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Abstract

We investigate reactive and non reactive strained flows associated with high pressure cryogenic

rocket engines. A detailed high pressure fluid model based on thermodynamics of irreversible pro-

cesses, statistical mechanics as well as kinetic theory of dense gases is used. This model insures the

positivity of chemical entropy production and of molecular transport related entropy production.

We first study the structure of a pseudo-vaporizing transcritical oxygen layer and the corresponding

pseudo-vaporizing rates. We next investigate a mixing layer between cold hydrogen and oxygen

and the dramatic influence of nonideal transport near thermodynamic instabilities. Diffusion and

partially premixed H2-O2 transcritical flame structures are then studied as well as strain extinction

limits and dilution extinction limits.

1 Introduction

High pressure combustion has been used for quite a long time in order to increase the thermodynamical
efficiency of automotive and rocket engines. This motivates the study of strained laminar flames
[1, 2, 3, 4] associated with turbulent combustion models [5, 6, 7] in the context of nonideal reactive
mixture. Following the work of Saur et al. [8], El-Gamal et al. [9], Ribert et al. [10] and Pons et al.
[11, 12], the purpose of this paper is to further study the influence of pressure driven nonidealities on
H2-O2 mixing layers and H2-O2 flame structures.

The high pressure flame model combines a real gas thermodynamics based on the Soave-Redlich-
Kwong equation of state [13], nonideal chemical production rates and nonideal transport fluxes [14].
The Soave-Redlich-Kwong equation of state is widely used for the modeling of transcritical flows, in
particular by Ribert et al. [10] and Zong and Yang [15, 16] and yields a good representation of dense
to dilute fluids. For radical species, the evaluation of attractive and repulsive terms of the equation of
state uses molecular considerations similar to the one used by Saur et al. [8] and El-Gamal et al. [9].

Molecular transport fluxes for dense fluid are based on the thermodynamics of irreversible processes
[17, 18, 19, 20], statistical mechanics [21, 22, 23], statistical thermodynamics [24] and on kinetic theory
of dense gases [25, 26, 27]. These flux insure the positivity of the transport related entropy production
independently of the thermodynamic model. Nonideality in diffusion driving forces have already been
used by Okong’o and Bellan [28], Oefelein [29], Bellan [30] and the authors [14] with coefficients taking
into account steric effects arising at high densities.

The nonideal chemical production rates that are used have first been introduced by Marcelin [31, 32]
and rederived from nonequilibrium statistical thermodynamics by Keizer [24]. They are compatible
with the symmetric forms of rates of progress obtained through kinetic theory for dilute gases [33, 34]
and insure the positivity of chemical entropy production. This formulation has been compared to other
widely used formulations for planar flames [14] and its influence has been found to range from a few
percent at pressures around 100 atm to 25% percent at pressure of 1000 atm.

The whole high pressure flame model is used to perform simulation of laminar strained reactive as
well as non-reactive structures of interest for cryogenic turbulent combustion.

First we study the influence of the transport coefficients on the pseudo-vaporization mass rate par
unit surface of transcritical oxygen. We show that, despite the fact that this influence is not negligible,
the pseudo-vaporization mass rate stays closely related to the pseudo-Spalding parameter introduced
by Yang [35] for varied expressions of the molecular transport coefficients.

We then study a strained mixing layer between cold H2 and cold O2 at supercritical pressure.
We show that the inclusion of nonidealities in the diffusion driving force is able to reproduce the
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lack of miscibility between these two species near chemical thermodynamical instability. Neglecting
these nonidealities results in an erroneous structure in which some unstable — and thus unphysical —
thermodynamical states appear in the computational domain. The nearly non-miscibility of H2 and
O2 for high pressure and low temperature results in stiff concentration and density gradients inside
the mixing layer and the appearance of a quasi interface in contrast with the mild gradients of the
erroneous ideal transport solution.

Diffusion strained flame between dense cold liquid-like oxygen and gas-like fuel are then investigated.
This kind of flame structure is likely to appear in a rocket engine running at supercritical pressure in
the wake of the injection device, where dense oxygen cluster are striped from the main core and
undergo rapid heating and burning. The fuel side of the flame is either pure hydrogen at the injection
condition in the immediate wake of the injector and hydrogenated combustion products downstream
in the combustion chamber. These combustion phenomenon are emblematic of high fuel ratio running
engines and their behaviours are of great interest in the understanding of the whole combustion process.
We study here two characteristic flame structures — respectively an H2-O2 diffusion flame and a
(H2+H2O)-O2 diffusion flame — in a nonideal framework.

In the presence of local extinction phenomena or in the early stage of engine ignition, oxygen and fuel
are not necessary separated by a flame sheet and premixed combustion is likely to occur. Stability of the
premixed flame structures influences the stability of the whole combustion process as these structures
are part of the forefront of reignition phenomena. We study the structure of the flame established
between a gas-like fuel-rich H2-O2 mixture and dense cold O2. These structures are composed of two
different combustion zones, respectively a premixed combustion zone and a diffusion combustion zone.
Depending on the stretch rate and on the premixed mixture temperature, these zones are more or less
far appart and some structures, in which two flames are separated by combustion products, are then
computed as emblematic of reignition processes.

We finally study the stability of diffusion flames between liquid-like cold oxygen and gas-like fuel
in order to determine in which conditions local extinction phenomena may occur. We first compute
the dilution extinction limits of diffusion flames between a mixture of H2 in combustion products —
modelized by H2O – and O2 by varying the dilution rate of hydrogen inside water at a fixed stretch
rate. These extinction phenomena occur when turbulent mixing process is not great enough to rip
the combustion product layer growing between oxygen and hydrogen. We then compute the stretch
extinction limit of these flames by varying the strain rate in order to grasp the ability of turbulence
to quench the combustion process. Using continuation procedures, solution curves are obtained and
two distinct behaviour were shown. Strain rate dependent solution curves are typically S-shaped with
both ignition and extinction point whereas dilution rate dependent solution curves are S-shaped and
C-shaped respectively for low and high strain rate. The C-shaped dependency curves indicate that
the burning and extinguished solution branches are no longer connected, and hence that spontaneous
reignition is difficult in highly turbulent flows. We then determine the flammability domain of cold
H2-O2 mixtures in a turbulent context to measure their reignition capabilities.

In Section 2 we describe the high pressure strained flame model. Strained mixing layer are addressed
in Section 3 and 4. Section 5 is devoted to the simulation of transcritical strained diffusion flames
whereas Section 6 is focused on the case of transcritical partially premixed stretched flames. Finally
extinction limits of transcritical strained diffusion flames are studied in Section 7

2 High pressure model

In this section we briefly describe the detailed high pressure flame model used thorough this study.
This model is similar to the one previously used for planar premixed flame computations [14] and is
based on thermodynamics of irreversible processes [17, 18, 19, 20], on statistical thermodynamics [24]
and on molecular theories such as statistical mechanics [21, 22, 23] and kinetic theory of dense gases
[25, 26, 27].
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2.1 Conservation equations

The steady conservation equations governing stretched laminar flames under the small Mach number
approximation are in the form

ρεũ+ (ρv)′ = 0 , (1)

ρvũ′ + ε(ρũ2 − ρup)− (ηũ′)′ = 0 , (2)

ρvY′
i + F ′

i = miωi , i ∈ S , (3)

ρvh′ + q′ = 0 , (4)

where v is the velocity of the fluid in the direction normal to the flame surface, ρ is the mixture density
and ε is the strain rate. The tangential velocity u is written in the form u = εyũ where y denotes the
tangential coordinate, the superscript ′ denotes the derivative with respect to the normal coordinate x
and the superscript up correspond to value taken at the boundary x = +∞. The symbol Yi represents
the mass fraction of species i, Fi the diffusion flux of species i in the direction normal to the flame, mi

the molar mass of species i, ωi the molar chemical production for species i, S = {1, · · · , ns} the species
indexing set with ns the number of species, η and h respectively the shear viscosity and the enthalpy
per unit mass of the mixture and q the heatflux.

The boundary conditions at the far-field boundaries read

T (+∞) = T up ,

Yi(+∞) = Yup
i , i ∈ S

ũ(+∞) = 1

T (−∞) = T do ,

Yi(−∞) = Ydo
i , i ∈ S

ũ(−∞) =
√
ρup/ρdo ,

where T is the temperature of the mixture and the superscripts do and up indicate values taken at the
boundary x = −∞ and x = +∞ respectively. Finally, the normal velocity vanishes at the stagnation
point located at the origin

v(0) = 0 .

Under the assumption of low Mach number, the normal momentum equation uncouples from the
other equation and may only be useful to evaluate a vertical pressure perturbation [34].

2.2 Thermodynamics properties

Dense fluids thermodynamics is obtained from a given pressure law by assuming that Gibbs’ relation-
ships are satisfied and that the fluid has a perfect gas behaviour at the dilute gas limit. This procedure
is classical [36, 37, 38] and yields a unique thermodynamics on the whole range of density predicted
by the pressure law [39]. Many equations of state have been proposed to grasp the complex behaviour
of dense fluids [8, 13, 40, 41, 42, 43, 44]. The Benedict-Webb-Rubin equation of state [40, 41] displays
great accuracy whereas its evaluation is quite computationally expensive. Thanks to an easier inversion
through Cardan’s formula, the cubic equations of state as the Soave-Redlich-Kwong [42, 13] and the
Peng-Robinson [43, 44] equations are often used and yield accurate results over the range of pressures,
temperatures and mixtures states encountered in supercritical running rocket engine [29].

We use here the Soave-Redlich-Kwong equation of state [42, 13], hereafter labelled SRK, which
reads

p =
∑

i∈S

Yi

mi

RT

v − b
− a

v(v + b)
,

where p is the fluid pressure, R the perfect gas constant, v = 1/ρ the volume per unit mass and a and b
the attractive and repulsive parameters per unit mass respectively. The attractive parameter depends
on the temperature and the fluid composition whereas the repulsive parameter depends solely on the
composition. They are evaluated with the Van der Waals mixing rules

a(Y1, · · · ,Yns , T ) =
∑

i,j∈S

YiYj
√
aiaj ,

b(Y1, · · · ,Yns) =
∑

i∈S

Yibi ,
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where the pure-species parameters ai(T ) and bi, i ∈ S evaluation is based on critical datas considera-
tions. For a chemically stable compound, these pure-species parameters may be evaluated in the form
[13, 38]

ai(Tc,i) = 0.42748
R2T 2

c,i

mipc,i
, bi = 0.08664

RTc,i

mipc,i
,

where Tc,i and pc,i denote the critical temperature et pressure respectively of species i. As pointed out in
[14], such a procedure is irrelevant in the case of chemically unstable species for which pure-species states
cannot be obtained down to critical condition. However, it is possible to relate macroscopic behaviour
with molecular interaction parameters and thus write attractive and repulsive parameters in term of
these molecular interaction parameters. Assuming a Lennard-Jones shape of the molecular interaction
potential, one may estimate the critical volume per unit mass vc,i and the critical temperature Tc,i

[45, 46, 47] and finally obtain the following evaluation

ai(Tc,i) = (5.55± 0.12)
N2ǫiσ

3
i

m2
i

, bi = (0.855± 0.018)
Nσ3

i

mi
,

with N the Avogadro number, ǫi and σi the Lennard-Jones potential well depth and molecular diameter
of species i, respectively. The SRK equation of state could thus solely be based on molecular potential
parameters as the equation of state used by Saur [8] and El-Gamal [9]. This feature is closely related
with the assumption of interaction potential in the form ǫφ(r/σ) — where ǫ and σ are the potential
well depth and the collision diameter respectively — which underlies the corresponding states principle
[37, 48]. However, as discussed in [14], we choose not to extend the molecular definition of attractive
and repulsive parameter to the stable species case for accuracy sake since these species do not strictly
folllow a Lennard-Jones behaviour.

The temperature dependency of the pure species attractive parameter is expressed through the
classical Wilson form [49]

ai(T ) = ai(Tc,i)αi(T
∗
i ) ,

where αi a non-negative function of the reduced temperature T ∗
i = T/Tc,i with respect to species i.

The function αi is such that αi(1) = 1 and, following Grabovski and Daubert [50] and Ozokwelu and
Erbar [51], is a decreasing function of T ∗

i . As discussed in [14], the original Soave determination [13]√
αi = |1+ si(1−

√
T ∗
i )|, i ∈ S with si = 0.48508+1.5517̟i− 0.151613̟2

i — where ̟i is the acentric

factor of species i — has been slightly modified into
√
αi = 1 + A

(
si(1 −

√
T ∗
i )
)
. The A function

insures the decreasing property of αi in a smooth way. To obtain the continuity of the first and second
derivatives of

√
αi, we have used A(z) = z if z ≥ 0 and A(z) = z/(1 + z4)1/4 if z < 0. The smoothing

procedure does not alter much the fluid behaviour as it is inactive for reduced temperatures lower than
unity — that is to say in the domain in which the Soave calibration was made — and since it does
not modify appreciably the pure species attractive parameter temperature dependency in the vicinity
of the critical temperature Tc,i. For greater temperatures, the influence of the attractive parameter
quickly decrease and the smoothing procedure is of no consequences. Nevertheless, this procedure
removes inconsistancies in the temperature dependency and avoids spurious behaviour of numerical
methods which require smooth thermodynamical functions.

From the pressure law it is then possible to determine the corresponding Gibbsian thermodynamic.
As an example, we give here the expression of the fluid enthalpy and entropy, as deduced from SRK
equation

h =
∑

i∈S

Yi

[
hst
i +

∫ T

T st

cp,i(θ) dθ
]
+

T∂Ta− a

b
ln
(
1 +

b

v

)
+
∑

i∈S

Yi

mi

RTb

v − b
− a

v + b
,

s =
∑

i∈S

Yi

[
ssti +

∫ T

T st

cp,i(θ)

θ
dθ − R

mi
ln
( YiRT

(v − b)pst

)
+

∂Ta

b
ln
(
1 +

b

v

)
,

where the superscript st denotes the standard state.

2.3 Molecular transport fluxes

The model for molecular transport fluxes is derived from thermodynamics of irreversible processes
[17, 18, 19, 20], statistical mechanics [21, 22, 23] as well as statistical thermodynamics [24] and kinetic
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theory of dense gases [25, 26, 27]. The expressions given in this section are expressed in a one-
dimensional formalism since, in the scope of laminar stretched flame, the diffusion fluxes only appear
in the direction normal to the flame. The mass and heat fluxes are given by the expressions

Fi = −
∑

j∈S

Lij

(gj
T

)′

− Liq

(
− 1

T

)′

, i ∈ S , (5)

q = −
∑

j∈S

Lqj

(gj
T

)′

− Lqq

(
− 1

T

)′

, (6)

where gi is the chemical potential of species i per unit mass, the superscript ′ denotes the derivative with
respect to the coordinate x normal to the flame and Lij , i, j ∈ S ∪ {q} are the transport coefficients.
The matrix L with coefficients Lij , 1 ≤ i, j ≤ q = ns + 1 is symmetric positive semi-definite with
null-space N(L) = RU with U = (1, · · · , 1, 0)t ∈ R

ns+1. The coefficients Lij can be written in term
of the transport coefficients used in classical tranport fluxes formulation. To do so, it is necessary
to rewrite the fluxes (5) and (6) with generalized diffusion driving force. To this aim, we introduce
µj = mjgj/RT, j ∈ S, the dimensionless chemical potentials and we have

dµj =
mjvj

RT
dp+

∑

l∈S

∂Xl
µjdXl −

mjhj

RT 2
dT ,

where vj is the partial volume per unit mass of species j, Xl the mole fraction of species l, hj the
enthalpy per unit mass of species j, and d the total differential operator. We may now introduce the
generalized diffusion driving force dj as

dj = Xj(µj)
′
T =

Xjmjvj

RT
p′ +

∑

l∈S

ΓjlX
′
l ,

where (µj)
′
T denotes the gradient of the dimensionless chemical potential taken at constant temperature

and Γjl = ∂Xl
µj , l, j ∈ S. In the isobaric context which will be used hereafter, we can further

introduce the ideal and nonideal contributions to the generalized diffusion driving force dj by splitting
the dimensionless chemical potential µi into a singular ideal part lnXi and a smooth nonideal part
µsm
i . The generalized diffusion driving force then reads

di = Xi(µi)
′
T = X′

i +Xi(µ
sm
i )′T ,

and X′
i stand for the ideal contribution. The nonideal contribution is proportional to the gradient

(µsm
i )′T taken at constant temperature which allows to simplify the numerical evaluation of the fluxes

[14].
In term of these generalized driving forces, the mass and heat fluxes now read

Fi = −
∑

j∈S

L̂ijR

Xjmj
dj −

L̂iq

T 2
T ′ , i ∈ S , (7)

q −
∑

i∈S

hiFi = −
∑

j∈S

L̂qjR

Xjmj
dj −

L̂qq

T 2
T ′ , (8)

where the transport coefficient have been modified from the matrix L into the matrix L̂ given by L̂ =
AtLA where Aij = δij , 1 ≤ i, j ≤ q = ns +1, to the exception of {i, j} ∈ S ×{q} for which Aiq = −hi.
Expressions (7) and (8) for transport fluxes then allow the identification of the modified transport

coefficients L̂ with the generalized diffusion coefficient Dij , i, j ∈ S introduced by Kurochkin [27] and
extending the symmetric coefficient for dilute gases of Waldmann [52, 53, 54, 55], the thermal diffusion

coefficients θi and the partial thermal conductivity λ̂. This identification leads to the definitions

L̂ijR

ρYiYjm̄
= Dij , i, j ∈ S, L̂iq

T
= ρYiθi,

L̂qq

T 2
= λ̂ ,

where m̄ =
∑

l∈S
Xlml/

∑
l∈S

Xl is the mean molar mass of the mixture. The properties of the matrices

L and L̂ are then transmitted to the transport coefficients in a way that we have the symmetry relations
Dij = Dji, i, j ∈ S, the mass constraints

∑
j∈S

DijYj = 0, i ∈ S, ∑ß∈S
θiYi = 0, and the matrix
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D is positive semi-definite with null-space N(D) = Ry, where the mass fraction vector defined by
y = (Y1, · · · ,Yns)t. Using the above defined coefficients, the fluxes (7) and (8) are rewritten in the
classical form

Fi = −
∑

j∈S

ρYiDijdj − ρYiθi(lnT )
′ , i ∈ S,

q =
∑

i∈S

hiFi −
ρRT

m̄

∑

j∈S

θjdj − λ̂T ′ .

It is also possible to express the heat flux in term of the mass fluxes by introducing the generalized
thermal diffusion ratios χi, i ∈ S, defined by the relations θi =

∑
j∈S

Dijχj , and the constraint∑
j∈S

χj = 0 and defining the thermal conductivity λ by

λ = λ̂− ρR

m̄

∑

i,j∈S

Dijχiχj .

Using the thermal diffusion ratios χi and the thermal conductivity λ, the molecular fluxes are given by

Fi = −
∑

j∈S

ρYiDij

(
dj +Xj χ̃j(lnT )

′
)
, i ∈ S ,

q =
∑

i∈S

(hi +
RT χ̃i

mi
)Fi − λT ′ ,

with χ̃i = χi/Xi.

2.4 Chemical production rates

The expression for the rates of progress can be deduced from statistical thermodynamics considerations
[24] and, to the author’s knowledge, was first introduced by Marcelin [31, 32]. This formulation, in
the following called the symmetric formulation, insures the positivity of the chemical entropy source
term [14]. Under the perfect gas assumption it reduces to the classical mass action law. We consider
a general reaction mechanism described by the relations

∑

i∈S

νfijMi ⇆

∑

i∈S

νbijMi, j ∈ R ,

where νfij and νbij are the forward and backward stoichiometric coefficients of species i involved in
reaction j, Mi is the symbol of species i and where R = {1, · · · , nr} denotes the set of reaction indexes
with nr the number of reactions. The molar production rate ωi of species i is then classically evaluated
by summing the contributions of each reaction

ωi =
∑

j∈R

(νbij − νfij)τj ,

where τj denotes the rate of progress of the jth reaction. The nonideal formulation for the rate of
progress reads

τj = κs
j

(
exp

(∑

i∈S

νfijµi

)
− exp

(∑

i∈S

νbijµi

))
, (9)

where κs
j is the reaction constant, hereafter labelled the ”symmetric” reaction constant, which generally

depends only on temperature and may thus be deduced from the low density limit where thermody-
namics is essentially the one of the perfect gas.

In order to show the relationship between the symmetric reaction constant and the classical reaction
constants, we investigate here the rate of progress in the framework of perfect gases. Under these
assumptions, the dimensionless chemical potential can be written under the form µPG

i = µu,PG
i +

ln γPG
i , i ∈ S, where µu,PG

i is the perfect gas dimensionless chemical potential of species i at unity molar
concentration. The rate of progress for perfect gases τPG

j can now be written under the generalized
formulation

τPG
j = κs

j exp
(∑

i∈S

νfijµ
u,PG
i

)∏

i∈S

(γPG
i )ν

f
ij − κs

j exp
(∑

i∈S

νbijµ
u,PG
i

)∏

i∈S

(γPG
i )ν

b
ij ,
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in such a way that we recover the usual forward κf
j and κb

j backward reaction constants

κf
j = κs

j exp
(∑

i∈S

νfijµ
u,PG
i

)
, j ∈ R , (10)

κb
j = κs

j exp
(∑

i∈S

νbijµ
u,PG
i

)
, j ∈ R , (11)

which fulfill the classical relations κb
j = κf

j exp
(∑

i∈S
(νfij − νbij)µ

u,PG
i

)
. The relations (10) and (11)

can then be used to estimate the symmetric constants κs
j from classical forward constants κf

j given by
standard low pressure kinetics scheme.

Introducing the activities ai = exp(µi − µu,PG
i ), i ∈ S, the generalized form of the rate of progress

(9) can be written under the form of a generalized mass action law

τj = κf
j

∏

i∈S

a
νf
ij

i − κb
j

∏

i∈S

a
νb
ij

i .

Under this form, we recover the general equilibrium condition

κeq
j = κf

j /κ
b
j =

∏

i∈S

(
a
νf
ij−νb

ij

i

)
,

which is then a direct consequence of the Marcelin expression (9).
The formulation of the reactions rate of progress presented here allow a natural introduction of

nonideality effects in chemical kinetics. These effects do not reduce to an equilibrium displacement
through a Le Chatellier’s effect brought by density enhancement at high pressure and are equally
and naturally distributed on forward and backward reactions. By comparing with perfect gas rate of
progress, the influence of these effect have been found [14] to rise from a few percent at p = 100 atm
up to 25% at p = 1000 atm.

The kinetic scheme used in this study is the one proposed by Ó Conaire et al. [56] as an improvement
of the work of Mueller et al. [57] and is described in Table 1. Note that this scheme is used without

the formation enthalpy modifications recommended by Ó Conaire.

2.5 Numerical method

The set of equation (1) (2) (3) and (4) is discretized by using finite difference and solved on self-
adaptative grids with the aid of Newton’s method [58]. To compute a flame structure from scratch,
pseudo unsteady iterations are used to bring an initial guess into the convergence domain of steady
Newton’s iteration. The grid is statically iteratively refined by adding discretization points wherever
the solution gradients are too roughly represented.

Once a flame structure is obtained, it may be used as a starting point to compute solutions branches
depending on a parameter such as the strain rate ε. Branches are computed by means of continuation
techniques [59] using global rezone adaptative griding that generates smooth grids. The solution
branches are locally reparameterized by the most sensitive solution component hence allowing the
computation of turning points and insuring that the solution is changing smoothly.

The evaluation of fluid properties such as chemical production rate, thermodynamic properties and
transport coefficient is obtained thanks to high pressure adapted version of the highly optimized ther-
mochemistry and transport routines [60, 61, 62, 63, 64, 65]. The thermochemistry routines optimization
lies in a systematic vectorization whereas the transport routines combine vectorization and the use of
iterative method for the solving of the transport linear system.

In addition, the computation of the diffusion driving force di, i ∈ S use an efficient evaluation [14]
of the fixed temperature gradient of dimensionless chemical potential (µi)

′
T which do not requires the

evaluation of the partial derivatives with respect of the species molar fraction of this potential and a
summation over the whole species set.

3 Pseudo vaporizing O2

We study in this section a transcritical O2 pseudo vaporization layer, following the work of Pons et al.
[11]. Such a phenomenom corresponds to the rapid yet continuous density variation of oxygen during

7



j Reaction Aj bj Ej

1 H + O2 ⇆ O + OH 1.91×1014 0.00 16.440
2 O + H2 ⇆ H + OH 5.08×1014 2.67 6.292
3 OH+ H2 ⇆ H + H2O 2.16×108 1.51 3.430
4 O + H2O ⇆ OH + OH 2.97×106 2.02 13.400
5a H2 + M ⇆ H + H + M 4.57×1019 -1.40 105.100
6a O+O+M ⇆ O2 + M 6.17×1015 -0.50 0.000
7a O +H +M ⇆ OH + M 4.72×1018 -1.00 0.000
8b H + OH + M ⇆ H2O + M 4.50×1022 -2.00 0.000
9c,d H+O2+M ⇆ HO2 + M 3.48×1016 -0.41 -1.120

H+O2 ⇆ HO2 1.48×1012 0.60 0.000
10 HO2 +H ⇆ H2+O2 1.66×1013 0.00 0.820
11 HO2 +H ⇆ OH + OH 7.08×1013 0.00 0.300
12 HO2 +O ⇆ OH + O2 3.25×1013 0.00 0.000
13 HO2 +OH ⇆ H2O+O2 2.89×1013 0.00 -0.500
14f HO2+HO2 ⇆ H2O2 + O2 4.2×1014 0.00 11.980

HO2+HO2 ⇆ H2O2 + O2 1.3×1011 0.00 -1.629
15a,e H2O2+M ⇆ OH+OH+M 1.27×1017 0.00 45.500

H2O2 ⇆ OH+OH 2.95×1014 0.00 48.400
16 H2O2+H ⇆ H2O+OH 2.41×1013 0.00 3.970
17 H2O2+H ⇆ H2+HO2 6.03×1013 0.00 7.950
18 H2O2+O ⇆ OH+HO2 9.55×106 2.00 3.970
19f H2O2+OH ⇆ H2O+HO2 1.00×1012 0.00 0.000

H2O2+OH ⇆ H2O+HO2 5.80×1014 0.00 9.560
a Third body efficiency H2O = 12.0, H2 = 2.5
b Third body efficiency H2O = 12.0, H2 = 0.73
c Third body efficiency H2O = 14.0, H2 = 1.3
d Troe parameters: a = 0.5, T ∗ = 1.0× 1030, T ∗∗ = 1.0× 10100, T ∗∗∗ = 1.0× 10−30

e Troe parameters: a = 0.5, T ∗ = 1.0× 1030, T ∗∗ not used, T ∗∗∗ = 1.0× 10−30

Reaction 14 and 19 are expressed as the sum of two rate expressions.

Units are cm3, mol, s, kcal, K

Table 1: Ó Conaire kinetic scheme for hydrogen combustion [56]

the heating process. The pseudo vaporization phenomenom is emblematic of high pressure running
engines since the behaviour of the dense oxygen core differs dramatically between supercritical cases
and subcritical cases.

3.1 Strained pseudo vaporizing layer

Injectors devices used in cryogenic rocket engines are typically coaxial injectors for which the dense
oxygen core is surrounded by a fast moving hydrogen jet. This geometry enhances the mixing of these
two ergols and hence the combustion efficiency. As a consequence, oxygen pseudo vaporization arises
in highly sheared mixing layers with high stretch rate. This layer is here represented by two impinging
jets. One consists of dense oxygen at the low temperature of T up = 100 K and the other of oxygen
already heated by combustion at the temperature T do = 1000 K. The mean pressure being fixed at
p = 100 atm, the oxygen is fully transcritical and no phase transition is expected.

The value of the strain rate ε is here taken equal to ε = 10000 s−1 which is relevant of the conditions
encountered in the wake of a rocket injector but its exact value is not fundamental since the equations
(1), (2), (3) and (4) for non-reactive (ωi = 0, i ∈ S) stretched structures yield solutions which are only
dependent on x̃ = x

√
ε as soon as the mass and energy fluxes can be written under the form of linear

combination of x derivatives. The formulation of the equation governing these structures are detailled
in Section 7

As defined by Pons [11], the pseudo vaporizing flux mvp = ρv(xvp) is used here with the pseudo
vaporization location xvp being set by T (xvp) = Tc,O2

, where Tc,O2
is the critical temperature of oxygen.

The choice to use the critical temperature of oxygen to determine pseudo vaporization is somewhat
arbitrary and taking the temperature at which the specific heat at constant pressure of oxygen reaches
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its maximum at a given pressure leads to similar results.

3.2 Reduced pseudo vaporizing mass transfer rate

By analogy with the expressions deduced from quasi stationnary derivation of vaporizing processes,
Yang [35] has proposed to express the pseudo vaporizing mass tranfer rate per unit surface mvp as a
function of a Spalding-like parameter BT given by

BT =
T up − Tc,O2

Tc,O2
− T do

.

Pons [11] has proposed the following relationship

mvp ∝ ln(1 +BT ) ,

which is analog to the expression of stationary vaporization rates in the subcritical state. We define
here a reduced pseudo vaporizing mass transfer rate per unit surface by

m̃vp =
mvp

ln(1 +BT )
.

Figure 1 presents the reduced vaporizing mass tranfer rate per unit surface as a function of the
Spalding-like parameter. In this figure, the Spalding-like parameter variation is obtained by altering
the temperatures at both sides of the structure. The values of BT displayed in Figure 1 correspond
to 1000 K ≤ T up ≤ 3495 K for T do = 100 K and 100 K ≤ T do ≤ 140,5 K for T up = 1000 K. For
such variation of the Spalding-like parameter, the reduced pseudo vaporization flux enhancement is
comparable whether it is the cold temperature or the hot one which is increased. Moreover, for the
whole BT range and in the case of varying cold temperature, the relative variation of the reduced
pseudo-vaporizing flux is less than 15% which confirms the correctness of the normalization.
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0.35

0.4
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v
p
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−
2
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1
)

BT

Tup

Tdo

Figure 1: Reduced vaporizing flux as a function of the Spalding-like parameter

3.3 Sensitivity analysis

We study in this section the influence of high pressure transport models on the reduced pseudo-
vaporizing mass transfer rate. The stretched structure being composed of an unique species, transport
phenomena reduce to heat conduction and viscosity. Reduced pseudo-vaporizing mass transfer rates
are computed for four different couples of transport coefficients which are the thermal conductivity
and the shear viscosity. Figure 2 displays the evaluated reduced vaporizing mass transfer rate as
a function of the T do temperature. Solid line represents the reduced vaporizing mass transfer rate
computed in the case the two transport coefficients are evaluated using high density correlation, hence
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designed as (λ, η). The line bearing diamonds ⋄ represents the case the two transport coefficients are
evaluated using results of the kinetic theory of diluted gases, hence (λdil, ηdil). The two remaining
lines represent hybrid formulation respectively (λ, ηdil) for the ∇ bearing line and (λdil, η) for the �

bearing one. For all modelizations, the reduced pseudo vaporizing mass transfer rate m̃vp diverges
for T do → Tc,O2

= 154, 58 K, which corresponds to the fact that the pseudo-vaporizing interface is
then rejected at x = −∞. The influence of transport coefficients is rather complex but it seems that
the weakening of thermal conductivity through the use of dilute formulations enhances the pseudo-
vaporizing mass transfer rate. As expected, the influence of thermal conductivity weakens when the
pseudo vaporizing interface is rejected toward x = −∞. For the shear viscosity, its influence seems
to vary depending on the injection temperature, enhancing the pseudovaporization for low injection
temperature and reducing it at higher temperature.

100 120 140 160
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0.4

0.5
m̃

v
p
(g
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2
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1
)

Tdo (K)

Figure 2: Reduced vaporizing flux as a function of T do for varied transport modelization. —: (λ, η),
⋄:(λdil, ηdil), ∇:(λ, ηdil), �:(λdil, η)

Nevertheless, with an eye towards subgrid models required for Large Eddy Simulations, the un-
avoidable errors made in averaging every turbulent structures in a single equivalent stretched structure
being of a greater order, the relationship proposed by Pons [11] seems reasonnably accurate.

4 H2-O2 mixing layer

In this section, we investigate a mixing layer between cold oxygen and hydrogen at a pressure p =
100 atm. This mixing layer is represented by a non-reactive stretched structure separating two im-
pinging flow at temperature T = 150 K. The value of the strain rate used here is ε = 10000 s−1, but
as already noted for the O2 pseudo vaporizing structure, the solution can be extended by similarity to
any strain rate ε. This kind of structure is likely to appear in the wake of rocket engine injectors in
the case of local flame quenching. The temperature of both injected oxygen and hydrogen are taken
equal here for the sake of simplicity and slightly higher than the predicted thermodynamics stability of
H2-O2 mixtures which is around T = 140 K as evaluated for instance with the SRK equation of state
[14]. The two fluids are then expected to be weakly miscible one into another and we demonstrate
here the capability of transport models based on thermodynamical consideration —such as the one
described in Section 2.3— to grasp this lack of miscibility. These nonideal effects are out of reach of
ideal transport models which may indeed lead to thermodynamically non-admissible states inside the
mixing layer.

4.1 Structure of the mixing layer

Figure 3 presents the evolution of the density through the mixing layer for nonideal diffusion driving
forces and ideal diffusion driving forces respectively. The density of hydrogen, coming from the left, is
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about 0.0154 g·cm−3 at T = 150 K and p = 100 atm and the density of oxygen rises up to 0.768 g·cm−3.
For the mixing layer computed using the nonideal diffusion driving forces, the density gradients are
much steeper than the ones observed with the ideal diffusion driving forces evaluation. In this case,
the density curve presents here a nearly vertical tangent which tends to ressemble the infinite density
derivative existing at the interface beetween two unmiscible fluids. On the contrary, for the ideal model,
the density gradients are much weaker and the density profile shows several inflection points.

In addition, as presented on Figure 4, the temperature does not stay uniform in the mixing layer
although both fluids are injected at T = 150 K. These perturbations may be explained thanks to two
physically distinct effects. Combining the species and energy conservation (3) (4) in this two-species
inert context, we first write the following equation for temperature

(ρvcp +
∑

i∈S

Ficp,i)T
′ −

(
λ̂T ′

)′
= −

(ρRT

m̄
(θH2

dH2
− θO2

dO2
)
)′
+

∑

i,j∈S

FihijY
′
j ,

where cp is the mean specific heat of the mixture and hij = ∂hi/∂Yj = ∂hj/∂Yi are the enthalpy cross
derivatives. The two terms on the right side may be interpreted as temperature source terms. The first
is related to Dufour’s effect and the second is a nonideal thermodynamical effect related to the fact
that, for real gases, the cross enthalpy derivatives hij are generally non zero. In the computed H2-O2

mixing layer this thermodynamical effect dominates the Dufour effect and leads to lower temperatures
in the hydrogen-rich side of the layer and higher temperatures in the oxygen-rich side.
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Figure 3: Density evolution in the cold H2-O2 mix-
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Figure 4: Temperature evolution in the cold H2-O2

mixing layer. (—) : Xi(µi)
′
T , (- - -) : X

′
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We note that density gradients are steeper with nonideal transport. This effect is the consequence of
the counter-diffusion brought by the nonideal part of the diffusion driving forces Xi(µ

sm
i )′T as shown in

Figures 5 and 6 where the two part of these forces are independently plotted. These figures underline
the dramatic influence of the nonideal part of the diffusion driving force which hinders the natural
diffusion. This nonideal part of the diffusion driving force is responsible of an anti-diffusion flux which
counter-balance the classical mass flux driven by the mole fraction gradients. This anti-diffusion flux is
localized in the vicinity of the locus of higher density gradient and the magnitude of the corresponding
diffusion driving force peaks to 41500 cm−1. The consequences of this anti-diffusion flux is that the
two impinging jets are relatively preserved in what concerns the mixture composition, which lead to
the appearance of a quasi-interface. Such a phenomenon is to be expected in th neighborhood of the
thermodynamic chemical stability limit where phase separation occurs.

4.2 Thermodynamic stability

Using SRK thermodynamics, the critical line of H2-O2 mixtures lies for the pressure p = 100 atm at a
temperature T = 141 K. At this pressure, H2-O2 mixtures may become unstable for temperatures lower
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that the critical line temperature. As shown in Figure 4, the computed mixing layer structures present
thermodynamical states with temperatures lower than T = 141 K and it is then necessary to check their
thermodynamical stability. In Figure 7 are plotted the varied thermodynamical states encountered in
the H2-O2 mixing layers in a mixture-temperature diagramm along with the stability limit computed
for SRK thermodynamics. As it appears, when the ideal diffusion driving force model is used, some
of the encountered thermodynamical states are under the stability limit curve and thus unphysical.
On the contrary, the full high pressure model manage to avoid intrusion inside the non-admissibility
domain by inflecting the composition-temperature curve and thus introducing steep density gradients.

The nonideal transport model is consistant with nonideal thermodynamics in the sense that uncon-
ditionnaly unstable thermodynamical states cannot be obtained through a molecular transport process.
Indeed the nonideal transport model introduces diffusion driving forces based on entropy derivatives
with respect to the component mass and the energy allowing the model to grasp stability properties
which are related to the matrices.

5 Diffusion flame structure

In this section, we present some diffusion flames structures relevant of combustion phenomena arising
inside a cryogenic rocket engine.

5.1 H2-O2 transcritical flame

We consider an H2-O2 diffusion flame at pressure p = 100 atm and injection temperatures T up = 300 K
and T do = 100 K respectively. This kind of flames can be found in the vicinity of cryogenic rocket
engine injectors where flames stabilize between the dense oxygen core and the preheated hydrogen
coflow.

We describe here the structure of the H2-O2 diffusion flame computed for an ε = 10000 s−1 strain
rate. An important feature of this flame structure is the large densities encountered in the oxygen
injection for positive x. This density rise indeed as high as 1.12 g·cm−3 which are approaching densities
of liquid oxygen. The maximal temperature Tmax = 3747 K is to be found in the vicinity of x = 19.6µm,
the crossing position of the fuel and oxydant mole fraction where XH2,O2

= 0.078.
The whole flame structure is around 50 µm wide and the two side of the flame are quite different.

On the O2 side, the heavier radical are to be found with early formation of H2O2 radicals through
reaction 15. Note that the fuel H2 penetrate the O2 dense core deeper than every other component even
than the combustion product H2O. The latter point can be explained by considering that hydrogen
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does not react with oxygen at these low temperature and that its diffusivity as a small molecule is
greater than the one of water. In the same way in the H2 side, the H radical diffuse faster than the
H2O molecule and thus goes further in the impinging H2 jet.

Whereas in the cold H2-O2 mixing layer the diffusion driving force model was of the greatest
influence on the stretched structure, it does not seem to bear the same influence in this case. Indeed
using the ideal diffusion driving forces X′

i, i ∈ S does not change significantly the flame structure and
the radicals profile. The only influence reduces to a slightly better diffusivity of H2O inside the dense
O2 core and the smoothing of a kind of bump in the O2 mole fraction profile. This bump is due to
a weak nonideal anti-diffusion effect on the edge of the dense core which induced steep initial XO2

gradients to counterbalance this effect. This bump is quite small and thus can not be seen on Figure
8, but its effect on the X′

O2
is made clear on Figure 9 on which are plotted the contributions XO2

and
XO2

(µsm
O2

)′T to dO2
.

The nonideal part of the diffusion force XO2
(µsm

O2
)′T plays a role in a very narrow sheet around the

high density gradient zone. Its influence is to prevent diffusion of O2 molecules from the dense core to
the flame. As a consequence, the mole fraction gradient profile presents a kind of horn in this steep
density gradient region, horn that can be obliterated by neglecting the nonideal diffusion. Taking into
account the thermal diffusion does not modify this conclusion as its own influence is mainly located
inside the flame and not in the pseudo-interface region.

The nonideal transport influence on the O2 pseudo-vaporizing mass transfer rate is thus weak
compared to the thermal effects. The multi-species flamme sheet is separated from the pure species
dense O2 core by this thermally controlled pseudo-vaporizing front, justifying subgrid models based on
pseudo-vaporizing interface consideration [66].

5.2 (H2+H2O)-O2 diffusion flames

An other kind of diffusion flame structure of great interest in cryogenic combustion is constitued by a
cold O2 jet impinging on a hot mixture of burnt gases. Most cryogenic engines running at high fuel
ratio, these burnt gases may contain enough residual hydrogen to allow inflammation of the oxydant.
This kind of structure may developp around a dense O2 cluster ripped of the main core by turbulence
and thrown in the middle of already burnt gases.

In this section we modelize the burnt gases as a mixture of H2 and H2O at the temperature of
T do = 1000 K. The O2 dense core is once again represented by an impinging jet at temperature
T up = 100 K, hence implying transcritical behaviour of the oxydizer. The pressure of the flame is
taken equal to p = 100 atm. We consider a global oxydizer to fuel mixture ratio of 1.5 relevant of gas
generator condition, that is to say extremely rich in hydrogen. The burnt gases are thus represented
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Figure 8: Structure of a counterflow H2-O2 diffusion flame, with T up = 100 K, Yup
O2

= 1, T do = 300 K,

Ydo
H2

= 100 K, ε = 10000 s−1

by a H2-H2O mixture with XH2
= 0.8077 and XH2O = 0.1923.

The flame structure is quite similar to the H2-O2 diffusion flame, especially the right side near the
O2 dense core. The width of the structure is quite the same but the whole structure is shifted left
toward the stagnation point. Maximal temperature is slightly lower than in the previous case with
Tmax = 3633 K, and molar fraction of O2 and H2 at crossing point is XH2,O2

= 0.07. The main
differences lie in the enhanced diffusivities in hot burnt gases allowing radicals H and OH to crawl
further inside the fuel jet.

6 Partially premixed flame

In this section, we study partially premixed H2-O2 flames. These flames are established between a
mixture of fuel and oxydizer and a pure oxydizer or fuel. This kind of configuration may occur in
turbulent flows following local quenching which allows the fuel to mix with the oxydizer and reignition.
In this study, we focus on the case in which the pure compound is cold oxygen in transcritical state.

In Figure 11 is presented the structure of a flame established between an hydrogen-rich mixture
and a dense oxygen core. The pressure of the flame is set to p = 100 atm and the temperature of the
pure oxygen jet is fixed at T up = 100 K. For the hydrogen-rich mixture, we consider an isenthalpic
mixing of H2 at T = 300 K and O2 at T = 100 K in a mixture ratio of 1.5, thus obtaining the following
conditions: T do = 263.35 K and Xdo

H2
= 0.9123 and Ydo

O2
= 0.0877.

The side of the flame located near the oxygen injection is similar to the previously calculated
diffusion flame, whereas the other side shows an independant reaction zone with heavy radicals HO2

and H2O2 peaks located at x = −0.002 cm. These peaks are soon followed by a steep increase of light
radicals such as O, OH and H and a weak inflection of the temperature profile. The radicals O H
OH HO2 H2O2 and species O2 mole fraction profiles presents a local minimum in the middle of the
flame as the burnt premixed gases approach their thermodynamic equilibrium which is disturbed by
the incoming of fresh O2 from the dense O2 injection. At the strain rate of ε = 10000 s−1 used here,
the two distincts reaction zones are located close one to another and thus influence each other. This
influence is weakened when these reaction zones are far apart.

In a first order analysis, the location xf of the premixed reacting zone is given by the relation
xf ∝ −vf/ε, where vf is the laminar flame speed in the mixture and where the proportionality coefficient
is the ratio of the square roots of injected densities

√
ρdo/ρup. In order to induce a displacement of

the premixed zone to the left, one can then manage to increase the laminar flame speed vf or reduce

14



0 0.002 0.004
-400

-200

0

200

400

600

800

x (cm)

X
′ O

2
,
X

O
2
(µ

s
m
O

2
)′ T

,
χ
O

2
(l
n
T
)′

(c
m

−
1
)

Figure 9: Contribution to the O2 related diffusion driving force. (—): X′
O2

, (- - -) : XO2
(µsm

O2
)′T ,

(- · -) : χO2
(lnT )′

the strain rate ε.
The laminar flame speed can be increased by higher mixture temperature. Figure 12 shows a

premixed flame structure computed for T do = 1000 K. The premixed reaction zone is located at
x = −0.022 cm and the burnt gases mixture has enough time to reach an equilibrium state before
encountering the influence of the dense O2 core. The diffusion reacting zone is not influenced by this
changes in the hydrogenated injection, the location of steeper density gradient being the same as in
the cas T up = 300 K and the mole fraction profiles being equivalent with the exception of the light
radical ones which does not fall back to zero on the left side of this reacting zone but instead reaching
the equilibrium values of the premixed burnt gases.

In order to obtain a displacement of the premixed burning zone, one may also reduce the stretch
rate ε to allow the premixed-like flame to crawl further ahead the H2-O2 mixture. The figure 13 shows
the structure obtained for a stretch rate ε = 200 s−1. As in the hot H2-O2 mixture case, the fluid has
enough time to reach thermodynamical equilibrium between the two reaction zones. This equilibrium
presents lower temperature and as a consequence lower radical concentration. The diffusion reaction
zone presents, taken into acount the usual

√
ε similarity, the same features as the case with T up = 300 K

and ε = 10000 s−1 except that the maximal temperature is here 10 K higher than in the previous case
and that the H2O2 secondary peak is somewhat lower that the previous one.

7 Extinction limits of (H2+H2O)-O2 flames

We investigate in this section the dilution extinction limits and the strain extinction limits of (H2+H2O)-O2

diffusion flames. We also determine the flammability limits of H2-O2 mixtures in a stretched context.

7.1 Dilution extinction limit

Extinction of flame arising between transcritical oxygen and hydrogenated combustion product can be
obtained by lowering the H2 concentration. The study is performed at the fixed stretch rates ε = 102,
103, 104, 105, 106 and 107 s−1.

The hydrogenated combustion products are represented by H2-H2O mixtures at a fixed temperature
T do = 1000 K. The flame pressure is set to p = 100 atm and the temperature of the injected O2

T up = 100 K is low enough for the latter to be considered transcritical. The purpose is here to compute
the family of solution obtained by varying the hydrogen mole fraction Xdo

H2
in the hot impinging jet.

Figure 14 shows the maximal temperature reached in the flame structure as a function of the
hydrogen molar fraction Xdo

H2
in the hydrogenated combustion products. For a given mixture ratio,

there may exist up to three different solutions leading to distinct maximal temperature. For instance
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Figure 10: Structure of a counterflow (H2+H2O)-O2 diffusion flame, with T up = 100 K, Xup
O2

= 1,

T do = 1000 K, Xdo
H2

= 0.8077, Xdo
O2

= 0.1923, ε = 10000 s−1

for a stretch rate fixed at ε = 102 s−1 the solution curve is S-shaped. Starting from an extinguished
solution with Xdo

H2
= 0 and Tmax = 1000 K, one can reach by increasing continuously the mixture ratio

the ignition point located at Xdo
H2

= 0.289 where the solution undergo a transition toward the buring
solution for which Tmax = 2572 K. Reducing then continuously the hydrogen mole fraction would lead
to reach the extinction point located at Xdo

H2
= 0.073 for which the flame extinguish abruptly. The

middle branch of the S-shaped curve is physically unstable and none of its solution is encountered in
the real field. For higher stretch rate, the upper branch and the lower branch of the S, respectively the
burning branch and the extinguished branch, are not connected anymore, leading to C-shaped curves.
In this study we chose not to compute the always existing extinguished solutions which are of limited
interest and only the burning and the unstable branch are plotted on Figure 14.

For H2-rich combustion product, the caracteristic chemical time is small and the flame structure
dependence with respect to the stretch rate reduces to a similarity deformation up to very large stretch
rate. Indeed for pure reactant diffusion flame, the maximal flame temperature Tmax = 3822 K is stretch
rate independant up to ε ≃ 107 s−1. The lower the hydrogen mole fraction, the greater the chemical
time is and the sooner appear influence of the stretch rate parameter. Table 2 gives the extinction
limit in term of injected hydrogen mole fraction for varied stretch rate.

ε (s−1) 102 103 104 105 106 107

Xext
H2

0.073 0.119 0.180 0.267 0.437 0.959

Table 2: Extinction limit of (H2+H2O)-O2 flames

Combustion models based on stretched flames use global quantities to describe the flame behaviour.
One of these quantities is the heat release per unit flame surface ωh defined as

ωh = −
∫ +∞

−∞

∑

i∈S

himiωidx ,

and appear as a source term in the temperature equation for turbulent combustion models. Under the
infinitely fast chemistry assumption, the consumption rate of reactant is similar with respect to the
square root of the strain rate

√
ε and so is the heat release. It is then interesting to define a reduced

heat release ωh/
√
ε per unit flame surface to evaluate the validity of this fast chemistry assumption.
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Figure 11: Structure of a counterflow partially premixed flame, with T up = 100 K, T do = 263.35 K,
Xup

O2
= 1, Xdo
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= 0.0877, Xdo
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= 0.9123, ε = 10000 s−1
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Figure 12: Structure of a counterflow partially premixed flame, with T up = 100 K, T do = 1000 K,
Xup

O2
= 1, Xdo

O2
= 0.0877, Xdo

H2
= 0.9123, ε = 10000 s−1

Figure 15 shows the reduced heat release per unit of flame surface for varied strain rate. This
quantity appear to be a function of the hydrogen mole fraction only over a wide range of mixture
ratio and of stretch rate. The influence of the stretch rate parameter is only sensible in the vicinity of
extinction limit and for large values such as ε ≥ 105.

7.2 Stretch extinction limit

In the case of hydrogen combustion, fast chemical kinetics leads to very high extinction stretch rate
for H2-rich fuel jets. For the set of equations (1), (2), (3) and (4), the continuation procedure used
to investigate extinction limits captures the fast-chemistry similarity deformation of the flame with
respect to the stretch rate.

The molecular transport flux being expressed as sum of transport coefficient-pondered gradients, it
is possible to rewrite the conservation equation set under a form which erase the similar deformation and
thus ease the reaching of extinction limits. Indeed, denoting x̃ = x

√
ε and ṽ = v/

√
ε these equations
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Figure 13: Structure of a counterflow partially premixed flame, with T up = 100 K, T do = 263.35 K,
Xup

O2
= 1, Xdo

O2
= 0.0877, Xdo

H2
= 0.9123, ε = 200 s−1

now read

ρũ+ (ρṽ)′ = 0 ,

ρṽũ′ + ρũ2 − ρup −
(
ηũ′

)′
= 0 ,

ρṽY′
i +

(∑

j∈S

Lij

(
−gj
T

)′
+ Liq

( 1
T

)′)′

=
miωi

ε
, i ∈ S ,

ρṽh′ +
(∑

j∈S

Lqj

(
−gj
T

)′
+ Lqq

( 1
T

)′)′

= 0 ,

where ′ now denotes the derivation with respect to the reduced normal coordinate x̃. Under this form,
the action of the stretch rate upon the similarity-corrected structure reduces to a modulation of the
chemical source terms.

The stretch-related variable used in this study by the continuation solver is the parameter 1/ε.
In order to explore the whole range of stretch, this parameter will change of a few order of magni-
tude during the continuation procedure. The continuation procedure used here performs a sensitivity
analysis to select the most relevant variable as continuation parameter [59]. A fixed scaling for the
stretch-related parameter 1/ε can artificially enhance or reduce the evaluated sensitivity with respect
to this parameter and lead to suboptimal choices for the continuation parameter. In this study we use
a dynamic scaling procedure insuring that the scaled stretch-related parameter is always of magnitude
unity.

The figure 16 shows the maximal temperature Tmax reached by counterflow flames for combustion
product mixture ratio given by XH2

= 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0. As expected,
the maximal temperature is relatively independant of the stretch rate for low values of the latter.

The solution curves seems to be classically S-shaped but, albeit not apparent on the figure, some
of the curves’ extinguished and burning branch are no longer connected. In fact for medium mixture
ratio, namely XH2

= 0.8, 0.7, 0.6, 0.5, 0.4, the unstable branch possess flame structures containing
thermodynamically unstable state. These unphysical solutions are typically found for stretch rate
around 102 ≤ ε ≤ 103 which are great enough to weaken the chemistry and allow diffusion of water
and hydrogen in the dense O2 jet.

Figure 17 represent the reduced heat release per unit of flame surface as a function of the stretch
rate. The lack of dependence with respect of the stretch rate ε for the low values is once again apparent
and the dispersion in term of heat release allows to point out the fact that some of the curves finishes
on the unstable branch as evoked before. The extinguished branch coincide here with the abscisse axis
since no chemical phenomenom occurs when the flamùe is not burning.

18



0 0.2 0.4 0.6 0.8 1
500

1000

1500

2000

2500

3000

3500

4000

4500

Xdo
H2

T
m

a
x
(K

)

102

103

104

105

106

107

Figure 14: Maximal temperature of (H2+H2O)-O2 flames

7.3 Flammability of H2-O2 mixtures

In order to study the flammability limits of H2-O2 mixtures in a turbulent context, we consider the
case of a symmetric premixed stretched flame at pressure p = 100 atm. Both impinging jets are
supposed to be at same temperature and composition and the strain rate ε is fixed at the value
ε = 10000 s−1. By varying alternatively the temperature and the composition of the impinging jets
with the aid of continuation techniques, it is possible to determine the lean and rich extinction limits
of H2-O2 premixed stretched flames for different injection temperature T fr. Figure 18 represents the
ε = 10000 s−1 flammability domain in (φ, T fr) coordinates, φ being the equivalence ratio of the fresh
mixture. This flammability domain is classicaly bounded by a lean extinction limit and a rich extinction
limit. In real gas context, a thermodynamics related limit should also be taken into account. This
limit is the stability limit of the fresh mixture under which no homogeneous mixture may exist thanks
to thermodynamically driven demixing phenomena as evoked in Section 4. The rich extinction limit,
represented by the solid line, meets the stability limit, represented by the dash-dotted line, at φ = 4
and T fr = 68 K. The lean extinction limit, represented by the dashed line, meets the stability limit at
φ = 0.11 and T fr = 73 K. This feature induces that for reactant temperature below T fr = 68 K the two
fluid phases appearing in the extinguished mixing layer are located outside the flammability domain
which hinders reignition and may lead to engine-scale combustion instabilities.

8 Conclusion

In this study a general high pressure flame model has been implemented in a stretched flame solver.
This model combines a thermodynamical description of dense fluid based on a Soave-Redlich-Kwong
equation, nonideal high pressure transport coherent with thermodynamics of irreversible process, sta-
tistical mechanics and statistical non-equilibrium thermodynamics and a chemical representation using
nonideal production rates.

The pseudo vaporization phenomenom which arise at the encounter of a dense transcritical oxygen
jet with a hot oxygen jet has been adressed in Section 3. The position of the dense to dilute transition
with respect to the stagnation point of the stretched structure is weakly sensitive to the shear viscosity
model and so is the per unit surface pseudo-vaporization flux.

The structure of a cold H2-O2 mixing layer has been studied in Section 4 and the nonideal transport
modelling yields retrodiffusion effects which prevent the mixing of the two ergols when the temperature
and pressure conditions approaches the thermodynamical stability limit for the mixture. This lack of
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Figure 15: Reduced heat release per unit flame surface of (H2+H2O)-O2 flames

miscibility leads to the appearance of two phase flow in the wake of a rocket injector in the case of
local extinction phenomenon seems to be of great importance for the overall combustion stability by
hindering reignition of cold mixing structure.

Various stretched flame structures involving transcritical oxygen have then been studied in Section 5
and 6. The influence of nonideality are limited to the oxygen density prediction since the heating due
to the flame reduce quickly the impact of nonidealities outside the O2 dense core. The flame structure
adapts itself to the nonideal retrodiffusing flux and the influence in term of global quantity such as the
heat release per unit of flame is insignificant.

Extinction limits with respect to stretch rate and to mixture ratio of the flame existing between com-
bustion products and transcritical oxygen have been determined numerically in Section 7. If unphysical
flames, that is to say flames containing thermodynamically unstable state, have been encounterd during
these continuation procedures, these flames belongs to unstable or extinguished branch and does not
alter the computed extinction limits. Flammability domain in a turbulent context of H2-O2 mixtures
has been also determined. In this case and for very low reactant temperatures, it has been shown that
demixing phenomena may prevent mixture reignition. This underlines the strong connections between
extinction limits of cold mixtures and thermodynamical nonidealities.

References
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