ++) = d−(Λ
++

), and the

matrices Λ
++

, Λ̂++
r

, and Λ̂++
l

, have the same spectrum.
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Proof. These properties are easily obtained from (3.8), (3.10), (3.11), and (3.12), using block manipu-
lations.

An important consequence of Proposition 3.5 is that the stability of multicomponent mixtures can
more conveniently be investigated with the help of the matrices Λ̂r or Λ̂l which behave smoothly for
nonnegative mass fractions so that the whole stability diagram can be constructed over the set yi > 0,
i ∈ S, 〈y, u〉 = 1, including automatically all mixture states with zero mass fractions. As a special
case, we may also consider the limiting situation of pure species states. Denoting by e1, . . . , en the
canonical base vectors of R

n and by ζi the state ζi = (T, v, ei)t for y = ei, we investigate in the
following proposition the thermodynamic stability in the neighborhood of ei.

Proposition 3.6. Assume that for ζ = ζi we have ∂̃T e(ζ
i) = cvi > 0 and ∂̃vp(ζ

i) < 0. Then in the
neighborhood of ζi thermodynamic stability holds.

Proof. Denoting ∂̃T e(ζ
i) = cvi(T, v), the limit of ∂̃T e when ζ → ζi is cvi(T, v) > 0 so that thermal

stability holds in the neighborhood of ζi. We thus only have to investigate the positive definiteness
of the matrix Λ and thus of the matrix Λ. However, the pure state is a special case of Proposition
3.5, and we thus only have to check that the matrix Λ(ζi) is positive definite. However, thanks to the
identity

∑

i,j∈S

yiyjΛij = −v
2

T
∂̃vp, (3.13)

the limiting value at ζi of the single diagonal coefficients of Λ eventually different from unity is Λii =

−miv
2

RT ∂̃vp(ζ
i) which is positive by assumptions and the proof is complete.

Remark 3.7. The mechanical stability condition will be automatically satisfied when the pressure is
large enough as investigated in Section 5.

Remark 3.8. Another limit of interest is the low density limit v → ∞. In this situation, the specific
heat at constant volume ∂̃T e = cv tends to cpgv which is positive from (PG) and the matrix Λ also
becomes positive definite since it asymptotically reduces to the diagonal matrix

lim
v→∞

Λ = R diag
( 1

m1y1
, . . . ,

1

mnyn

)
.

A similar asymptotic limit is φ → 0, which is easily handled, since in this situation we recover the
perfect gas model and thermodynamic stability holds.

4 Chemistry sources

We first present the nonideal chemical production rates in Section 4.1 and that of ideal gas mixtures
in Section 4.2. We also discuss inconsistent production rates sometimes used to model high pressure
chemistry in Section 4.3. We next investigate the mathematical structure of the corresponding chemical
kinetics in Section 4.4 as well as chemical equilibrium states in Section 4.5.

4.1 Nonideal chemical production rates

We consider in this section the nonideal chemical production rates deduced from statistical physics [23,
24, 25]. These rates are compatible with the symmetric forms of rates of progress derived from the
kinetic theory of dilute reactive gases [7, 26]. Note that these rates are only defined where the corre-
sponding thermodynamic is defined. To the authors’ knowledge, the nonideal rates of progress have
first been derived by Marcelin from chemical and statistical physics considerations [23, 24, 32]. These
nonideal rates have also been rederived by Keizer in the framework of an extended statistical theory
of nonequilibrium processes [25].

We consider an arbitrary complex reaction mechanism with nr reactions involving n species which
may be written symbolically ∑

i∈S

νfijMi ⇄
∑

i∈S

νbijMi, j ∈ R, (4.1)

where νfij and νbij denote the forward and backward stoichiometric coefficients of the ith species in the
jth reaction, Mi the symbol of the ith species, and R = {1, . . . , nr} the reaction indexing set. Note
that all chemical reactions are reversible and that the number of reactions nr > 1 is arbitrary. We are
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indeed interested in elementary chemical reactions which effectively take place in the fluid mixtures,
and elementary reactions are always reversible [7, 33, 34].

The molar production rate of the ith species ωi is then given by [23, 24, 25]

ωi =
∑

j∈R

(νbij − νfij)τj , (4.2)

where τj denotes the rate of progress of the jth reaction. The proper form for the rate of progress of
the jth reaction τj is deduced from statistical physics [24, 25]

τj = κsj

(
exp
(∑

i∈S

νfijµi

)
− exp

(∑

i∈S

νbijµi

))
, (4.3)

where κsj is the symmetric reaction constant of the jth reaction and µi, i ∈ S, the species molar
dimensionless chemical potentials defined by µi = migi/RT where gi denotes the Gibbs function per
unit mass of the ith species. This form for rates of progress insures that entropy production due to
chemical reactions is nonnegative, coincides with the ideal gas rate in the perfect gas limit [17] and is
compatible with traditional nonidealities used to estimate equilibrium constants [35, 36].

4.2 Ideal chemical production rates

In the perfect gas limit, we recover from (4.3) the ideal gas rate of progress of the jth reaction τpgj
given by

τpgj = κfj
∏

i∈S

(γpgi )ν
f
ij − κbj

∏

i∈S

(γpgi )ν
b
ij , (4.4)

where κfj and κbj denote the forward and backward reaction constants of the jth reaction, respectively,
γpgi = yi/(v

pgmi) the perfect gas molar concentration of the ith species, vpg = (RT/p)
∑

i∈S

yi

mi
the

perfect gas volume per unit mass, and where the superscript pg refers to ideal solutions of perfect gases.
The reaction constants κfj and κbj are related through the ideal gas equilibrium constant κe,pgj of the
jth reaction

κfj = κbjκ
e,pg
j , κe,pgj = exp

(∑

i∈S

(
νfij − νbij

)
µu,pg
i

)
, (4.5)

where µu,pg
i denotes the perfect gas reduced chemical potential of the ith species at unit concentration.

This standard potential is given by

µu,pg
i =

mig
pg⋆
i (T )

RT
+ ln

(RT
pst

)
, (4.6)

where gpg⋆i denotes the perfect gas specific Gibbs function of the ith species at the standard pressure
pst. The perfect gas dimensionless potential µpg

i = mig
pg

i /RT , where gpgi is the perfect gas Gibbs
function of the ith species, is then given by µpg

i = µu,pg
i + ln γpgi . Defining the symmetric constant κsj

of the jth reaction by

κsj = κfj exp
(
−
∑

i∈S

νfijµ
u,pg
i

)
= κbj exp

(
−
∑

i∈S

νbijµ
u,pg
i

)
, (4.7)

we then recover the ideal gas rate of progress (4.4) from the symmetric form (4.3) and from the relations
µpg

i = µu,pg
i + ln γpgi , i ∈ S [7]. Identification of both forms for rates of progress (4.7) also yields a

method for estimating the symmetric reaction constants κsj, j ∈ R. In practice, the forward reaction

constants κfj , j ∈ R, are often evaluated from an Arrhenius type expression and the backward reaction

constants κbj , j ∈ R, are obtained through the equilibrium constants κe,pgj , j ∈ R. The ideal gas rates
are then evaluated in the form

τpgj = κfj
∏

i∈S

(γpgi )ν
f
ij −

κfj
κe,pgj

∏

i∈S

(γpgi )ν
b
ij , (4.8)

and for each reaction j ∈ R, the Arrhenius expression reads κfj(T ) = AjT
bj exp

(
−Ej/RT

)
where Aj

is the preexponential constant, bj the temperature exponent, and Ej the activation energy.
The nonideal rates of progress derived from statistical physics (4.3) may equivalently be obtained

by defining the activity coefficient ai of the ith species

ai = exp
(
µi − µu,pg

i

)
, (4.9)
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and by replacing γpgi by ai in the classical form of the rates of progress (4.4), keeping in mind that
in the ideal gas limit we have γpgi = exp

(
µpg

i − µu,pg
i

)
, i ∈ S. Defining for convenience the species

activity coefficient ãi, i ∈ S, by ãi = exp(µi − µpg

i ) so that ai = γpgi ãi, i ∈ S, we may thus evaluate
the nonideal rates τj , j ∈ R, in the form

τj = κfj
∏

i∈S

(γpgi ãi)
νf
ij −

κfj

κe,pgj

∏

i∈S

(γpgi ãi)
νb
ij . (4.10)

4.3 Hybrid chemical production rates

We further discuss in this section two other forms for rates of progress, intermediate between the
ideal gas rates τpgj , j ∈ R, and the nonideal rates deduced from statistical physics τj , j ∈ R. These
intermediate forms for rates of progress have already been used to model high pressure chemistry.

A first intermediate model—referred to as PG-HP—uses the the perfect gas formulation (4.4) with
the same reaction constants but with concentrations evaluated from the high pressure volume per unit
mass v

γj =
yj
mjv

. (4.11)

Noting that γi = γpgi
vpg

v , the equilibrium displacement is then a consequence of the Le Chatellier’s

principle. These rates, denoted by τhp−pg

j , j ∈ R, can then be written in the form

τhp−pg

j = κfj
∏

i∈S

(γpgi
vpg

v )ν
f
ij −

κfj

κe,pgj

∏

i∈S

(γpgi
vpg

v )ν
b
ij . (4.12)

A second intermediate model—referred to as Hybrid—is an inconsistent attempt to take into ac-
count real-gas effects in chemical source terms. It uses the perfect gas formulation (4.4) with the
real-gas predicted molar concentrations (4.11), the forward reaction constant κfj in standard Arrhenius

form, the backward reaction constant in the form κbj = κfj/κ
e
j , and the equilibrium constant κej takes

into account nonidealities
κej = exp

(∑

l∈S

(νflj − νblj)µ
u
l

)
, j ∈ R. (4.13)

In other words, the concentrations γj , j ∈ S, are used in the rates whereas the activities aj , j ∈ S,
are used to define the equilibrium constants, so that this often used model is inconsistent, and the
forward and reverse reactions do not play a symmetric rôle. In terms of the species activity coefficient
ãi = exp(µi − µpg

i ), i ∈ S, after some algebra, these rates are in the form

τhyj =
1

∏
i∈S

( v
vpg

ãi)
νf
ij

(
κfj
∏

i∈S

(γpgi ãi)
νf
ij −

κfj

κe,pgj

∏

i∈S

(γpgi ãi)
νb
ij

)
=

τj∏
i∈S

( v
vpg

ãi)
νf
ij

. (4.14)

The hybrid rates τhyj , j ∈ R, are thus found to be proportional to the nonideal rates τj , j ∈ R, since
the equilibrium constants take into account nonidealities. However, they are quantitatively wrong by

the factors
∏

i∈S
( v
vpg

ãi)
νf
ij , j ∈ R.

4.4 Mathematical structure

We describe in this section the mathematical structure of nonideal chemistry source terms. The math-
ematical structure of chemical kinetics has notably been investigated—generally for homogeneous sys-
tems and kinetics of mass action type—by Aris [37], Wei [38], Shapiro and Shapley [4], Pousin [6],
Krambeck [5], and Giovangigli and Massot [7, 13, 15].

The species of the mixture are assumed to be constituted by atoms, and we denote by ail the number
of lth atom in the ith species, A = {1, . . . , na} the set of atom indices, and na > 1 the number of atoms—
or elements—in the mixture. We first introduce a convenient vector notation in order to investigate
the mathematical structure of chemical production rates. The forward and backward reaction vectors
νfj and νbj of the jth reaction are defined by νfj = (νf1j , . . . , ν

f
nj)

t and νbj = (νb1j , . . . , ν
b
nj)

t, and the

global reaction vector νj by νj = νbj − νfj . The atomic vectors al, l ∈ A, are similarly defined by
al = (a1l, . . . , anl)

t and the unit vector by u = (1, . . . , 1)t. The production vector ω is defined by
ω = (ω1, . . . , ωn)

t and we have the vector relation ω =
∑

j∈R
τjνj . We further define the vector

µ = (µ1, . . . , µn)
t, where µi = migi/RT , i ∈ S, in such a way that τj = κsj

(
exp〈µ, νfj〉 − exp〈µ, νbj 〉

)
,
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j ∈ R where 〈 , 〉 denotes the Euclidean scalar product. The vector spaces spanned by the reaction
vectors and the atomic vectors are denoted by R and A, respectively

R = span{ νi, i ∈ R }, A = span{ al, l ∈ A }.
We denote by m the mass vector m = (m1, . . . ,mn)

t wheremk denotes the molar mass of the kth species
and by M the diagonal matrix M = diag(m1, . . . ,mn). The mathematical assumptions associated with
the chemical production rates are then the following.

(C1) The stoichiometric coefficients νfkj and νbkj, k ∈ S, j ∈ R, and the atomic coefficients akl,
k ∈ S, l ∈ A, are nonnegative integers. The atomic vectors al, l ∈ A, and the reaction vectors
νj, j ∈ R, satisfy the atom conservation relations

〈νbj , al〉 − 〈νfj , al〉 = 〈νj , al〉 = 0, j ∈ R, l ∈ A.

(C2) The atom masses m̃l, l ∈ A, are positive constants, and the species molar masses mk, k ∈ S,
are given by

mk =
∑

l∈A

m̃l akl.

(C3) The symmetric rate constants κsj, j ∈ R, are C∞ positive functions of T > 0.

The reaction and atomic vector spaces are thus such that R ⊂ A⊥ and A ⊂ R⊥. The vector of
molar masses m can also be written m =

∑
l∈A

m̃l al.

Remark 4.1. For realistic complex chemistry networks, the number of chemical reactions is always
much larger than the number of chemical species and one usually has R = A⊥. In other words, the
chemical reactions vectors νj, j ∈ R, are spanning the largest possible space. When this is not the case,
one has simply to use the space R⊥ instead of A [5].

Remark 4.2. The atoms vectors al, l ∈ A, may be assumed to be linearly independent. When this is
not the case, it is first necessary to eliminate linearly dependent atomic vectors.

Assuming that Properties (T1-T4) and (C1-C3) hold, the resulting chemical production rates, which
involve the chemical potentials µi, i ∈ S, are thus defined over the open setOζ . From atom conservation
and the definition of species masses, we now deduce the mass conservation property.

Lemma 4.3. The vector of chemical production rates ω is such that ω ∈ R and Mω ∈ MR. Moreover,
the unity vector satisfies u ∈ (MR)⊥ so that we have the total mass conservation relation 〈u,Mω〉 =∑

k∈S
mkωk = 0.

Proof. We deduce from (C1-C3) that u =
∑

l∈A
m̃lM

−1al so that u ∈ (MR)⊥. Moreover, ω ∈ R since
ω =

∑
j∈R

τjνj and thus Mω ∈ MR and finally 〈Mω, u〉 = 0.

The most important property associated with the nonideal rates is that entropy production is
guaranteed to be nonnegative.

Proposition 4.4. Assume that Properties (T1-T4) and (C1-C3) hold and let ζ ∈ Oζ . The reduced
entropy production v(ζ) due to chemical reactions

v(T, v, y1, . . . , yn) = − 1

RT

∑

k∈S

gkmkωk = −〈µ, ω〉,

is nonnegative and can be written in the form

v =
∑

j∈R

κsj
(
〈µ, νfj〉 − 〈µ, νbj 〉

) (
exp〈µ, νfj〉 − exp〈µ, νbj 〉

)
. (4.15)

Proof. Rewriting v in the form v = −
∑

j∈R,i∈S
µiνijτj =

∑
j∈R

〈
µ, νfj−νbj

〉
τj we directly obtain (4.15)

from the expression (4.3) of τj , j ∈ R. Finally the right hand side of (4.15) is always nonnegative
thanks to (C3) since exp is increasing.

Remark 4.5. The entropy production associated with the hybrid rates τhyj , j ∈ R, is also nonnegative
although these rates are quantitatively erroneous. On the other hand, in the framework of nonideal
thermodynamics, the entropy production −

∑
j∈R

〈µ, νj〉τpgj associated with the perfect gas rates τpgj ,

j ∈ R, or the entropy production −
∑

j∈R
〈µ, νj〉τhp−pg

j associate with the intermediate rates τhp−pg

j ,
j ∈ R, are not guaranteed to be nonnegative.

20



4.5 Chemical equilibrium

We discuss in this section chemical equilibrium points in atom conservation manifolds under the struc-
tural assumptions (T1-T4) and (C1-C3).

Proposition 4.6. Assume that Properties (T1-T4) and (C1-C3) hold. For any ζ ∈ Oζ , the following
statements are equivalent :

(i) The entropy production due to chemistry vanishes v = 0.

(ii) The reactions rates of progress vanish τj = 0, j ∈ R.

(iii) The species production rates vanish ωk = 0, k ∈ S.

(iv) The vector µ belongs to R⊥.

Proof. From (4.15) and (C3) we obtain that v = 0 implies 〈µ, νj〉 = 0, j ∈ R, and so τj = 0, j ∈ R,
and we have established that (i) implies (ii). The fact that (ii) implies (iii) is a consequence of the
relations ωk =

∑
j∈R

τjνkj , k ∈ S. Moreover, we deduce from the definition v = −〈µ, ω〉 that (iii)
implies (i) so that the three statements (i), (ii), and (iii) are equivalent. Finally, it is easily established
that (iv) is equivalent to 〈µ, νj〉 = 0, j ∈ R, so that (ii) and (iv) are also equivalent and the proof is
complete.

Definition 4.7. A point ζe ∈ Oζ which satisfies the equivalent properties of Proposition 4.6 will be
termed an equilibrium point.

We are only interested here in positive equilibrium states which are in the interior (0,∞)n of the
composition space. Spurious points with zero mass fractions where the source terms ωk, k ∈ S,
also vanish—termed ‘boundary equilibrium points’—are of a different nature [7]. Properly structures
chemical kinetic mechanisms automatically exclude such spurious points unless some element is missing
in the mixture [7].

When defining chemical equilibrium states, it is necessary to use equations expressing the fact that
atoms are neither created nor destroyed by chemical reactions. These atom conservation relations are
typically in the form 〈y − yf ,M−1a〉 = 0, where a is an atom vector and yf is a given state, and more
generally in the form 〈y− yf , u〉 = 0, where u ∈ (MR)⊥. As a consequence, equilibrium points have to
be investigated in atom conservation affine manifolds in the form yf+MR. Different equilibrium points
may be obtained with various thermal properties kept fixed. We establish in this section the existence
of equilibrium points at fixed temperature and volume per unit mass. Existence of equilibrium states
is generally obtained by extremalizing a thermodynamic functional over an atom conservation affine
subspace [4]. The thermodynamic functional to be maximized or minimized depends on which thermal
properties are kept fixed and we refer to [7] for instance for equilibrium points with h and p fixed—in
an ideal gas framework—typical of laminar flames.

Theorem 4.8. Assume that Properties (T1-T4) and (C1-C3) hold and let T e > 0, ve > 0, and yf ∈
[0,∞)n with 〈yf , u〉 = 1. Assume that the reaction simplex (yf +MR) ∩ (0,∞)n is not empty and that

∀y ∈ (yf +MR) ∩ (0,∞)n (T e, ve, y1, . . . , yn)
t ∈ Oζ . (4.16)

Further assume that f − fpg admits a smooth extension to the closure (yf + MR) ∩ [0,∞)n of the
reaction simplex. Then there exists a unique equilibrium state ye in the simplex (yf +MR) ∩ (0,∞)n.

Proof. We characterize the equilibrium point as the only minimum of the free energy function

ϕ(y1, . . . , yn) = f(T e, ve, y1, . . . , yn),

over the nonempty simplex (yf +MR) ∩ (0,∞)n. The boundedness of the reaction simplex is a direct
consequence of u ∈ (MR)⊥ which implies that 〈y, u〉 = 〈yf , u〉. It is easily deduced that the closure of
(yf +MR) ∩ (0,∞)n is (yf +MR) ∩ [0,∞)n which is both compact and convex.

We first establish that ϕ admits a continuous extension on this compact convex set. The free energy
function f is indeed in the form f = fpg + (f − fpg) and fpg can be written

fpg(T e, ve, y1, . . . , yn) =
∑

k∈S

yk
(
RT

log yk
mk

+ rk(T
e, ve)

)
,
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where rk only depends on T and v

rk(T, v) = f st
k +

∫ T

T st

cpgk (θ) dθ − T

∫ T

T st

cpgk (θ)

θ
dθ +

RT

mk
log(vmkγ

st).

Therefore, fpg admits a continuous extension for zero mass fractions on the reaction simplex as well as
the nonideal part f − fpg thanks to assumptions and we conclude that ϕ is continuous on the closure
(yf +MR) ∩ [0,∞)n.

The partial derivative of ϕ with respect to the mass density vector y over the reaction simplex
(yf +MR) ∩ (0,∞)n is also given by

∂̃y ϕ = ∂̃y f = (g1, . . . , gn)
t = RTM−1µ.

We indeed have from Gibbs relation f = e − Ts so that ∂̃yk
f = ∂̃yk

e − T ∂̃yk
s and ∂̃yk

ϕ = ∂̃yk
f = gk

from (T2). We further deduce that ∂̃2ykyl
ϕ = ∂̃yl

gk = T Λkl, k, l ∈ S, so that

〈
(∂̃2yyϕ)xy, xy

〉
= T

〈
Λxy, xy

〉
,

and ϕ is strictly convex with ∂̃2yyϕ positive definite over the simplex (yf +MR) ∩ (0,∞)n since Λ is
positive definite.

The function ϕ admits a minimum on the compact convex set (yf +MR) ∩ [0,∞)n and we denote
by ymin a point where ϕ reaches this minimum. This minimum cannot be reached at the boundaries as
established by inspecting the sign of the its derivative. More specifically, assume that ymin has some
zero component, and define S+ and S0 such that ymink > 0 if k ∈ S+ and ymink = 0 if k ∈ S0. Let
yint be a point interior to the simplex (yf +MR)∩ (0,∞)n, so that all components of yint are positive.
We may consider the auxiliary function ψ(t) = ϕ

(
tymin+(1− t)yint

)
which is continuous over [0, 1] and

derivable over [0, 1). We also have ψ = ψpg + (ψ − ψpg) where ψpg(t) = ϕpg
(
tymin + (1 − t)yint

)
and

(ψ−ψpg)′ remains bounded over [0, 1] since ∂̃yk
(f − fpg) is defined up to the boundary of the simplex

by assumptions. However, we also have

(ψpg)′(t) =
∑

k∈S+

(ymink − yintk)g
pg

k −
∑

k∈S0

yintkg
pg

k ,

where gpgk is evaluated at tymin + (1− t)yint so that as t→ 1 the first sum is bounded since ymink > 0
if k ∈ S+ whereas the second sum goes to +∞ because ymink = 0 if k ∈ S0. Therefore, we have
limt→1 ψ

′(t) = +∞ and ψ reaches its minimum at t = 1, an obvious contradiction. As a consequence,
the miminum is reached in the interior, ymin ∈ (yf +MR)∩ (0,∞)n, and, thanks to the strict convexity
of ϕ, this minimum is unique.

We denote with the superscript e the properties associated with the unique point ye where ϕ is
minimum. Since all vectors ye +M δνj are in the interior of the reaction simplex (yf +MR) ∩ (0,∞)n

for δ small enough, we obtain that
〈
(∂yϕ)(y

e),M νj
〉
= 0, j ∈ R. As a consequence, µe must be such

that M−1µe ∈ (MR)⊥. Since (MR)⊥ = M−1R⊥ we deduce that µe ∈ R⊥ and the minimum of f
is an equilibrium point. Conversely, any equilibrium point on the reaction simplex is such that the
quantities 〈µ, νj〉, j ∈ R, vanish, so that the partial derivatives of ϕ along the reaction simplex are
zero. Since ϕ is a strictly convex function of y, it reaches a minimum at this point. Therefore, this
point coincides with the unique minimum of f and the proof is complete.

Remark 4.9. Equilibrium points only depend on the vector space R spanned by the reaction vectors
νj, j ∈ R. On the contrary, forward and backward reaction vectors νfj, and ν

b
j , j ∈ R, are important

for the production rates and in order to rule out ‘boundary equilibrium points’ [7].

Remark 4.10. In practical applications, the space R spanned by the reaction vectors νj, j ∈ S, is the
maximum space R = A⊥ so that equilibrium is achieved when µ ∈ A.

Remark 4.11. The smoothness of f−fpg is a natural assumptions partially introduced by Krambeck [5]
who has assumed that fi ∼ RT log(yi/v), as yi → 0, i ∈ S. The stability condition (4.16) is also natural
since otherwise the mixture may not even be stable and several phases may appear so that it does not
make sense to look for a single phase equilibrium point.

Remark 4.12. Smoothness of equilibrium points is easily obtained by using the implicit function the-
orem [5, 7].
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5 Application to the SRK equation of state

We present the Soave-Redlich-Kwong equation of state in Section 5.1 and obtain the corresponding
thermodynamics in Section 5.2. We then discuss thermodynamic stability, supercritical states, and
mechanical stability in Section 5.3.

5.1 SRK equation of state

Various equations of state have been introduced to represent the behavior of dense fluids [39, 40, 41,
42, 43, 44]. The Benedict-Webb-Rubin equation of state [39] and its modified form by Soave [40] are
notably accurate but are uneasy to handle. On the other hand, the Soave-Redlich-Kwong equation
of state [41, 42] and the Peng-Robinson equation of state [43] yield less accuracy but allow an easier
inversion by using Cardan’s formula thanks to their cubic form. These cubic equations of state give
accurate results over the range of pressures, temperatures and mixture states of interest for supercritical
combustion [19, 20, 21, 22, 17].

In this paper, we investigate the Soave-Redlich-Kwong equation of state [41, 42]

p =
∑

i∈S

yi
mi

RT

v − b
− a

v(v + b)
, (5.1)

where p denotes the pressure, R the perfect gas constant, v the volume per unit mass, and a and b the
attractive and repulsive parameters per unit mass, respectively. These parameters a(T, y1, . . . , yn) and
b(y1, . . . , yn) are evaluated with the usual Van der Waals mixing rules written here with a mass based
formulation

a =
∑

i,j∈S

yiyjαiαj b =
∑

i∈S

yibi. (5.2)

The pure-component parameters αi(T ) =
√
ai(T ) and bi are deduced from the corresponding macro-

scopic fluid behavior or from interaction potentials as discussed in Appendix B. The validity of this
equation of state (5.1) and of the corresponding mixing rules (5.2) have been carefully studied by
comparison with NIST data by Congiunti et al. [45] and with results of Monte Carlo simulations by
Colonna and Silva [46] and Cañas-Maŕın et al. [47, 48]. This equation of state has been used in high
pressure combustion models by Meng and Yang [20], Ribert et al. [22], and Giovangigli et al. [17].

From a mathematical point of view, we assume the following properties on the coefficients αi(T ),
and bi, i ∈ S, where κ ∈ N and κ > 2.

(SRK) For any i ∈ S, αi ∈ C0[0,∞) ∩ C1+κ(0,∞), αi(0) > 0, αi > 0, lim+∞ αi = 0, ∂̃Tαi 6 0 and

∂̃2TTαi > 0 over (0,∞), and the parameters bi, i ∈ S, are positive constants.

The following proposition is easily deduces from (SRK).

Proposition 5.1. Assume that (SRK) holds and denote a = a(T, y). Then a ∈ C0[0,∞)×(0,∞)n,

a ∈ C1+κ(0,∞)×(0,∞)n, a(0, y) > 0, a > 0, limT→+∞ a(T, y) = 0, ∂̃T a 6 0 and ∂̃2TT a > 0 over
(0,∞)×(0,∞)n.

In practice, the attractive parameters are taken in a special form [17] analyzed in the following
proposition.

Proposition 5.2. Assume that αi is in the form

αi

αc,i
= 1 +A

(
si(1−

√
T/
√
Tc,i)

)
, (5.3)

where αc,i, si, and Tc,i are positive constants and A ∈ C1+κ(R). Further assume that A′ > 0, A′′ > 0,
A(0) = 0, −1 6 A, and lim−∞A = −1. Then Property (SRK) holds.

Proof. Since A is C1+κ(R) it is easily checked that, for any i ∈ S, we have αi ∈ C0[0,∞)∩C1+κ(0,∞)
and for T > 0 we have

α′
i

αc,i
= − si

2(TTc,i)1/2
A′
(
si(1 −

√
T/
√
Tc,i)

)
,

α′′
i

αc,i
=

si

4T 3/2T
1/2
c,i

A′
(
si(1−

√
T/
√
Tc,i)

)
+

s
2
i

4TTc,i
A′′
(
si(1−

√
T/
√
Tc,i)

)
.
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Thanks to the properties of A, we deduce that for any positive temperature α′
i(T ) 6 0 and α′′

i (T ) > 0
so that αi is decreasing and convex. Finally we have αi(0) = αc,i

(
1 + A(si)

)
and A(si) > 0 since

A is increasing and A(0) = 0 so that αi(0) > 0. Moreover, we also have limT→+∞ αi(T ) = 0 since
limx→−∞A(x) = −1 and the proof is complete.

Remark 5.3. As typical function A we may use

A(x) =

{
x, if x > 0,

x/(1 + x4)1/4, if x 6 0.
(5.4)

It is easlily checked that A ∈ C4(R), A′ > 0, A′′ > 0, A(0) = 0, −1 6 A, and lim−∞A = −1, so that
the assumptions of Proposition 5.2 hold.

Remark 5.4. In the limiting situation κ = 1, excluded from (SRK), Proposition 5.1, and Propo-
sition 5.2, smoothness with respect to ζ is not guaranteed, that is, s(ζ) may only be derived once.
However, one may establish that entropy is still twice derivable with respect to the thermodynamic
variable ξ so that (T2-T4) still makes sense.

From physical considerations the coefficient αi =
√
ai should be positive for small temperature

and should be a decreasing function of temperature as pointed out by Ozokwelu and Erbar [49] and
Grabovski and Daubert [50]. Moreover, the coefficient αi =

√
ai should goes to zero as T → ∞ since we

must recover the perfect gas equation of states for increasing temperatures. The coefficients introduced
by Soave, and associated with the choice A(x) = |1+ x| − 1, do not satisfy such a property and do not
satisfy the assumptions of Proposition 5.2. Even if it is possible to truncate these coefficients by using
A(x) = |1 + x|+ − 1, where y+ = max(y, 0), neither the Soave coefficients nor their truncated version
are regular enough for mixtures of gases since they introduce small jumps in the temperature derivative
of the attractive factor αi =

√
ai and thereby of the attractive parameter a =

∑
i,j∈S

yiyjαiαj at the

crossing temperatures Tc,i(1 + 1/si)
2, i ∈ S. Even though such small jumps only arise in regions

where the temperature is high and where nonidealities are usually negligible, it is preferable—from
a numerical as well as mathematical point of view—to have smoother attractive factors. Numerical
spurious behavior has indeed been observed due to these small discontinuities of the attractive factor
temperature derivative. The modifications of the Soave coefficients associated with Proposition 5.2
and Remark 5.3 have been introduced by the authors and yields thermodynamic properties that are
in very close agreement [17].

5.2 SRK thermodynamics

We investigate in this section the thermodynamics associated with the SRK equation of state from
Theorem 3.2. We first investigate the structural properties (P0-P1).

Proposition 5.5. The pressure corrector φ associated with the equation of state (5.1) is given by

φ =
(∑

i∈S

RTyi
mi

) b

v(v − b)
− a

v(v + b)
. (5.5)

Assuming (SRK), the pressure corrector φ satisfies Properties (P0-P1) over the domain

O′
ζ = { ζ ∈ (0,∞)2+n; v > b }, (5.6)

with the particular value v = 2maxi∈S bi.

Proof. A calculation directly yields the expression (5.5) for the pressure corrector φ. Considering then
any factor in the form χ = a/

(
v(v + b)

)
where a and b are two Ck functions of (T, y1, . . . , yn), an

easy induction shows that for any multiindex β ∈ N
n+2, β = (βT , βv, β1, . . . , βn), with |β| 6 k, the

derivative ∂̃βζ χ is a linear combination with constant coefficients of terms in the form â/
(
vγ(v + b)δ

)

where â is a product of derivatives of a and b of order lower than k and where γ > 1 and δ > 1 are
such that γ + δ > 2 + βv. We may now use this result first with k = 1 + κ, a = (

∑
i∈S

RTyi/mi) b
and b = −b, and next with k = 1 + κ, a = a and b = b, keeping in mind that a =

∑
i,j∈S

yiyjαiαj ,
b =

∑
i∈S

yibi, that (SRK) holds, and that 1/(v − b) 6 2/v and 1/v 6 1/v when v > v > 2b. We then
obtain that for any multiindex β ∈ N

n+2 with |β| 6 1+κ, there exists c(β, T ) depending continuously
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on T and on β, such that whenever T > 0, v > 2maxi∈S bi, and yi > 0, i ∈ S, and
∑

i∈S
yi = 1, we

have

|∂̃βζ φ| 6
c(β, T )

vβv+2
. (5.7)

In addition, since a is 2-homogeneous in (y1, . . . , yn) and b is 1-homogeneous, we directly deduce that
p and φ are 0-homogeneous in (v, y1, . . . , yn).

Properties (P0-P1) are thus established and, following Proposition 3.1, the thermodynamic functions
can then be evaluated. Thanks to the special form of the SRK equation of state, it is further possible
to evaluate these properties explicitly. From (5.5), the mixture internal energy e is indeed found in the
close form

e =
∑

i∈S

yie
pg

i +
(
T ∂̃Ta− a

)1
b
ln
(
1 +

b

v

)
, (5.8)

where epgi = epgi (T ) denotes the perfect gas specific energy of the ith species. Similarly, the mixture
entropy s reads

s =
∑

i∈S

yis
pg⋆
i −

∑

i∈S

yiR

mi
ln
( yiRT

mi(v − b)pst

)
+
∂̃Ta

b
ln
(
1 +

b

v

)
, (5.9)

where spg⋆i = spg⋆i (T ) denotes the perfect gas specific entropy of the ith species at pressure pst. The
enthalpy h and Gibbs function g per unit mass are also easily evaluated in the form

h =
∑

i∈S

yih
pg

i +
(
T ∂̃Ta− a

)1
b
ln
(
1 +

b

v

)
+
∑

i∈S

yi
mi

RTb

v − b
− a

v + b
, (5.10)

where hpgi = hpgi (T ) denotes the perfect gas specific enthalpy of the ith species, and the Gibbs function
g = f + pv is given by

g =
∑

i∈S

yi
(
hpgi − Tspg⋆i

)
+
∑

i∈S

yi
mi

RT ln
( yiRT

mipst(v − b)

)

+
∑

i∈S

yi
mi

RTb

v − b
− a

b
ln
(
1 +

b

v

)
− a

v + b
. (5.11)

5.3 SRK thermodynamic stability

We first establish that the thermal stability condition holds.

Proposition 5.6. The heat par unit mass at constant volume of the mixture cv = ∂̃T e is given by

cv = cpgv +
T ∂̃2TTa

b
ln
(
1 +

b

v

)
, (5.12)

where cpgv =
∑

i∈S
yic

pg

v,i and (SRK) insures that thermal stability holds.

Proof. We only have to derive (5.8) with respect to temperature in order to obtain (5.12). The in-

equality ∂̃2TT a > 0 is then a direct consequence of Proposition 5.1.

We now investigate the mechanical stability condition for the SRK cubic equation of state. In order
to simplify notation, we define r = R

∑
i∈S

yi/mi so that the equation of state is written in the form

p =
rT

v − b
− a

v(v + b)
. (5.13)

Proposition 5.7. For any y ∈ (0,∞)n and v > b, there exists a unique temperature T ⋆(v, y) > 0 such

that ∂̃vp(T
⋆, v, y) = 0. This temperature satisfies the nonlinear equation

T ⋆ =
a⋆

r

(v − b)2(2v + b)

v2(v + b)2
, (5.14)

where a⋆ = a(T ⋆, y), T ⋆ is a Cκ function of v, y1, . . . , yn and we have the relations

∂̃2Tvp ∂̃vT
⋆ + ∂̃2vvp = 0, ∂̃2Tvp ∂̃yk

T ⋆ + ∂̃2v yk
p = 0, k ∈ S. (5.15)

Finally, for any fixed y (0,∞)n, we have

lim
v→b

T ⋆ = 0, lim
v→∞

T ⋆ = 0. (5.16)
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Proof. The partial derivative ∂̃vp can be written

∂̃vp = − rT

(v − b)2
+

a(2v + b)

v2(v + b)2
, (5.17)

so that we have

∂̃2Tvp = − r

(v − b)2
+
∂̃T a(2v + b)

v2(v + b)2
, (5.18)

and since ∂̃T a 6 0, we deduce that ∂̃Tvp remains strictly negative. Moreover, we have for T = 0

∂̃vp(0, v, y1, . . . , yn) =
a(0, y) (2v + b)

v2(v + b)2
> 0,

since a(0, y) =
∑

i,j∈S
yiyjαi(0)αj(0) > 0, and since a(T, y) is bounded as a function of temperature

we also get that
lim

T→∞
∂̃vp(T, v, y1, . . . , yn) = −∞.

As a consequence, for any fixed v, y1, . . . , yn there exists a unique temperature T ⋆ > 0 such that
∂̃vp(T

⋆, v, y) = 0, and this relation directly yields (5.14). From the implicit function theorem, the
temperature T ⋆(v, y) is a Cκ function of v, y1, . . . , yn and we obtain the relations (5.15). Finally, since
a is a bounded function of temperature, we deduce (5.16) from (5.14) and the proof is complete.

Corollary 5.8. We have the equivalence

∂̃vp(T, v, y) > 0 ⇐⇒ T < T ⋆(v, y), (5.19)

and since the derivative ∂̃T p at fixed v, y1, . . . , yn is always positive, defining

p⋆(v, y) = p
(
T ⋆(v, y), v, y

)
, (5.20)

we also have
∂̃vp(T, v, y) > 0 ⇐⇒ p(T, v, y) < p⋆(v, y). (5.21)

In other words, the mechanical stability condition ∂̃vp(T, v, y) < 0 is equivalent to T < T ⋆(v, y) or
to p(T, v, y) < p⋆(v, y) and we are now interested in the maximum value of T ⋆ when v is varying. The
corresponding point corresponds to the usual critical points for fixed mass fractions [36].

Proposition 5.9. For any y ∈ (0,∞)n there exists a unique maximum positive value of T ⋆ for v ∈
(b,∞) and this maximum is reached for v = θcb, where θc = 1/( 3

√
2− 1).

Proof. From (5.16) there exists a maximum positive value of T ⋆ for v ∈ (b,∞) at fixed y. This

maximum value of T ⋆ is such that ∂̃vT
⋆ = 0 and thus ∂̃2vvp = 0 from (5.15). The system of equations

∂̃vp = 0 and ∂̃2vvp = 0 leads to the relations

− rT

(v − b)2
+

a(2v + b)

v2(v + b)2
= 0,

rT

(v − b)3
− a(2v2 + 3v + b)

v3(v + b)3
= 0. (5.22)

After some algebra, one may eliminate the temperature T and the coefficients r and a from one of
the equations to obtain that v3 − 3v2b − 3vb2 − b3 = 0. Upon rewriting this equation in the form
2v3 = (v + b)3 we obtain the unique real solution vc = θcb where θc = 1/( 3

√
2 − 1) which is thus the

unique solution within (b,∞). Finally, we note that the corresponding T ⋆(θcb, y) satisfies the relation
(5.14) evaluated for v = θcb.

Corollary 5.10. For any fixed y ∈ (0,∞)n, define the functions T ⋆⋆(y) and p⋆⋆(y) with

T ⋆⋆(y) = T ⋆(θcb, y), (5.23)

p⋆⋆(y) = p⋆
(
θcb, y

)
= p
(
T ⋆(θcb, y), θcb, y

)
, (5.24)

keeping in ming that b =
∑

i∈S
yibi. Then T ⋆⋆(y) and p⋆⋆(y) correspond to the critical temperature

and pressure of the frozen mixture with mass fractions y. Moreover, we always have the inequality

p⋆(v, y) 6 p⋆⋆(y),

so that ∂̃vp > 0 implies p(T, v, y) < p⋆⋆(y). Finally, since the set Σ = {y ∈ [0,∞)n; 〈y, u〉 =
1} is compact and p

(
T ⋆(θcv, y), θcv, y

)
is a smooth function of y, there exists a maximum pressure

maxy∈Σ
p⋆⋆(y) above which the fluid is supercritical for all mixtures.
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Proof. Deriving p⋆ with respect to v we obtain that

∂̃vp
⋆ = ∂̃T p ∂̃vT

⋆ + ∂̃vp = ∂̃T p ∂̃vT
⋆.

Therefore, ∂̃vp
⋆ has the sign of ∂̃vT

⋆ which has the sign of v− θcb. This implies that p⋆ increases with
v over (b, θcb], decreases with v over [θcb,∞), and p⋆

(
v, y
)
6 p⋆

(
θcb, y

)
= p⋆⋆(y).

We incidentally investigate when the pressure given by the SRK equation of state is positive keeping
in mind that pressure may be negative in a fluid [29].

Proposition 5.11. For any y ∈ (0,∞)n and any v > b, there exists a unique temperature T 0(v, y) > 0
such that p(T 0, v, y) = 0. This temperature satisfies the nonlinear equation

T 0 =
a0

r

v − b

v(v + b)
, (5.25)

where a0 = a(T 0, y), T 0 is a Cκ function of v, y1, . . . , yn and we have the relations

∂̃T p ∂̃vT
0 + ∂̃vp = 0, ∂̃T p ∂̃yk

T 0 + ∂̃yk
p = 0, k ∈ S. (5.26)

For any fixed y (0,∞)n, we also have

lim
v→b

T 0 = 0, lim
v→∞

T 0 = 0. (5.27)

Finally, we have T ⋆ > T 0 if and only if v > (1 +
√
2)b.

Proof. The partial derivative ∂̃T p can be written

∂̃T p =
r

v − b
− ∂̃Ta

v(v + b)
, (5.28)

and remains strictly positive. Moreover, we have for T = 0

p(0, v, y1, . . . , yn) = − a(0, y)

v(v + b)
< 0,

since a(0, y) > 0, and since a(T, y) is bounded as a function of temperature we also get that

lim
T→∞

p(T, v, y1, . . . , yn) = ∞.

As a consequence, for any fixed v, y1, . . . , yn with v > b there exists a unique temperature T 0 > 0 such
that p(T 0, v, y) = 0, and this relation directly yields (5.25). From the implicit function theorem, the
temperature T 0(v, y) is a Cκ function of v, y1, . . . , yn and we obtain the relations (5.26). Moreover,
since a is a bounded function of temperature, we deduce (5.27) from (5.25).

In order to compare the temperatures T ⋆ and T 0, we consider for y fixed the function of temperature
L(T ) = rT/a(T, y) which is only defined over the interval where a(T, y) remains positive. This function
L is a strictly increasing function of temperature as long as a(T, y) is positive since

L′(T ) =
r

a
− rT

a2
∂̃Ta.

On the other hand, a(T 0, y) > 0 and a(T ⋆, y) > 0 from (5.25) and (5.14), and we have

L(T ⋆) =
(v − b)2(2v + b)

v2(v + b)2
, L(T 0) =

v − b

v(v + b)
.

As a consequence, T ⋆ − T 0 has the sign of (2v + b)(v − b) − v(v + b) which is easily rewritten into
v2 − 2bv − b2 and the only positive zero of this expression is v = (1 +

√
2)b so that finally T ⋆ > T 0 if

and only if v > (1 +
√
2)b and the proof is complete.

Corollary 5.12. For any y ∈ Σ, the critical pressure p⋆⋆(y), is positive.

Proof. This results from θc = 1/( 3
√
2− 1) > 1 +

√
2 thanks to 1 +

√
2 = 1/(

√
2− 1).
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Properties (P0-P2) have already been established in the framework of the SRK equation of state.
From Section 3.3 we also know that Property (P3) holds if v is large, or if we are close to a pure species
state for which thermal and mechanical stability hold. We will investigate more closely (P3) in Section 6
since thermodynamic stability may not hold at high pressure and low temperature and mixtures may
split into several phases in agreement with experimental results. In the special situation of the SRK
equation of state, the matrix Λ is given by the following proposition.

Proposition 5.13. The coefficients of the matrix Λ are given by

Λij =
Rδij
miyi

+
R

v − b

( bi
mj

+
bj
mi

)
+
∑

k∈S

yk
mk

R

(v − b)2
bibj −

2

T

aij
b

ln
(
1 +

b

v

)

+
2

T

∑

k∈S

yk
(
aikbj + ajkbi

)( 1

b2
ln
(
1 +

b

v

)
− 1

b(v + b)

)

+
1

T
abibj

(
− 2

b3
ln
(
1 +

b

v

)
+

2

b2(v + b)
+

1

b(v + b)2

)
, i, j ∈ S. (5.29)

Proof. This proposition is a direct consequence of (5.11).

6 Numerical simulations for H2-O2-N2 mixtures

We investigate in this section the thermodynamic stability of H2-O2-N2 mixtures at low temperature
and high pressure as well as the rôle of nonidealities in a typical transcritical hydrogen/air flame.

6.1 Thermodynamic stability of H2-O2-N2 mixtures

The thermodynamic stability of ternary mixtures H2-O2-N2 has been studied at pressure 200 atm.
Thanks to the equivalent formulations of Proposition 3.4, we have located the first zero eigenvalue of
the matrix Λ̂r by investigating the first zero of its determinant. To this aim, we have used nonlinear
solvers and continuation methods [51, 52] in order to generate the whole stability domain. Similar
results have also been obtained at 100 atm or other pressures as long as they are above the critical
pressures of H2, O2, and N2 [17].
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Figure 1: Thermodynamic stability limits isotherms for ternary H2-O2-N2 mixture at 200 atm

The boundary of the stability domain for various temperatures at p = 200 atm is presented in
Figure 1. The stable zones are easily identified since they include the corners associated with pure
species states as established in Proposition 3.6. The critical pressures of H2, O2, and N2, and indeed
12.8 atm, 49.8 atm, and 33.5 atm, respectively, and these pressures are below 200 atm. The unstable
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zone starts above 120 K between H2 and O2, increases as T decreases, and reach the H2-N2 boundary
around 80 K. The binary O2-N2 mixture is predicted to be stable down to very low temperatures. The
presence of H2 thus has a destabilizing effect and rises the stability limit up to 120 K in H2-O2 binary
mixtures and up to 80 K in H2-N2 binary mixtures.

Verschoyle [27] and Eubanks [28] have investigated binary mixtures of H2 and N2 at high pressure
and low temperature. An important experimental result is that binary mixtures of H2 and N2 may not
be thermodynamically stable at sufficiently high pressure and low temperature. In these situations, a
mixture of H2 and N2 splits between a hydrogen-rich gaseous-like phase and a hydrogen-poor liquid-like
phase [27, 28] in qualitative agreement with the theoretical results obtained from the SRK equation of
state in Figure 1. Quantitative comparisons have been conducted with respect to the split phases and
very good agreement has been obtained [17].
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Figure 2: Critical pressure p⋆⋆ for ternary H2-O2-N2 mixtures

We next present in Figure 2 the critical pressure p⋆⋆(y) of H2-O2-N2 mixtures for y ∈ Σ. The critical
pressure is typically between 12.8 and 49.8 atm which are the critical pressures of pure H2 and O2. In
particular, above 49.8 atm, all H2-O2-N2 mixtures are guaranteed to be in a supercritical state and
the mechanical stability condition ∂̃vp < 0 is then fulfilled. This confirms that the thermodynamical
unstable states presented in Figure 1 are associated with thermodynamical chemical instabilities and
not thermodynamical mechanical instabilities.

6.2 Hydrogen-Air transcritical flames

We present in this section a typical transcritical planar flame structure computed with the help of
the thermodynamics model of Section 5. The corresponding governing equations may be derived from
the thermodynamics of irreversible processes [53, 54, 16], statistical mechanics, [55, 56, 57], statistical
thermodynamics [25], as well as the kinetic theory of dense gases [58, 59]. For one-dimensional steady
flames, the conservation equations express the conservation of mass and energy and, in the small Mach
number limit, are in the form [17]

m y′i + F ′
i = miωi, i ∈ S, (6.1)

mh′ + q′ = 0, (6.2)

where m = ρu denotes the mass flow rate, ρ the mass density, u the fluid normal velocity, the super-
script ′ the derivative with respect to the spatial coordinate x, yi the mass fraction of the ith species,
Fi the diffusion flux of the ith species, mi the molar mass of the ith species, ωi the molar production
rate of the ith species, S = {1, . . . , n} the species indexing set, n the number of species, h the enthalpy
per unit mass of the mixture, and q the heat flux. The momentum equation uncouples from (6.1)(6.2)
and may only be used to evaluate a perturbed pressure. The unknowns are the temperature T , the
species mass fractions yi, i ∈ S, as well as the mass flow rate m which is a nonlinear eigenvalue [60].

29



The boundary conditions at the origin are naturally written in the form [61]

m
(
yi(0)− yfri

)
+ Fi(0) = 0, i ∈ S, m

(
h(0)− hfr

)
+ q(0) = 0, (6.3)

where the superscript fr refers to the fresh mixture. The downstream boundary conditions are in the
form

y′i(+∞) = 0, i ∈ S, T ′(+∞) = 0, (6.4)

and the translational invariance of the model is removed by imposing a given temperature T fx at a
given arbitrary point xfx of [0,∞), T (xfx) − T fx = 0. We have used a reaction mechanism involving
n = 9 species and nr = 19 reactions mainly due to Warnatz [62] with forward rates in Arrhenius form
κfj(T ) = AjT

bj exp
(
−Ej/RT

)
, j ∈ R, and with kinetic parameters Aj bj and Ej , j ∈ R, as in Table 1.

Table 1: Warnatz kinetics scheme for hydrogen combustion [62]
i Reaction Ai bi Ei

1 H + O2 ⇆ OH+O 2.00E+14 0.00 16802.

2 O + H2 ⇆ OH+H 5.06E+04 2.67 6286.

3 OH + H2 ⇆ H2O+H 1.00E+08 1.60 3298.

4 2OH ⇆ O+H2O 1.50E+09 1.14 100.

5 H + H +M ⇆ H2 +Ma 6.30E+17 -1.00 0.

6 H + OH+M ⇆ H2O+Ma 7.70E+21 -2.00 0.

7 O + O+M ⇆ O2 +Ma 1.00E+17 -1.00 0.

8 H + O2 +M ⇆ HO2 +Ma 8.05E+17 -0.80 0.

9 H + HO2 ⇆ 2OH 1.50E+14 0.00 1004.

10 H + HO2 ⇆ H2 +O2 2.50E+13 0.00 693.

11 H + HO2 ⇆ H2O+O 3.00E+13 0.00 1721.

12 O + HO2 ⇆ O2 +OH 1.80E+13 0.00 -406.

13 OH + HO2 ⇆ H2O+O2 6.00E+13 0.00 0.

14 HO2 +HO2 ⇆ H2O2 +O2 2.50E+11 0.00 -1242.

15 OH +OH+M ⇆ H2O2 +Ma 1.14E+22 -2.00 0.

16 H2O2 +H ⇆ HO2 +H2 1.70E+12 0.00 3752.

17 H2O2 +H ⇆ H2O+OH 1.00E+13 0.00 3585.

18 H2O2 +O ⇆ HO2 +OH 2.80E+13 0.00 6405.

19 H2O2 +OH ⇆ H2O+HO2 5.40E+12 0.00 1004.

a The third body M denotes any species of the mixture

a Third body efficiency H2 = 2.86, N2 = 1.43, H2O = 18.6

Units are moles, centimeters, seconds, calories, and Kelvins

The thermodynamic built from the SRK equation of state in Section 5 and the chemistry with the
nonideal rates of Section 4 have been used in the calculation. In a one dimensional framework, the
mass and heat fluxes are in the form

Fi = −
∑

j∈S

Li,j

(gj
T

)′
− Li,n+1

(
− 1

T

)′
, i ∈ S, (6.5)

q = −
∑

j∈S

Ln+1,j

(gj
T

)′
− Ln+1,n+1

(
− 1

T

)′
, (6.6)

where Li,j, i, j ∈ S ∪ {n+ 1}, are the transport coefficients. The transport matrix L with coefficients
Li,j, 1 6 i, j 6 n+1, is symmetric positive semi-definite and has nullspace N(L) = RU , with U ∈ R

n+1

and U =
(
1, · · · , 1, 0

)t
. The evaluation of these coefficients is discussed in Giovangigli et al. [17] and

is out of the scope of the present paper. Finally, it is remarkable that the chemical potentials µi,
i ∈ S, are involved with thermodynamics, with the transport fluxes (6.5)(6.6) as well as the chemical
production rates (4.3).

The determination of flame structures is based on adaptive flame solvers [63], adaptive continuation
techniques [52], as well as optimized thermochemistry and transport libraries [64, 65, 66, 67, 68]. We
present in Figure 3 the structure of a stoichiometric H2-air flame with T fr = 100 K and p = 200 atm.

The temperature T , density ρ and mole fractions xi, i ∈ S, are plotted in Figure 3 as function
of the flame normal coordinate x. The flame front is roughly 40 µm wide and presents large density
gradients due to the cold fresh gas temperature T fr = 100 K and to the combustion heat release.
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Figure 3: Structure of a transcritical stoichiometric H2-air flame with T fr = 100 K and p = 200 atm.
Density (g cm−3), temperature (K) and species mole fractions as functions of spatial coordinate (cm)

The mass flow rate is found to be m = 1.224 g cm−2 s−1 and the flame speed of uad = 2.079 cm s−1.
The hydrogen and oxygen disappear in the flame front whereas water is formed and various active
radicals are formed and partially recombined in the hot gases. In H2-air flames, the HO2 radical
is generally formed early in the flame front by the reaction H + O2 + M −→ HO2 + M until it is
dominated by the reaction H + O2 −→ OH+O at sufficiently high temperatures. The HO2 radical is
then consumed through its reactions with more active radicals like H or OH. In high pressure flames,
however, the reaction H + O2 + M −→ HO2 + M, which decreases the number of moles, dominates
H + O2 −→ OH + O over a larger temperature domain thanks to the Le Chatellier effect. More
specifically, the crossing temperature is around 1400 K for atmospheric flames and around 2100 K at
p = 100 atm. A remarkable feature of high pressure H2-air flames is thus the high concentrations of the
HO2 radical and large concentrations of the H2O2 radical are subsequently obtained mainly through
the reactions HO2 +HO2 −→ H2O2 +O2 and H2O+HO2 −→ H2O2 +OH.

6.3 Nonidealities in transcritical flames

The flame structure presented in the previous section is now used to illustrate the rôle of nonidealities
both in the equation of state and in the chemical production rates.

We present in Figure 4 the relative magnitude of the attractive and repulsive contributions in the
SRK equation of state as well as the relative magnitude of the volume per unit mass v with respect to
the covolume b. Denoting by pa, and pr the attractive and repulsive contribution to the SRK equation
of state

pr =
∑

i∈S

yi
mi

RT

v − b
, pa =

a

v(v + b)
,

the corresponding ratios pa/p, pr/p, and v/b are presented in Figure 4. The ratio v/b is approximately
1.68 in the fresh gases at −∞ and around 77 in the hot combustion products. Nonidealities have
therefore a dramatic effect in the fresh gases and a weak effect in the combustion products. This is
confirmed by the ratios pa/p and pr/p which are respectively around 5 and 4 in the fresh gases at −∞
and 1 and 0 in the hot gases at +∞.

We present in Figure 5 the species activity coefficient ãi, i ∈ S, given by ãi = exp(µi − µpg

i ). The
species activities are then given ai = γpgi ãi, i ∈ S, in such a way that the species activity coefficients
are a measure of nonidealities and should be unity in an ideal mixture. As for the nonidealities in the
equation of state, the species activity coefficient differ from unity especially in the cold region. This
is particularly the case for the species H2O, O2, N2, HO2 and H2O2, and to a less extend for H, O,
OH, and H2. More specifically, the limiting values as x → −∞ of the species activity coefficients are
ãH2

≈ 2, 35, ãO2
≈ 3.82 10−2, ãH ≈ 1.61 10−1, ãO ≈ 2.88 10−1, ãOH ≈ 2.88 10−1, ãHO2

≈ 6.17 10−2,
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Figure 4: Thermodynamics of a transcritical stoichiometric H2-air flame with T fr = 100 K and p = 200
atm.

ãH2O2
≈ 6.17 10−2, ãH2O ≈ 6.07 10−8, ãN2

≈ 8.57 10−2. The catastrophic case of the H2O species is
associated with the instability of water at low temperatures. These activity coefficients deeply modify
diffusive processes in the cold zone of the flame [17].

We present in Figure 6 where the rates of progress of the Reaction H + O2 + M ⇆ HO2 + M
for the four chemistry models described in Sections 4.1, 4.2, and 4.3. These rates correspond to the
ideal rates τpgj , j ∈ R, the nonideal rates deduced from statistical physics τj , j ∈ R, and the two

intermediate forms τhp−pg

j and τhyj , j ∈ R. We found it more convenient to plot the various rates
of progress for a given flame structure in order to avoid the small spatial translations obtained when
the flame is recalculated for each rate. We have used Reaction 8 of the chemical mechanism since the
corresponding rates are large. We observe that the influence of nonidealities is important p = 200 atm
and it is interesting to note that the worse rates of progress are obtained with the chemistry models
PG-HP and Hybrid. In other words, the perfect gas model is closer to the nonideal model than the
‘intermediate’ models.

7 Conclusion

We have investigated mathematically the construction of supercritical fluid thermodynamic from equa-
tions of states with a special emphasis on the SRK equation of state. Numerical simulation of H2-O2-N2

chemical instabilities as well as H2-O2-N2 transcritical flames have shown the applicability of the re-
sulting thermodynamics and illustrated the rôle of nonidealities. Subsequent work should consider the
mathematical structure of the resulting system of partial differential equations.

A Homogeneous flows and extensive variables

We briefly address in this section the thermodynamics of a homogeneous mixture. In this situation,
there exists a natural set of extensive variables Ξ = (E, V,M1, . . . ,Mn)

t, where E denotes the en-
ergy, V the volume, and Mi, 1 6 i 6 n, the species masses, and similarly a set of natural variables
Z = (T, V,M1, . . . ,Mn). The thermodynamic functions then exactly coincide with the intensive one
investigated in Section 2.1 but evaluated for Z. More specifically, denoting S the entropy of the home-
geneous mixture, we have S = s(T, V,M1, . . . ,Mn), and similarly, denoting by E the energy of the gas
in volume V , we have E = e(T, V,M1, . . . ,Mn) and analogous relations hold for all thermodynamic
functions. Similarly, the thermodynamic functions of Ξ coincide with those of ζ of but evaluated for
Ξ.

The two alternative intensive formulations discussed in Section 2 can then easily be understood by
considering such a homogeneous mixtures. Considering indeed intensive densities per unit volume in-
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Figure 5: Activity coefficients in a transcritical stoichiometric H2-air flame with T fr = 100 K and
p = 200 atm.

stead of extensive quantities, the functions E, S, andM1, . . . ,Mn have to be replaced byE/V , S/V , and
M1/V, . . . ,Mn/V , that is, by E , S, and ρ1, . . . , ρn. In this situation, the variables (T, V,M1, . . . ,Mn)
are transformed into (T, 1,M1/V, . . . ,Mn/V ), which are no longer independent. Similarly, starting from
the variables (T, p,M1, . . . ,Mn), we obtain—after dividing by the volume V—the reduced variables
(T, p, ρ1, . . . , ρn), which again are not independent. This is consistent with the classical Gibbs–Duhem
relation sdT − (1/ρ)dp+

∑
k∈S

ykdgk = 0, which states that the natural set of n+2 intensive variables
is a dependent set of variables. In summary, only n + 1 intensive variables are independent, whereas
n + 2 independent variables were previously available by making use of extensivity. In non Gibbsian
thermodynamics, we simply eliminate one of the dependent intensive variables. For instance, we either
eliminate 1 from (T, 1,M1/V, . . . ,Mn/V ) or we eliminate the pressure from (T, p, ρ1, . . . , ρn) and we
recover the variables (T, ρ1, . . . , ρn). Of course, we could have eliminated another variable instead of
the pressure, but it would lead to the same type of formalism and be somewhat less elegant.

If we consider densities per unit mass instead of densities per unit volume, the quantities E, S, and
M1, . . . ,Mn have to be replaced by E/M , S/M , andM1/M, . . . ,Mn/M , that is, by e, s, and y1, . . . , yn,
and the variables (T, V,M1, . . . ,Mn) become (T, v,M1/M, . . . ,Mn/M), that is to say, (T, v, y1, . . . , yn).
We again obtain a set of dependent variables since the mass fractions are supposed to satisfy a priori
the constraint

∑
k∈S

yk = 1. By eliminating one of the mass fractions, we would obtain a formalism
similar to the previous one. Instead of eliminating one of the mass fractions, however, we alternatively
can consider the mass fractions as independent unknowns. In this situation, the a priori constraint
between the mass fractions no longer exists, and the relation

∑
k∈S

yk = 1 must be a posteriori
deduced from the governing equations. This yields the intensive Gibbsian thermodynamics formalism,
which involves singular Hessians, but is formally identical to the classical Gibbs thermodynamics of
homogeneous mixtures.

B Parameters for the SRK equation of state

The pure species attractive and repulsive parameters per unit mass αi =
√
ai and bi, i ∈ S, associated

with the SRK equation of state (5.1) may be obtained from the species critical points. More specifically,
assuming that the ith species is chemically stable, the attractive and repulsive parameters may be
evaluated in the form [69]

ai
(
Tc,i
)
= 0.42748

R2T 2
c,i

m2
i pc,i

, bi = 0.08664
RTc,i
mipc,i

, (B.1)

where Tc,i and pc,i denote the corresponding critical temperature and pressure, respectively. A pure
component fluid with the equation of state (5.1) and parameters (B.1) indeed displays a critical point

33



1 1.0005 1.001 1.0015 1.002
-5

0

5

10

15

20

25

NonIdeal
PG
HP-PG
Hybrid

x

R
a
te
s
o
f
p
ro
g
re
ss

Figure 6: Chemical productions rates for reaction H +O2 +M ⇆ HO2 +M in a transcritical stoichio-
metric H2-air flame with T fr = 100 K and p = 200 atm.

located at temperature Tc,i and pressure pc,i. All the attractive and repulsive parameters of chemically
stable species like H2, O2, N2 or H2O, or metastable species like H2O2, may thus be determined from
critical states conditions.

This procedure, however, cannot be generalized in a straightforward way to chemically unstable
species like radicals since critical states do not exist for such species [17]. More specifically, part of
these molecules always recombine and prevent the existence of pure species states and the corresponding
critical points. Assuming that the ith species is a Lennard-Jones gas, however, it is possible to estimate
[47, 48] the critical volume per unit mass vc,i and the critical temperature Tc,ii and to deduce that

ai
(
Tc,i
)
=
(
5.55± 0.12

)n2ǫiσ
3
i

m2
i

, bi =
(
0.855± 0.018

)nσ3
i

mi
, (B.2)

where n is the Avogadro number, σi and ǫi the molecular diameter and Lennard-Jones potential well
depth of the ith species. The relations (B.1) may thus be used for chemically stable species and the
relations (B.2) for chemically unstable species like radicals with usual values for the Lennard-Jones
parameters [17].

Once the attractive parameter αi(Tc,i) =
√
ai(Tc,i) at temperature Tc,i is evaluated, its temperature

dependence αi(T ) may evaluated following Soave [42]

αi(T ) = αi(Tc,i)α̃i(T
∗
i ), (B.3)

where T ∗
i = T/Tc,i is the ith species reduced temperature, α̃i a nonnegative function of T ∗

i given by
α̃i =

∣∣1+ si(1−
√
T ∗
i )
∣∣, i ∈ S, and the quantity si is expressed in the form si = 0.48508+ 1.5517̟i−

0.151613̟2
i where ̟i is the ith species acentric factor. From physical considerations the coefficient

αi should be a decreasing function of the reduced temperatures T ∗
i as pointed out by Ozokwelu and

Erbar [49] and Grabovski and Daubert [50], and should converge to zero as T → ∞ in order to recover
the perfect gas limit. Since the coefficient α̃i introduced by Soave does not satisfy such a property,

it is first possible to truncate its temperature dependence in the form α̃i =
(
1 + si(1 −

√
T ∗
i )
)+

where x+ = max(x, 0). However, these coefficients are not smooth enough, and they introduce small
jumps in the temperature derivative of the attractive factor αi and thereby of the attractive parameter
a =

∑
i,j∈S

yiyjαiαj at the crossing temperatures Tc,i(1 + 1/si)
2, i ∈ S, because of the coupling

terms i 6= j. Even though such small jumps only arise in regions where the temperature is high and
where nonidealities are negligible, it is recommanded—at least from a numerical point of view—to have
smooth attractive factors. Numerical spurious behavior has indeed been observed due to these small
discontinuities of the attractive factor temperature derivative. To this aim, we have preferred to use
the new simple correlation α̃i = 1 + A

(
si(1 −

√
T ∗
i )
)
where A is typically as in Proposition 5.2. The

corresponding thermodynamic properties are inclose agreement with that of Soave or truncated Soave
but are smoother [17].
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Finally, the thermodynamic properties of perfect gases have been evaluated from the NIST/JANAF
Thermochemical Tables as well as from the NASA coefficients [70, 71].
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[47] W.A. Cañas-Maŕın, U.E. Guerrero-Aconcha, and J.D. Ortiz-Arango, Comparison of different cubic
equations of state and combination rules for predicting residual chemical potential of binary and
ternary Lennard-Jones mixtures: Solid-supercritical fluid phase equilibria, Fluid Phase Equil. 234
(2005), pp. 42–50.
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